
Linux Kernel Architecture

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 What is Kernel ?
 Kernel Architecture Overview

 User Space
 Kernel Space

 Kernel Functional Overview
 File System
 Process Management
 Device Driver
 Memory Management
 Networking

3

What is Kernel ?

 Modules or sub-systems that
provide the operating system
functions.

 The Core of OS

4

Types of kernels

 Micro kernel (Modular kernel)
 Monolithic kernel

5

Micro kernel

 It includes code only necessary to
allow the system to provide major
functionality.
IPC
Some memory management
Low level process management &

scheduling
Low level input / output

 Such as Amoeba, Mach and …

6

Monolithic kernel

 It includes all the necessary
functions.

 Such as Linux and …

7

Micro vs. Monolithic

 Micro
Flexible
Modular
Easy to implement

 Monolithic
Performance

8

Contents

 What is Kernel ?
 Kernel Architecture Overview

 User Space
 Kernel Space

 Kernel Functional Overview
 File System
 Process Management
 Device Driver
 Memory Management
 Networking

9

Kernel Architecture
Overview
 User Space
 Kernel Space

User Space

System Call

Hardware

Kernel Space

10

User Space

 The User Space is the space in memory
where user processes run.

 This Space is protected.
 The system prevents one process from

interfering with another process.
 Only Kernel processes can access a user

process

11

Kernel Space

 The kernel Space is the space in memory
where kernel processes run.

 The user has access to it only through the
system call.

12

System Call

 User Space and Kernel Space are
in different spaces.

 When a System Call is executed,
the arguments to the call are
passed from
User Space to Kernel Space.

 A user process becomes a kernel
process when it executes a system
call.

13

User Space and Kernel Space
Relationship

User
Process

Library Routine

Syscall Dispatch

Kernel
Service

User
Space
Kernel Space

Data Flow

14

Contents

 What is Kernel ?
 Kernel Architecture Overview

 User Space
 Kernel Space

 Kernel Functional Overview
 File System
 Process Management
 Device Driver
 Memory Management
 Networking

15

Kernel Functional
Overview
 File System
 Process Management
 Device Driver
 Memory Management
 Networking

16

Kernel Functional Overview

17

Functional Layer &
Architectural Layer

User Space

System Call

Hardware

MM

PM

NetDM

FS

18

Contents

 What is Kernel ?
 Kernel Architecture Overview

 User Space
 Kernel Space

 Kernel Functional Overview
 File System
 Process Management
 Device Driver
 Memory Management
 Networking

19

File System

 It is responsible for storing information on
disk and retrieving and updating this
information.

 The File System is accessed through
system calls such as : open, read, write, …

 Example :
 FAT16, FAT32, NTFS
 ext2, ext3
 …

20

Type of Files

 The Unix system has the following types of
files:
 Ordinary Files

 Contain information entered into them by a user, an
application or …

 Directory Files
 Manage the cataloging of the file system

 Special Files (devices)
 Used to access the peripheral devices

 FIFO Files for Pipes

21

Extended File System

 /

/bin /etc /dev … /usr /home /root

 ls ping A B

 data.txt pic.gif

22

File System Structure

 Boot Block : information needs to boot the system
 Super Block : File System Specifications

 Size
 Max. number of files
 Free blocks
 Free inodes

 inode List
 Block List : The files data

Boot
Block

Super
Block

inode
List

Block
List

23

Inode

 Each file has an inode structure that
is identified by an i-number.

 The inode contains the information
required to access the file.

 It doesn’t contain file name.

24

Inode (Cont.)

25

Directories

File
Name

inode Number

26

Virtual File System

 It manages all the different file
system.

 It is an abstraction layer between the
application program and the file
system implementations.

27

Virtual File System (Cont.)

 It describes the system’s file in terms
of superblocks and inodes (the same
way as the Ext2).

28

Virtual File System (Cont.)

 Inode cache
 Directory Cache

29

Contents

 What is Kernel ?
 Kernel Architecture Overview

 User Space
 Kernel Space

 Kernel Functional Overview
 File System
 Process Management
 Device Driver
 Memory Management
 Networking

30

Process Management

 The Unix OS is a time-sharing
system.

 Every process is scheduled to run for
a period of time (time slice).

 Kernel creates, manages and deletes
the processes

31

Process Management (Cont.)

 Every process (except init) in the system is create
as the result of a fork system call.

 The fork system call splits a process into two
processes (Parent and Child).

 Each process has a unique identifier (Process ID).

32

Process Structure

 Each process is represented by a
task_struct data structure.
 It contains the specifications of each process

such as:
 State
 Scheduling information
 Identifier
 …

33

Process Structure (cont.)

 The task_vector is an array of pointers to
every task_struct data structure in the
system.
 This means that the maximum number of

processes in the system is limited by the size of
the task vector

34

Type of Processes

 Running
 The process is either running or it is ready to run.

 Waiting
 The process is waiting for an event or for a resource.

 Stopped
 The process has been stopped, usually by receiving a

signal.

 Zombie
 This is a halted process which, for some reason, still has

a task_struct data structure in the task vector.

35

Contents

 What is Kernel ?
 Kernel Architecture Overview

 User Space
 Kernel Space

 Kernel Functional Overview
 File System
 Process Management
 Device Driver
 Memory Management
 Networking

36

Device Driver

 On of the purpose of an OS is to hide the
system’s hardware from user.

 Instead of putting code to manage the HW
controller into every application, the code
is kept in the Linux kernel.

 It abstracts the handling of devices.
 All HW devices look like regular files.

37

Type of devices

 Character devices
 A character device is one that can be accessed

as a stream of bytes.
 Example : Keyboard, Mouse, …

 Block devices
 A block device can be accessed only as

multiples of a block.
 Example : disk, …

 Network devices
 They are created by Linux kernel.

38

Major Number and Minor Number

 Major Number
 The major number identifies the driver

associated with the device.
 Minor Number

 The minor number is used only by the driver
specified by the major number; other parts of
the kernel don't use it.

 It is common for a driver to control several
devices, the minor number provides a way for
the driver to differentiate among them.

39

Device Driver (Cont.)

40

Contents

 What is Kernel ?
 Kernel Architecture Overview

 User Space
 Kernel Space

 Kernel Functional Overview
 File System
 Process Management
 Device Driver
 Memory Management
 Networking

41

Memory Management

 Physical memory is limited.
 Virtual memory is developed to overcome

this limitation.

42

Virtual memory

 Large Address space
 Protection
 Memory mapping
 Fair physical memory allocation
 Shared virtual memory

43

Physical and Virtual memory

44

Swap memory

 It is a configurable partition on disk
treated in a manner similar to
memory.

45

Contents

 What is Kernel ?
 Kernel Architecture Overview

 User Space
 Kernel Space

 Kernel Functional Overview
 File System
 Process Management
 Device Driver
 Memory Management
 Networking

46

Network layers

47

Linux network layers

48

BSD socket layer

 It is a general interface (abstract
layer).
Used in networking and IPC.

 Socket address families:
UNIX
INET
AX25
IPX
APPLETALK
X25

49

What is socket?

main()
{

FILE *fd;
fd = fopen (…);
process (fd);
fclose (fd);

}

main()
{

int sockfd;
sockfd = socket (…);
process (sockfd);
close (sockfd);

}

50

INET socket layer

 It supports the Internet address
family.

 Its interface with BSD socket layer is
through a set of operation which is
registered with BSD socket layer.

51

Type of sockets

 Stream Socket
 Provide a reliable, sequenced, two-way

connection (such as TCP).
 Datagram Socket

 A connection-less and unreliable connection
(such as UDP).

 Raw Socket
 Used for internal network protocols.

52

Question?

