
Linux Device Driver
(Block Devices)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

3

Block device

 Like char devices, block devices are
accessed by filesystem nodes in the /dev
directory.

 A block device is something that can host
a filesystem, such as a disk.

 A block device can be accessed only as
multiples of a block,
 A block is usually one kilobyte of data or

another power of 2.

4

Registering the driver

 Like char drivers, block drivers in the
kernel are identified by major
numbers.

 Block major numbers are entirely
distinct from char major numbers.
A block device with major number 32

can coexist with a char device using the
same major number since the two
ranges are separate.

5

Registering the driver

 int register_blkdev(unsigned int
major, const char *name, struct
block_device_operations *bdops);

 int unregister_blkdev(unsigned int
major, const char *name);

 They are defined in <linux/fs.h>.

6

block_device_operations

struct block_device_operations
{

int (*open) (struct inode *inode, struct file *filp);
int (*release) (struct inode *inode, struct file *filp);
int (*ioctl) (struct inode *inode, struct file
*filp,unsigned command, unsigned long
argument);
int (*check_media_change) (kdev_t dev);
int (*revalidate) (kdev_t dev);

};

7

Block device read/write

 There are no read or write operations
provided in the block_device_operations
structure.

 All I/O to block devices is normally
buffered by the system.

 User processes do not perform direct I/O to
these devices.
 User-mode access to block devices usually is

implicit in filesystem operations they perform
(those operations clearly benefit from I/O
buffering).

 However, even ‘‘direct’’ I/O to a block device,
such as when a filesystem is created, goes
through the Linux buffer cache.

8

Block device read/write

 The kernel provides a single set of
read and write functions for block
devices, and drivers do not need to
worry about them.

 In Linux, the method used for these
I/O operations is called request.

 The request method handles both
read and write operations and can be
somewhat complex.

9

Request method

 For the purposes of block device
registration, however, we must tell
the kernel where our request method
is.

 blk_init_queue(request_queue_t *queue,
request_fn_proc *request);

 blk_cleanup_queue(request_queue_t
*queue);

 They are defined in <linux/blkdev.h>

10

Device request queue

 Each device has a request queue
that it uses by default.

 BLK_DEFAULT_QUEUE(major)
 It is used to indicate that queue when

needed.
This macro looks into a global array of

blk_dev_struct structures.

11

Sample

 blk_init_queue(BLK_DEFAULT_QUEUE
(major), sbull_request);

12

blk_dev_struct

struct blk_dev_struct
{

request_queue_t request_queue;
queue_proc *queue;
void *data;

};
 The request_queue member contains the I/O

request queue.
 The data field may be used by the driver for its

own data.

13

Block vs Character

Block Device Char Device

14

Block device global arrays

 struct blk_dev_struct blk_dev[]
 int blk_size[][]

 It describes the size of each device, in kilobytes.
 int blksize_size[][]

 The size of the block used by each device, in
bytes.

 int hardsect_size[][]
 The size of the hardware sector used by each

device, in bytes.

15

Block device global arrays

 int read_ahead[] and int
max_readahead[][]
 These arrays define the number of sectors to be

read.
 int max_sectors[][]

 This array limits the maximum size of a single
request.

 int max_segments[]
 This array controlled the number of individual

segments that could appear in a clustered
request.

16

Sample

read_ahead[major] = sbull_rahead;
sbull_sizes = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
for (i=0; i < sbull_devs; i++)

sbull_sizes[i] = sbull_size;
blk_size[major]=sbull_sizes;
sbull_blksizes = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
for (i=0; i < sbull_devs; i++)

sbull_blksizes[i] = sbull_blksize;
blksize_size[major]=sbull_blksizes;
sbull_hardsects = kmalloc(sbull_devs * sizeof(int),

GFP_KERNEL);
for (i=0; i < sbull_devs; i++)

sbull_hardsects[i] = sbull_hardsect;
hardsect_size[major]=sbull_hardsects;

17

Register disk

 One last thing that must be done is to
register every ‘‘disk’’ device provided by
the driver.

 register_disk(struct gendisk *gd, int drive,
unsigned minors, struct
block_device_operations *ops, long size);

 A block driver without partitions will work
without this call in 2.4.0, but it is safer to
include it.

18

Sample

for (i = 0; i < sbull_devs; i++)
register_disk(NULL,
MKDEV(major, i), 1, &sbull_bdops,
sbull_size << 1);

19

Cleanup block device

The call to fsync_dev is
needed to free all
references to the device
that the kernel keeps in
various caches.

20

Sample

for (i=0; i<sbull_devs; i++)
fsync_dev(MKDEV(sbull_major, i));

unregister_blkdev(major, "sbull");
blk_cleanup_queue(BLK_DEFAULT_QUEUE(major));

read_ahead[major] = 0;
kfree(blk_size[major]);
blk_size[major] = NULL;
kfree(blksize_size[major]);
blksize_size[major] = NULL;
kfree(hardsect_size[major]);
hardsect_size[major] = NULL;

21

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

22

The Header File blk.h

 All block drivers should include the
header file <linux/blk.h>.

 This file defines much of the common
code that is used in block drivers.

 It provides functions for dealing with
the I/O request queue.

23

Module compile notes

 the blk.h header is quite unusual.
 It defines several symbols based

on the symbol MAJOR_NR.
It must be declared by the driver

before it includes the header.

24

blk.h symbols

 MAJOR_NR
 This symbol is used to access a few arrays.

 DEVICE_NAME
 The name of the device being created.

 DEVICE_NR(kdev_t device)
 This symbol is used to extract the ordinal number of the

physical device from the kdev_t device number.
 The value of this macro can be MINOR(device).

 DEVICE_INTR
 This symbol is used to declare a pointer variable that

refers to the current bottom-half handler.

25

blk.h symbols
 DEVICE_ON(kdev_t device) & DEVICE_OFF(kdev_t device)

 These macros are intended to help devices that need to perform
processing before or after a set of transfers is performed.

 for example, they could be used by a floppy driver to start the
drive motor before I/O and to stop it afterward.

 DEVICE_NO_RANDOM
 By default, the function end_request contributes to system

entropy, which is used by /dev/random.
 If the device isn’t able to contribute significant entropy to the

random device, DEVICE_NO_RANDOM should be defined.
 DEVICE_REQUEST

 Used to specify the name of the request function used by the
driver.

26

Sample

#define MAJOR_NR sbull_major
static int sbull_major;
#define DEVICE_NR(device) MINOR(device)
#define DEVICE_NAME "sbull"
#define DEVICE_INTR sbull_intrptr
#define DEVICE_NO_RANDOM
#define DEVICE_REQUEST sbull_request
#define DEVICE_OFF(d)
#include <linux/blk.h>

27

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

28

Request function

 The most important function in a
block driver is the request function.

 It performs the low-level operations
related to reading and writing data.

29

Request queue

 When the kernel schedules a data
transfer, it queues the request in a
list, ordered in such a way that it
maximizes system performance.

 The queue of requests is passed to
the driver’s request function.

 void request_fn(request_queue_t
*queue);

30

Request function tasks

 Check the validity of the request. This test is
performed by the macro INIT_REQUEST.

 Perform the actual data transfer.
 The CURRENT variable (a macro, actually) can be

used to retrieve the details of the current request.
 Clean up the request just processed.

 This operation is performed by end_request.
 Loop back to the beginning, to consume the

next request.

31

Sample

void sbull_request(request_queue_t *q)
{

while(1)
{

INIT_REQUEST;
printk("<1>request %p: cmd %i sec %li (nr. %li)\n",

CURRENT,
CURRENT->cmd,
CURRENT->sector,
CURRENT->current_nr_sectors);

end_request(1);
}

}

32

CURRENT

 CURRENT is a pointer to struct request.
 kdev_t rq_dev;

 The device accessed by the request.
 int cmd;

 This field describes the operation to be
performed; it is either READ or WRITE.

 unsigned long sector;
 The number of the first sector to be transferred

in this request.

33

CURRENT

 unsigned long current_nr_sectors &
unsigned long nr_sectors;
 The number of sectors to transfer for the

current request.
 char *buffer;

 The area in the buffer cache to which data
should be written or read.

 struct buffer_head *bh;
 The structure describing the first buffer in the

list for this request.

34

Sample
void sbull_request(request_queue_t *q)
{

while(1)
{

INIT_REQUEST; /* returns when queue is empty */
status = sbull_transfer(device, CURRENT);
end_request(status);

}
}
//--
static int sbull_transfer(Sbull_Dev *dev, const struct request *req)
{

ptr = device->data + req->sector * sbull_hardsect;
size = req->current_nr_sectors * sbull_hardsect;
switch(req->cmd)
{

case READ:
memcpy(req->buffer, ptr, size); /* from sbull to buffer */
return 1;

case WRITE:
memcpy(ptr, req->buffer, size); /* from buffer to sbull */
return 1;

}
}

35

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

36

Mount

 When the kernel mounts a device in the
filesystem, it invokes the normal open method to
access the driver.

 in this case both the filp and inode arguments to
open are dummy variables.

 In the file structure, only the f_mode and f_flags
fields hold anything meaningful.
 The value of f_mode tells the driver whether the device

is to be mounted read-only (f_mode == FMODE_READ)
or read/write (f_mode == (FMODE_READ|
FMODE_WRITE)).

 In the inode structure only i_rdev may be used.

37

Umount

 As far as umount is concerned, it
just flushes the buffer cache and
calls the release driver method.

 There is no meaningful filp to
pass to the release method.

38

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

39

The ioctl method

 The only relevant difference between
block and char ioctl implementations
is that block drivers share a number
of common ioctl commands that
most drivers are expected to
support.

40

Common commands

 BLKGETSIZE
 Retrieve the size of the current device,

expressed as the number of sectors.
 BLKFLSBUF

 Literally, ‘‘flush buffers.’’
 BLKRRPART

 Reread the partition table.
 BLKRAGET & BLKRASET

 Used to get and change the current block-level
read-ahead value for the device.

41

Common commands

 BLKFRAGET & BLKFRASET
 Get and set the filesystem-level read-ahead

value.
 BLKROSET & BLKROGET

 used to change and check the read-only flag for
the device.

 BLKSECTGET & BLKSECTSET
 retrieve and set the maximum number of sectors

per request.
 BLKSSZGET

 Returns the sector size of this block device.

42

Common commands

 BLKPG
Allows user-mode programs to add and

delete partitions.
 BLKELVGET & BLKELVSET

These commands allow some control over
how the elevator request sorting
algorithm works.

 HDIO_GETGEO
Used to retrieve the disk geometry.

43

Sample
int sbull_ioctl (struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg)
{

struct hd_geometry geo;
switch(cmd)
{

case BLKGETSIZE:
size = blksize*sbull_sizes[MINOR(inode->i_rdev)]/sbull_hardsects[MINOR(inode-

>i_rdev)];
copy_to_user((long *) arg, &size, sizeof (long));
return 0;

case BLKRRPART:
return -ENOTTY;

case HDIO_GETGEO:
size = sbull_size * blksize / sbull_hardsect;
geo.cylinders = (size & ˜0x3f) >> 6;
geo.heads = 4;
geo.sectors = 16;
geo.start = 4;
copy_to_user((void *) arg, &geo, sizeof(geo));
return 0;

}
}

44

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

45

check_media_change

 The checking function receives kdev_t
as a single argument that identifies
the device.

 The return value is 1 if the medium
has been changed and 0 otherwise.

46

Sample

int sbull_check_change(kdev_t i_rdev)
{

int minor = MINOR(i_rdev);
Sbull_Dev *dev = sbull_devices + minor;
if (dev->data)

return 0; /* still valid */
return 1; /* expired */

}

47

Revalidation

 The validation function is called when
a disk change is detected.

48

Sample

int sbull_revalidate(kdev_t i_rdev)
{

Sbull_Dev *dev = sbull_devices + MINOR(i_rdev);
if (dev->data)

return 0;
dev->data = vmalloc(dev->size);
if (!dev->data)

return -ENOMEM;
return 0;

}

49

Question?

