
Linux Device Driver
(Block Devices)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

3

Block device

 Like char devices, block devices are
accessed by filesystem nodes in the /dev
directory.

 A block device is something that can host
a filesystem, such as a disk.

 A block device can be accessed only as
multiples of a block,
 A block is usually one kilobyte of data or

another power of 2.

4

Registering the driver

 Like char drivers, block drivers in the
kernel are identified by major
numbers.

 Block major numbers are entirely
distinct from char major numbers.
A block device with major number 32

can coexist with a char device using the
same major number since the two
ranges are separate.

5

Registering the driver

 int register_blkdev(unsigned int
major, const char *name, struct
block_device_operations *bdops);

 int unregister_blkdev(unsigned int
major, const char *name);

 They are defined in <linux/fs.h>.

6

block_device_operations

struct block_device_operations
{

int (*open) (struct inode *inode, struct file *filp);
int (*release) (struct inode *inode, struct file *filp);
int (*ioctl) (struct inode *inode, struct file
*filp,unsigned command, unsigned long
argument);
int (*check_media_change) (kdev_t dev);
int (*revalidate) (kdev_t dev);

};

7

Block device read/write

 There are no read or write operations
provided in the block_device_operations
structure.

 All I/O to block devices is normally
buffered by the system.

 User processes do not perform direct I/O to
these devices.
 User-mode access to block devices usually is

implicit in filesystem operations they perform
(those operations clearly benefit from I/O
buffering).

 However, even ‘‘direct’’ I/O to a block device,
such as when a filesystem is created, goes
through the Linux buffer cache.

8

Block device read/write

 The kernel provides a single set of
read and write functions for block
devices, and drivers do not need to
worry about them.

 In Linux, the method used for these
I/O operations is called request.

 The request method handles both
read and write operations and can be
somewhat complex.

9

Request method

 For the purposes of block device
registration, however, we must tell
the kernel where our request method
is.

 blk_init_queue(request_queue_t *queue,
request_fn_proc *request);

 blk_cleanup_queue(request_queue_t
*queue);

 They are defined in <linux/blkdev.h>

10

Device request queue

 Each device has a request queue
that it uses by default.

 BLK_DEFAULT_QUEUE(major)
 It is used to indicate that queue when

needed.
This macro looks into a global array of

blk_dev_struct structures.

11

Sample

 blk_init_queue(BLK_DEFAULT_QUEUE
(major), sbull_request);

12

blk_dev_struct

struct blk_dev_struct
{

request_queue_t request_queue;
queue_proc *queue;
void *data;

};
 The request_queue member contains the I/O

request queue.
 The data field may be used by the driver for its

own data.

13

Block vs Character

Block Device Char Device

14

Block device global arrays

 struct blk_dev_struct blk_dev[]
 int blk_size[][]

 It describes the size of each device, in kilobytes.
 int blksize_size[][]

 The size of the block used by each device, in
bytes.

 int hardsect_size[][]
 The size of the hardware sector used by each

device, in bytes.

15

Block device global arrays

 int read_ahead[] and int
max_readahead[][]
 These arrays define the number of sectors to be

read.
 int max_sectors[][]

 This array limits the maximum size of a single
request.

 int max_segments[]
 This array controlled the number of individual

segments that could appear in a clustered
request.

16

Sample

read_ahead[major] = sbull_rahead;
sbull_sizes = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
for (i=0; i < sbull_devs; i++)

sbull_sizes[i] = sbull_size;
blk_size[major]=sbull_sizes;
sbull_blksizes = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
for (i=0; i < sbull_devs; i++)

sbull_blksizes[i] = sbull_blksize;
blksize_size[major]=sbull_blksizes;
sbull_hardsects = kmalloc(sbull_devs * sizeof(int),

GFP_KERNEL);
for (i=0; i < sbull_devs; i++)

sbull_hardsects[i] = sbull_hardsect;
hardsect_size[major]=sbull_hardsects;

17

Register disk

 One last thing that must be done is to
register every ‘‘disk’’ device provided by
the driver.

 register_disk(struct gendisk *gd, int drive,
unsigned minors, struct
block_device_operations *ops, long size);

 A block driver without partitions will work
without this call in 2.4.0, but it is safer to
include it.

18

Sample

for (i = 0; i < sbull_devs; i++)
register_disk(NULL,
MKDEV(major, i), 1, &sbull_bdops,
sbull_size << 1);

19

Cleanup block device

The call to fsync_dev is
needed to free all
references to the device
that the kernel keeps in
various caches.

20

Sample

for (i=0; i<sbull_devs; i++)
fsync_dev(MKDEV(sbull_major, i));

unregister_blkdev(major, "sbull");
blk_cleanup_queue(BLK_DEFAULT_QUEUE(major));

read_ahead[major] = 0;
kfree(blk_size[major]);
blk_size[major] = NULL;
kfree(blksize_size[major]);
blksize_size[major] = NULL;
kfree(hardsect_size[major]);
hardsect_size[major] = NULL;

21

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

22

The Header File blk.h

 All block drivers should include the
header file <linux/blk.h>.

 This file defines much of the common
code that is used in block drivers.

 It provides functions for dealing with
the I/O request queue.

23

Module compile notes

 the blk.h header is quite unusual.
 It defines several symbols based

on the symbol MAJOR_NR.
It must be declared by the driver

before it includes the header.

24

blk.h symbols

 MAJOR_NR
 This symbol is used to access a few arrays.

 DEVICE_NAME
 The name of the device being created.

 DEVICE_NR(kdev_t device)
 This symbol is used to extract the ordinal number of the

physical device from the kdev_t device number.
 The value of this macro can be MINOR(device).

 DEVICE_INTR
 This symbol is used to declare a pointer variable that

refers to the current bottom-half handler.

25

blk.h symbols
 DEVICE_ON(kdev_t device) & DEVICE_OFF(kdev_t device)

 These macros are intended to help devices that need to perform
processing before or after a set of transfers is performed.

 for example, they could be used by a floppy driver to start the
drive motor before I/O and to stop it afterward.

 DEVICE_NO_RANDOM
 By default, the function end_request contributes to system

entropy, which is used by /dev/random.
 If the device isn’t able to contribute significant entropy to the

random device, DEVICE_NO_RANDOM should be defined.
 DEVICE_REQUEST

 Used to specify the name of the request function used by the
driver.

26

Sample

#define MAJOR_NR sbull_major
static int sbull_major;
#define DEVICE_NR(device) MINOR(device)
#define DEVICE_NAME "sbull"
#define DEVICE_INTR sbull_intrptr
#define DEVICE_NO_RANDOM
#define DEVICE_REQUEST sbull_request
#define DEVICE_OFF(d)
#include <linux/blk.h>

27

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

28

Request function

 The most important function in a
block driver is the request function.

 It performs the low-level operations
related to reading and writing data.

29

Request queue

 When the kernel schedules a data
transfer, it queues the request in a
list, ordered in such a way that it
maximizes system performance.

 The queue of requests is passed to
the driver’s request function.

 void request_fn(request_queue_t
*queue);

30

Request function tasks

 Check the validity of the request. This test is
performed by the macro INIT_REQUEST.

 Perform the actual data transfer.
 The CURRENT variable (a macro, actually) can be

used to retrieve the details of the current request.
 Clean up the request just processed.

 This operation is performed by end_request.
 Loop back to the beginning, to consume the

next request.

31

Sample

void sbull_request(request_queue_t *q)
{

while(1)
{

INIT_REQUEST;
printk("<1>request %p: cmd %i sec %li (nr. %li)\n",

CURRENT,
CURRENT->cmd,
CURRENT->sector,
CURRENT->current_nr_sectors);

end_request(1);
}

}

32

CURRENT

 CURRENT is a pointer to struct request.
 kdev_t rq_dev;

 The device accessed by the request.
 int cmd;

 This field describes the operation to be
performed; it is either READ or WRITE.

 unsigned long sector;
 The number of the first sector to be transferred

in this request.

33

CURRENT

 unsigned long current_nr_sectors &
unsigned long nr_sectors;
 The number of sectors to transfer for the

current request.
 char *buffer;

 The area in the buffer cache to which data
should be written or read.

 struct buffer_head *bh;
 The structure describing the first buffer in the

list for this request.

34

Sample
void sbull_request(request_queue_t *q)
{

while(1)
{

INIT_REQUEST; /* returns when queue is empty */
status = sbull_transfer(device, CURRENT);
end_request(status);

}
}
//--
static int sbull_transfer(Sbull_Dev *dev, const struct request *req)
{

ptr = device->data + req->sector * sbull_hardsect;
size = req->current_nr_sectors * sbull_hardsect;
switch(req->cmd)
{

case READ:
memcpy(req->buffer, ptr, size); /* from sbull to buffer */
return 1;

case WRITE:
memcpy(ptr, req->buffer, size); /* from buffer to sbull */
return 1;

}
}

35

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

36

Mount

 When the kernel mounts a device in the
filesystem, it invokes the normal open method to
access the driver.

 in this case both the filp and inode arguments to
open are dummy variables.

 In the file structure, only the f_mode and f_flags
fields hold anything meaningful.
 The value of f_mode tells the driver whether the device

is to be mounted read-only (f_mode == FMODE_READ)
or read/write (f_mode == (FMODE_READ|
FMODE_WRITE)).

 In the inode structure only i_rdev may be used.

37

Umount

 As far as umount is concerned, it
just flushes the buffer cache and
calls the release driver method.

 There is no meaningful filp to
pass to the release method.

38

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

39

The ioctl method

 The only relevant difference between
block and char ioctl implementations
is that block drivers share a number
of common ioctl commands that
most drivers are expected to
support.

40

Common commands

 BLKGETSIZE
 Retrieve the size of the current device,

expressed as the number of sectors.
 BLKFLSBUF

 Literally, ‘‘flush buffers.’’
 BLKRRPART

 Reread the partition table.
 BLKRAGET & BLKRASET

 Used to get and change the current block-level
read-ahead value for the device.

41

Common commands

 BLKFRAGET & BLKFRASET
 Get and set the filesystem-level read-ahead

value.
 BLKROSET & BLKROGET

 used to change and check the read-only flag for
the device.

 BLKSECTGET & BLKSECTSET
 retrieve and set the maximum number of sectors

per request.
 BLKSSZGET

 Returns the sector size of this block device.

42

Common commands

 BLKPG
Allows user-mode programs to add and

delete partitions.
 BLKELVGET & BLKELVSET

These commands allow some control over
how the elevator request sorting
algorithm works.

 HDIO_GETGEO
Used to retrieve the disk geometry.

43

Sample
int sbull_ioctl (struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg)
{

struct hd_geometry geo;
switch(cmd)
{

case BLKGETSIZE:
size = blksize*sbull_sizes[MINOR(inode->i_rdev)]/sbull_hardsects[MINOR(inode-

>i_rdev)];
copy_to_user((long *) arg, &size, sizeof (long));
return 0;

case BLKRRPART:
return -ENOTTY;

case HDIO_GETGEO:
size = sbull_size * blksize / sbull_hardsect;
geo.cylinders = (size & ˜0x3f) >> 6;
geo.heads = 4;
geo.sectors = 16;
geo.start = 4;
copy_to_user((void *) arg, &geo, sizeof(geo));
return 0;

}
}

44

Contents

 Registering the Driver
 blk.h
 Handling request
 Mount and umount
 Ioctl
 Removable devices

45

check_media_change

 The checking function receives kdev_t
as a single argument that identifies
the device.

 The return value is 1 if the medium
has been changed and 0 otherwise.

46

Sample

int sbull_check_change(kdev_t i_rdev)
{

int minor = MINOR(i_rdev);
Sbull_Dev *dev = sbull_devices + minor;
if (dev->data)

return 0; /* still valid */
return 1; /* expired */

}

47

Revalidation

 The validation function is called when
a disk change is detected.

48

Sample

int sbull_revalidate(kdev_t i_rdev)
{

Sbull_Dev *dev = sbull_devices + MINOR(i_rdev);
if (dev->data)

return 0;
dev->data = vmalloc(dev->size);
if (!dev->data)

return -ENOMEM;
return 0;

}

49

Question?

