Linux Device Driver

(Enhanced Char Driver)

Amir Hossein Payberah
payberah@yahoo.com

Contents
"

" octl
N

loctl
= =
" int (*ioctl) (struct inode *inode,
struct file *filp, unsigned int cmd,
unsignhed long arg);

® The cmd argument is passed from
the user unchanged.

® The optional arg argument is
passed in the form of an unsigned
long.

ioctl =

g
® Most ioctl implementations consist
of a switch statement.

L1t selects the correct behavior
according to the cmd argument.

B Different commands have different
numeric values, which are usually

given symbolic names to simplify
coding.

loctl commands
= SRS
® Before writing the code for ioctl,

you need to choose the numbers
that correspond to commands.
HUnfortunately, the simple choice of

using small numbers starting from 1
and going up doesn’t work well.

loctl commands
= SRS
® The command numbers should be
unigue across the system.

LIn order to prevent errors caused by
Issuing the right command to the
wrong device.

Choosing ioctl command£&
= SRS
® joctl command codes have been split
up into several bitfields.

® The first versions of Linux used 16-
bit numbers:

UThe top eight were the magic number
associated with the device.

UThe bottom eight were a sequential
number, unique within the device.

Choosing loctl comma Nd&R
= S
® To choose ioctl numbers for your driver
according to the new convention, you

should first check include/asm/ioctl.nh and
Documentation/ioctl-number.txt.

® The header defines the bitfields you will
be using.

L type (magic number), ordinal number, direction
of transfer, and size of argument.

® The ioctl-number.txt file lists the magic
numbers used throughout the kernel.

Old 1octl commands

= O
® The old way of choosing an ioctl
number:

LAuthors chose a magic eight-bit
number, such as k" (hex 0x6b), and
added an ordinal number, like this:

#define SCULL IOCTL1 0x6b01
#define SCULL IOCTL2 0x6b02

[* .. B

@

New ioctl commands 2
= SRS

® Any new symbols are defined in <linux/ioctl.h>.
B Type
L The magic number. Just choose one number (after consulting ioctl-
number.txt). This field is eight bits wide (_ IOC TYPEBITS).
® number

[Thg ordinal (sequential) number. It’s eight bits (IOC_NRBITS)
wide.

® direction

L The direction of data transfer, if the particular command involves a
data transfer.

0 The possible values are I0C_NONE (no data transfer), 10C READ,
|IOC_WRITE, and I0C READ | I0C_WRITE (data is transferred
both ways).
" gjze
[The size of user data involved. The width of this field is
architecture dependent, and currently ranges from 8 to 14 bits.

You can find its value for your specific architecture in the macro
_10C _SIZEBITS.

10

New loctl commands 2
= SN

" The header file <asm/ioctl.h>, which is
included by <linux/ioctl.h=, defines these
MacCros:
O 10(type, number): for no data transferring command
O 10R(type, number, size)
O 10W(type, number, size)
O IOWR(type, number, size)

B The header also defines macros to decode
the numbers:

0 10C_DIR(nr), I0C TYPE(nr), I0C _NR(nr), and
_10C_SIZE(nr).

11

New 1octl commands @

sample

= #define SCULL 10C_MAGIC 'K’

= #define SCULL IOCRESET |0(SCULL 10C MAGIC, 0)

" #define SCULL IOCSQUANTUM |IOW(SCULL IOC MAGIC, 1,
scull_quantum)

" #define SCULL IOCGQUANTUM [OR(SCULL I0C MAGIC, 5,
scull_ quantum)

" #define SCULL IOCXQUANTUM [IOWR(SCULL IOC MAGIC, 9,
scull_quantum)

12

Predefined Commands @

= SN

B kernel reserved some numbers for its
use
U Those for any file type including devices
L Those only for regular files
L Those specific to a file system type

B device driver is concerned with the first
group
L magic number “T”
U FIOCLEX: set the close-on-exec flag
L FIONCLEX: reset
L FIOASYNC: set/reset synchronous write
L FIONBIO: set/reset O NONBLOCK of filp->f flags

13

loctl return value

'__
" The implementation of ioctl is usually a
switch statement based on the
command number.

® But what should the default selection be
when the command number doesn’t
match a valid operation?

B Several kernel functions return -EINVAL
(“Invalid argument”’).

B The POSIX standard, however, states
that if an inappropriate ioctl command
has been issued, then -ENOTTY should
be returned.

Using the ioctl Argument@

= SRS
B int access ok(int type, const void
*addr, unsighed long size);

UThe first argument should be either
VERIFY READ or VERIFY WRITE.

UThe addr argument holds a user-
space address.

UThe size is a byte count.

15

A

Sample
= SN

int err = 0, tmp;

if (|IOC TYPE(cmd) !'= SCULL I0C_MAGIC)
return -ENOTTY;

if (|IOC NR(cmd) > SCULL 10C_MAXNR)
return -ENOTTY;

if (|IOC DIR(cmd) & 10C_READ)

err = laccess_ok(VERIFY_WRITE, (void *)arg,
_10C_SIZE(cmd));

else if (I10C DIR(cmd) & _IOC_WRITE)

err = 'access ok(VERIFY_READ, (void *)arg,
10C_SIZE(cmd));

If (err)
return -EFAULT;

16

Using the ioctl Argument@
=SSR

® put user(datum, ptr) and put user(datum, ptr)

0 These macros write the datum to user space

L They are relatively fast, and should be called instead of
copy _to user whenever single values are being transferred.

B get user(local, ptr) and get user(local, ptr)

[These macros are used to retrieve a single datum from user
space.

B put userand get user should only be used if the
memory region has already been verified with
access ok.

17

Sample 2

= S
switch(cmd)
{
case SCULL IOCSQUANTUM:
ret = get user(scull quantum, (int *)arg);
break;
case SCULL IOCGQUANTUM:
ret = put user(scull_ quantum, (int *)arg);
break;
default:

return -ENOTTY;

18

User space sample £
= SRS

Int quantum;
loctl(fd,SCULL IOCSQUANTUM, &quantum);

loctl(fd,SCULL IOCGQUANTUM, &quantum);

19

Contents
"

® Seeking a Device
N

Iseek R
- -
®" The llIseek method implements the
Iseek and llseek system calls.

® We have already stated that if the
llIseek method is missing from the
device’s operations:

UThe default implementation in the
kernel performs seeks from the
beginning of the file

UANnd from the current position by
modifying filp->f pos, the current
reading/writing position within the file.

21

lIseek £
= SN
u|off t scull llseek(struct file
*filp, loff t off, int whence);

Sample
=SSR

loff _t scull llseek(struct file *filp, loff_t off, int whence)

{
Scull_Dev *dev = filp->private_data;
loff _t newpos;
switch(whence)
{
case 0: /* SEEK_SET */
newpos = off;
break;
case 1: /* SEEK_CUR */
newpos = filp->f pos + off;
break;
case 2: /[* SEEK _END */
newpos = dev->size + off;
break;
default: /* can’t happen */
return -EINVAL;
}
filp->f _pos = newpos;
return newpos;
}

23

Contents
"

® Blocking I/O and non-blocking I/O

Blocking I/O
= SRS
® One problem that might arise with
read is what to do when there’s no

data yet, but we're not at end-of-
file.

UThe default answer is ‘“‘go to sleep
waiting for data’’.

25

Wait queue £2
= SRS
® A wait queue is exactly a queue of

processes that are waiting for an
event.

" walt queue head t my queue;
B init waltqueue head (&my_queue);
® DECLARE WAIT QUEUE HEAD

(my _queue);

UWhen a wait queue is declared
statically, it is also possible to initialize
the queue at compile time.

26

Sleeping

=SSR

sleep on(wait_queue_head t *queue);
interruptible sleep on(wait_queue_head t *queue);

sleep_on_timeout(wait_queue_head_t *queue, long
timeout);

interruptible sleep on timeout(wait_queue head t
*queue, long timeout);

wait event(wait_queue_head t queue, int condition);

walt event interruptible(wait_queue head t queue, int
condition);

27

Wake up
= SRS

= wake up(wait queue head t *queue);

B wake up interruptible(wait queue head t
*gqueue);

® wake up sync(wait_queue_head t*queue);

B wake up interruptible sync(wait queue head t
*gqueue);

28

Sample
= ST

DECLARE_WAIT_QUEUE_HEAD(wq);

ssiz*e_t s),leepy_read (struct file *filp, char *buf, size_t count, loff t
pOsS
{

interruptible_sleep_on(&wq);

printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current-
>comm);

return O; /* EOF */
}

ssize t sleepy write (struct file *filp, const char *buf, size t count,
loff _t *pos)
{

wake up_interruptible(&wq);

return count; /* succeed, to avoid retrial */

}

29

Nonblocking 1/O
= SN
® Another point we need to touch on
before we look at the implementation
of full featured read and write

methods is the role of the
O NONBLOCK flag in filp->f flags.

® The flag Is defined in <linux/fcntl.h=,
which is automatically included by
<linux/fs.h>.

B O NDELAY Is an alternate name for
O NONBLOCK,

Nonblocking 1/O 2

__
® The behavior of read and write is
different if O NONBLOCK is

specified.

® |n this case, the calls simply return
-EAGAIN If a process calls read
when no data is available or if it
calls write when there’s no space In
the buffer.

Sample Q
= SRS

ssize t scull_p read (struct file *filp, char *buf, size t count,
loff t *f pos)
{
if (filp->f flags & O_NONBLOCK)
return -EAGAIN;
}

static inline int spacefree(Scull _Pipe *dev)

{
If (filp->f flags & O_NONBLOCK)
return -EAGAIN:;

32

User space sample
=SSR

int main(int argc, char **argv)
{
int delay=1, n, m=0;
fentl(0, F_SETFL, fcntl(0,F_GETFL) | O NONBLOCK); /* stdin */
fentl(1, F_SETFL, fentl(1,F_GETFL) | O NONBLOCK); /* stdout */
while (1) {
n=read(0, buffer, 4096);
if (n>=0)
m=write(l, buffer, n);
if ((n<0 || m<0) && (errno '= EAGAIN))
break;
sleep(delay);
}
perror(n<0 ? "stdin" : "stdout");
exit(1);

33

poll and select R
= SN
" Applications that use nonblocking

/O often use the poll and select
system calls.

® poll and select have essentially the
same functionality:

U both allow a process to determine whether it
can read from or write to one or more open
files without blocking.

LU They are thus often used in applications that
must use multiple input or output streams
without blocking on any one of them.

34

poll £2

e
® ynsigned int (*poll) (struct file *,
poll table *);

® The poll table structure is used within
the kernel to implement the poll and
select calls; it is declared in
<linux/poll.h>.

35

poll walt =
= _-=E——
® Every event queue that could wake up
the process and change the status of
the poll operation can be added to the
poll table structure by calling the
function poll wait:

® void poll walit (struct file *,
wait queue head t *, poll table *);

36

poll return value

= SEES————
® Another task performed by the poll
method is returning the bit mask
describing which operations could
be completed immediately:

PO
PO
PO
PO

O O O O

_IN
_RDNORM
LOUT

_WRNORM

18

37

Sample

A:

= SEES————

unsigned int scull_p poll(struct file *filp, poll table *wait)

{

Scull Pipe *dev = filp->private data;
unsigned int mask = 0;

int left = (dev->rp + dev->buffersize - dev->wp) % dev-
>puffersize;

poll wait(filp, &dev->inq, wait);
poll wait(filp, &dev->outq, wait);
if (dev->rp != dev->wp)
mask |= POLLIN | POLLRDNORM,;
if (left 1= 1)
mask |= POLLOUT | POLLWRNORM;
return mask;

38

Userspace poll Q
= SN
® #include <sys/poll.h=

" int poll(struct pollfd *ufds, unsigned int
nfds, int timeout);

® struct pollfd

{
int fd; /* file descriptor */

short events; /* requested events */
short revents: /* returned events */

¥

39

Userspace sample
=

struct pollfd pfd[2];
pfd[0].fd = O;
pfd[0].events = POLLIN;
pfd[0O].revents = O;
pfd[1].fd = 1;
pfd[1].events = POLLOUT;
pfd[1l].revents = O;

switch (poll (pfd, 2, 10000))

{
case -1:
perror ("poll()");
break;
case O:
printf (“none is ready.\n");
break;
default:
if (pfd[0].revents == POLLIN || pfd[1].revents == POLLOUT)
printf (“event\n”);
break
}

40

A

Question?

