
Linux Device Driver
(Enhanced Char Driver)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 ioctl
 Seeking a Device
 Blocking I/O and non-blocking I/O

3

ioctl

 int (*ioctl) (struct inode *inode,
struct file *filp, unsigned int cmd,
unsigned long arg);

 The cmd argument is passed from
the user unchanged.

 The optional arg argument is
passed in the form of an unsigned
long.

4

ioctl

 Most ioctl implementations consist
of a switch statement.
 It selects the correct behavior

according to the cmd argument.
 Different commands have different

numeric values, which are usually
given symbolic names to simplify
coding.

5

ioctl commands

 Before writing the code for ioctl,
you need to choose the numbers
that correspond to commands.
Unfortunately, the simple choice of

using small numbers starting from 1
and going up doesn’t work well.

6

ioctl commands

 The command numbers should be
unique across the system.
 In order to prevent errors caused by

issuing the right command to the
wrong device.

7

Choosing ioctl commands

 ioctl command codes have been split
up into several bitfields.

 The first versions of Linux used 16-
bit numbers:
The top eight were the magic number

associated with the device.
The bottom eight were a sequential

number, unique within the device.

8

Choosing ioctl commands

 To choose ioctl numbers for your driver
according to the new convention, you
should first check include/asm/ioctl.h and
Documentation/ioctl-number.txt.

 The header defines the bitfields you will
be using.
 type (magic number), ordinal number, direction

of transfer, and size of argument.
 The ioctl-number.txt file lists the magic

numbers used throughout the kernel.

9

Old ioctl commands

 The old way of choosing an ioctl
number:
Authors chose a magic eight-bit

number, such as ‘‘k’’ (hex 0x6b), and
added an ordinal number, like this:

#define SCULL_IOCTL1 0x6b01
#define SCULL_IOCTL2 0x6b02
/* */

10

New ioctl commands
 Any new symbols are defined in <linux/ioctl.h>.
 Type

 The magic number. Just choose one number (after consulting ioctl-
number.txt). This field is eight bits wide (_IOC_TYPEBITS).

 number
 The ordinal (sequential) number. It’s eight bits (_IOC_NRBITS)

wide.
 direction

 The direction of data transfer, if the particular command involves a
data transfer.

 The possible values are _IOC_NONE (no data transfer), _IOC_READ,
_IOC_WRITE, and _IOC_READ | _IOC_WRITE (data is transferred
both ways).

 size
 The size of user data involved. The width of this field is

architecture dependent, and currently ranges from 8 to 14 bits.
You can find its value for your specific architecture in the macro
_IOC_SIZEBITS.

11

New ioctl commands

 The header file <asm/ioctl.h>, which is
included by <linux/ioctl.h>, defines these
macros:
 _IO(type, number): for no data transferring command
 _IOR(type, number, size)
 _IOW(type, number, size)
 _IOWR(type, number, size)

 The header also defines macros to decode
the numbers:
 _IOC_DIR(nr), _IOC_TYPE(nr), _IOC_NR(nr), and

_IOC_SIZE(nr).

12

New ioctl commands
sample

 #define SCULL_IOC_MAGIC ’k’

 #define SCULL_IOCRESET _IO(SCULL_IOC_MAGIC, 0)

 #define SCULL_IOCSQUANTUM _IOW(SCULL_IOC_MAGIC, 1,
scull_quantum)

 #define SCULL_IOCGQUANTUM _IOR(SCULL_IOC_MAGIC, 5,
scull_quantum)

 #define SCULL_IOCXQUANTUM _IOWR(SCULL_IOC_MAGIC, 9,
scull_quantum)

13

Predefined Commands

 kernel reserved some numbers for its
use
 Those for any file type including devices
 Those only for regular files
 Those specific to a file system type

 device driver is concerned with the first
group
 magic number “T”
 FIOCLEX: set the close-on-exec flag
 FIONCLEX: reset
 FIOASYNC: set/reset synchronous write
 FIONBIO: set/reset O_NONBLOCK of filp->f_flags

14

ioctl return value

 The implementation of ioctl is usually a
switch statement based on the
command number.

 But what should the default selection be
when the command number doesn’t
match a valid operation?

 Several kernel functions return -EINVAL
(‘‘Invalid argument’’).

 The POSIX standard, however, states
that if an inappropriate ioctl command
has been issued, then -ENOTTY should
be returned.

15

Using the ioctl Argument

 int access_ok(int type, const void
*addr, unsigned long size);
The first argument should be either

VERIFY_READ or VERIFY_WRITE.
The addr argument holds a user-

space address.
The size is a byte count.

16

Sample

int err = 0, tmp;
if (_IOC_TYPE(cmd) != SCULL_IOC_MAGIC)

return -ENOTTY;
if (_IOC_NR(cmd) > SCULL_IOC_MAXNR)

return -ENOTTY;
if (_IOC_DIR(cmd) & _IOC_READ)

err = !access_ok(VERIFY_WRITE, (void *)arg,
_IOC_SIZE(cmd));

else if (_IOC_DIR(cmd) & _IOC_WRITE)
err = !access_ok(VERIFY_READ, (void *)arg,
_IOC_SIZE(cmd));

if (err)
return -EFAULT;

17

Using the ioctl Argument
 put_user(datum, ptr) and __put_user(datum, ptr)

 These macros write the datum to user space
 They are relatively fast, and should be called instead of

copy_to_user whenever single values are being transferred.
 get_user(local, ptr) and __get_user(local, ptr)

 These macros are used to retrieve a single datum from user
space.

 __put_user and __get_user should only be used if the
memory region has already been verified with
access_ok.

18

Sample

switch(cmd)
{

case SCULL_IOCSQUANTUM:
ret = __get_user(scull_quantum, (int *)arg);
break;

case SCULL_IOCGQUANTUM:
ret = __put_user(scull_quantum, (int *)arg);
break;

default:
return -ENOTTY;

}

19

User space sample

int quantum;

ioctl(fd,SCULL_IOCSQUANTUM, &quantum);

ioctl(fd,SCULL_IOCGQUANTUM, &quantum);

20

Contents

 ioctl
 Seeking a Device
 Blocking I/O and non-blocking I/O

21

llseek

 The llseek method implements the
lseek and llseek system calls.

 We have already stated that if the
llseek method is missing from the
device’s operations:
The default implementation in the

kernel performs seeks from the
beginning of the file

And from the current position by
modifying filp->f_pos, the current
reading/writing position within the file.

22

llseek

 loff_t scull_llseek(struct file
*filp, loff_t off, int whence);

23

Sample
loff_t scull_llseek(struct file *filp, loff_t off, int whence)
{

Scull_Dev *dev = filp->private_data;
loff_t newpos;
switch(whence)
{

case 0: /* SEEK_SET */
newpos = off;
break;

case 1: /* SEEK_CUR */
newpos = filp->f_pos + off;
break;

case 2: /* SEEK_END */
newpos = dev->size + off;
break;

default: /* can’t happen */
return -EINVAL;

}
filp->f_pos = newpos;
return newpos;

}

24

Contents

 ioctl
 Seeking a Device
 Blocking I/O and non-blocking I/O

25

Blocking I/O

 One problem that might arise with
read is what to do when there’s no
data yet, but we’re not at end-of-
file.
The default answer is ‘‘go to sleep

waiting for data’’.

26

Wait queue

 A wait queue is exactly a queue of
processes that are waiting for an
event.

 wait_queue_head_t my_queue;
 init_waitqueue_head (&my_queue);
 DECLARE_WAIT_QUEUE_HEAD

(my_queue);
When a wait queue is declared

statically, it is also possible to initialize
the queue at compile time.

27

Sleeping
 sleep_on(wait_queue_head_t *queue);
 interruptible_sleep_on(wait_queue_head_t *queue);

 sleep_on_timeout(wait_queue_head_t *queue, long
timeout);

 interruptible_sleep_on_timeout(wait_queue_head_t
*queue, long timeout);

 wait_event(wait_queue_head_t queue, int condition);
 wait_event_interruptible(wait_queue_head_t queue, int

condition);

28

Wake up

 wake_up(wait_queue_head_t *queue);
 wake_up_interruptible(wait_queue_head_t

*queue);

 wake_up_sync(wait_queue_head_t *queue);
 wake_up_interruptible_sync(wait_queue_head_t

*queue);

29

Sample
DECLARE_WAIT_QUEUE_HEAD(wq);

ssize_t sleepy_read (struct file *filp, char *buf, size_t count, loff_t
*pos)

{
interruptible_sleep_on(&wq);
printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current-
>comm);
return 0; /* EOF */

}

ssize_t sleepy_write (struct file *filp, const char *buf, size_t count,
loff_t *pos)
{

wake_up_interruptible(&wq);
return count; /* succeed, to avoid retrial */

}

30

Nonblocking I/O

 Another point we need to touch on
before we look at the implementation
of full featured read and write
methods is the role of the
O_NONBLOCK flag in filp->f_flags.

 The flag is defined in <linux/fcntl.h>,
which is automatically included by
<linux/fs.h>.

 O_NDELAY is an alternate name for
O_NONBLOCK,

31

Nonblocking I/O

 The behavior of read and write is
different if O_NONBLOCK is
specified.

 In this case, the calls simply return
 -EAGAIN if a process calls read
when no data is available or if it
calls write when there’s no space in
the buffer.

32

Sample

ssize_t scull_p_read (struct file *filp, char *buf, size_t count,
loff_t *f_pos)
{

if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;

}

static inline int spacefree(Scull_Pipe *dev)
{

if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;

}

33

User space sample

int main(int argc, char **argv)
{

int delay=1, n, m=0;
fcntl(0, F_SETFL, fcntl(0,F_GETFL) | O_NONBLOCK); /* stdin */
fcntl(1, F_SETFL, fcntl(1,F_GETFL) | O_NONBLOCK); /* stdout */
while (1) {

n=read(0, buffer, 4096);
if (n>=0)
m=write(1, buffer, n);
if ((n<0 || m<0) && (errno != EAGAIN))

break;
sleep(delay);

}
perror(n<0 ? "stdin" : "stdout");
exit(1);

}

34

poll and select

 Applications that use nonblocking
I/O often use the poll and select
system calls.

 poll and select have essentially the
same functionality:
 both allow a process to determine whether it

can read from or write to one or more open
files without blocking.

 They are thus often used in applications that
must use multiple input or output streams
without blocking on any one of them.

35

poll

 unsigned int (*poll) (struct file *,
poll_table *);

 The poll_table structure is used within
the kernel to implement the poll and
select calls; it is declared in
<linux/poll.h>.

36

poll_wait

 Every event queue that could wake up
the process and change the status of
the poll operation can be added to the
poll_table structure by calling the
function poll_wait:

 void poll_wait (struct file *,
wait_queue_head_t *, poll_table *);

37

poll return value

 Another task performed by the poll
method is returning the bit mask
describing which operations could
be completed immediately:
POLLIN
POLLRDNORM
POLLOUT
POLLWRNORM

38

Sample

unsigned int scull_p_poll(struct file *filp, poll_table *wait)
{

Scull_Pipe *dev = filp->private_data;
unsigned int mask = 0;
int left = (dev->rp + dev->buffersize - dev->wp) % dev-
>buffersize;
poll_wait(filp, &dev->inq, wait);
poll_wait(filp, &dev->outq, wait);
if (dev->rp != dev->wp)

mask |= POLLIN | POLLRDNORM;
if (left != 1)

mask |= POLLOUT | POLLWRNORM;
return mask;

}

39

Userspace poll

 #include <sys/poll.h>
 int poll(struct pollfd *ufds, unsigned int

nfds, int timeout);
 struct pollfd
 {

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

};

40

Userspace sample

struct pollfd pfd[2];
pfd[0].fd = 0;
pfd[0].events = POLLIN;
pfd[0].revents = 0;
pfd[1].fd = 1;
pfd[1].events = POLLOUT;
pfd[1].revents = 0;

switch (poll (pfd, 2, 10000))
{

case -1:
perror ("poll()");
break;

case 0:
printf (“none is ready.\n");
break;

default:
if (pfd[0].revents == POLLIN || pfd[1].revents == POLLOUT)

printf (“event\n”);
break

}

41

Question?

