
Linux Device Driver
(Enhanced Char Driver)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 ioctl
 Seeking a Device
 Blocking I/O and non-blocking I/O

3

ioctl

 int (*ioctl) (struct inode *inode,
struct file *filp, unsigned int cmd,
unsigned long arg);

 The cmd argument is passed from
the user unchanged.

 The optional arg argument is
passed in the form of an unsigned
long.

4

ioctl

 Most ioctl implementations consist
of a switch statement.
 It selects the correct behavior

according to the cmd argument.
 Different commands have different

numeric values, which are usually
given symbolic names to simplify
coding.

5

ioctl commands

 Before writing the code for ioctl,
you need to choose the numbers
that correspond to commands.
Unfortunately, the simple choice of

using small numbers starting from 1
and going up doesn’t work well.

6

ioctl commands

 The command numbers should be
unique across the system.
 In order to prevent errors caused by

issuing the right command to the
wrong device.

7

Choosing ioctl commands

 ioctl command codes have been split
up into several bitfields.

 The first versions of Linux used 16-
bit numbers:
The top eight were the magic number

associated with the device.
The bottom eight were a sequential

number, unique within the device.

8

Choosing ioctl commands

 To choose ioctl numbers for your driver
according to the new convention, you
should first check include/asm/ioctl.h and
Documentation/ioctl-number.txt.

 The header defines the bitfields you will
be using.
 type (magic number), ordinal number, direction

of transfer, and size of argument.
 The ioctl-number.txt file lists the magic

numbers used throughout the kernel.

9

Old ioctl commands

 The old way of choosing an ioctl
number:
Authors chose a magic eight-bit

number, such as ‘‘k’’ (hex 0x6b), and
added an ordinal number, like this:

#define SCULL_IOCTL1 0x6b01
#define SCULL_IOCTL2 0x6b02
/* */

10

New ioctl commands
 Any new symbols are defined in <linux/ioctl.h>.
 Type

 The magic number. Just choose one number (after consulting ioctl-
number.txt). This field is eight bits wide (_IOC_TYPEBITS).

 number
 The ordinal (sequential) number. It’s eight bits (_IOC_NRBITS)

wide.
 direction

 The direction of data transfer, if the particular command involves a
data transfer.

 The possible values are _IOC_NONE (no data transfer), _IOC_READ,
_IOC_WRITE, and _IOC_READ | _IOC_WRITE (data is transferred
both ways).

 size
 The size of user data involved. The width of this field is

architecture dependent, and currently ranges from 8 to 14 bits.
You can find its value for your specific architecture in the macro
_IOC_SIZEBITS.

11

New ioctl commands

 The header file <asm/ioctl.h>, which is
included by <linux/ioctl.h>, defines these
macros:
 _IO(type, number): for no data transferring command
 _IOR(type, number, size)
 _IOW(type, number, size)
 _IOWR(type, number, size)

 The header also defines macros to decode
the numbers:
 _IOC_DIR(nr), _IOC_TYPE(nr), _IOC_NR(nr), and

_IOC_SIZE(nr).

12

New ioctl commands
sample

 #define SCULL_IOC_MAGIC ’k’

 #define SCULL_IOCRESET _IO(SCULL_IOC_MAGIC, 0)

 #define SCULL_IOCSQUANTUM _IOW(SCULL_IOC_MAGIC, 1,
scull_quantum)

 #define SCULL_IOCGQUANTUM _IOR(SCULL_IOC_MAGIC, 5,
scull_quantum)

 #define SCULL_IOCXQUANTUM _IOWR(SCULL_IOC_MAGIC, 9,
scull_quantum)

13

Predefined Commands

 kernel reserved some numbers for its
use
 Those for any file type including devices
 Those only for regular files
 Those specific to a file system type

 device driver is concerned with the first
group
 magic number “T”
 FIOCLEX: set the close-on-exec flag
 FIONCLEX: reset
 FIOASYNC: set/reset synchronous write
 FIONBIO: set/reset O_NONBLOCK of filp->f_flags

14

ioctl return value

 The implementation of ioctl is usually a
switch statement based on the
command number.

 But what should the default selection be
when the command number doesn’t
match a valid operation?

 Several kernel functions return -EINVAL
(‘‘Invalid argument’’).

 The POSIX standard, however, states
that if an inappropriate ioctl command
has been issued, then -ENOTTY should
be returned.

15

Using the ioctl Argument

 int access_ok(int type, const void
*addr, unsigned long size);
The first argument should be either

VERIFY_READ or VERIFY_WRITE.
The addr argument holds a user-

space address.
The size is a byte count.

16

Sample

int err = 0, tmp;
if (_IOC_TYPE(cmd) != SCULL_IOC_MAGIC)

return -ENOTTY;
if (_IOC_NR(cmd) > SCULL_IOC_MAXNR)

return -ENOTTY;
if (_IOC_DIR(cmd) & _IOC_READ)

err = !access_ok(VERIFY_WRITE, (void *)arg,
_IOC_SIZE(cmd));

else if (_IOC_DIR(cmd) & _IOC_WRITE)
err = !access_ok(VERIFY_READ, (void *)arg,
_IOC_SIZE(cmd));

if (err)
return -EFAULT;

17

Using the ioctl Argument
 put_user(datum, ptr) and __put_user(datum, ptr)

 These macros write the datum to user space
 They are relatively fast, and should be called instead of

copy_to_user whenever single values are being transferred.
 get_user(local, ptr) and __get_user(local, ptr)

 These macros are used to retrieve a single datum from user
space.

 __put_user and __get_user should only be used if the
memory region has already been verified with
access_ok.

18

Sample

switch(cmd)
{

case SCULL_IOCSQUANTUM:
ret = __get_user(scull_quantum, (int *)arg);
break;

case SCULL_IOCGQUANTUM:
ret = __put_user(scull_quantum, (int *)arg);
break;

default:
return -ENOTTY;

}

19

User space sample

int quantum;

ioctl(fd,SCULL_IOCSQUANTUM, &quantum);

ioctl(fd,SCULL_IOCGQUANTUM, &quantum);

20

Contents

 ioctl
 Seeking a Device
 Blocking I/O and non-blocking I/O

21

llseek

 The llseek method implements the
lseek and llseek system calls.

 We have already stated that if the
llseek method is missing from the
device’s operations:
The default implementation in the

kernel performs seeks from the
beginning of the file

And from the current position by
modifying filp->f_pos, the current
reading/writing position within the file.

22

llseek

 loff_t scull_llseek(struct file
*filp, loff_t off, int whence);

23

Sample
loff_t scull_llseek(struct file *filp, loff_t off, int whence)
{

Scull_Dev *dev = filp->private_data;
loff_t newpos;
switch(whence)
{

case 0: /* SEEK_SET */
newpos = off;
break;

case 1: /* SEEK_CUR */
newpos = filp->f_pos + off;
break;

case 2: /* SEEK_END */
newpos = dev->size + off;
break;

default: /* can’t happen */
return -EINVAL;

}
filp->f_pos = newpos;
return newpos;

}

24

Contents

 ioctl
 Seeking a Device
 Blocking I/O and non-blocking I/O

25

Blocking I/O

 One problem that might arise with
read is what to do when there’s no
data yet, but we’re not at end-of-
file.
The default answer is ‘‘go to sleep

waiting for data’’.

26

Wait queue

 A wait queue is exactly a queue of
processes that are waiting for an
event.

 wait_queue_head_t my_queue;
 init_waitqueue_head (&my_queue);
 DECLARE_WAIT_QUEUE_HEAD

(my_queue);
When a wait queue is declared

statically, it is also possible to initialize
the queue at compile time.

27

Sleeping
 sleep_on(wait_queue_head_t *queue);
 interruptible_sleep_on(wait_queue_head_t *queue);

 sleep_on_timeout(wait_queue_head_t *queue, long
timeout);

 interruptible_sleep_on_timeout(wait_queue_head_t
*queue, long timeout);

 wait_event(wait_queue_head_t queue, int condition);
 wait_event_interruptible(wait_queue_head_t queue, int

condition);

28

Wake up

 wake_up(wait_queue_head_t *queue);
 wake_up_interruptible(wait_queue_head_t

*queue);

 wake_up_sync(wait_queue_head_t *queue);
 wake_up_interruptible_sync(wait_queue_head_t

*queue);

29

Sample
DECLARE_WAIT_QUEUE_HEAD(wq);

ssize_t sleepy_read (struct file *filp, char *buf, size_t count, loff_t
*pos)

{
interruptible_sleep_on(&wq);
printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current-
>comm);
return 0; /* EOF */

}

ssize_t sleepy_write (struct file *filp, const char *buf, size_t count,
loff_t *pos)
{

wake_up_interruptible(&wq);
return count; /* succeed, to avoid retrial */

}

30

Nonblocking I/O

 Another point we need to touch on
before we look at the implementation
of full featured read and write
methods is the role of the
O_NONBLOCK flag in filp->f_flags.

 The flag is defined in <linux/fcntl.h>,
which is automatically included by
<linux/fs.h>.

 O_NDELAY is an alternate name for
O_NONBLOCK,

31

Nonblocking I/O

 The behavior of read and write is
different if O_NONBLOCK is
specified.

 In this case, the calls simply return
 -EAGAIN if a process calls read
when no data is available or if it
calls write when there’s no space in
the buffer.

32

Sample

ssize_t scull_p_read (struct file *filp, char *buf, size_t count,
loff_t *f_pos)
{

if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;

}

static inline int spacefree(Scull_Pipe *dev)
{

if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;

}

33

User space sample

int main(int argc, char **argv)
{

int delay=1, n, m=0;
fcntl(0, F_SETFL, fcntl(0,F_GETFL) | O_NONBLOCK); /* stdin */
fcntl(1, F_SETFL, fcntl(1,F_GETFL) | O_NONBLOCK); /* stdout */
while (1) {

n=read(0, buffer, 4096);
if (n>=0)
m=write(1, buffer, n);
if ((n<0 || m<0) && (errno != EAGAIN))

break;
sleep(delay);

}
perror(n<0 ? "stdin" : "stdout");
exit(1);

}

34

poll and select

 Applications that use nonblocking
I/O often use the poll and select
system calls.

 poll and select have essentially the
same functionality:
 both allow a process to determine whether it

can read from or write to one or more open
files without blocking.

 They are thus often used in applications that
must use multiple input or output streams
without blocking on any one of them.

35

poll

 unsigned int (*poll) (struct file *,
poll_table *);

 The poll_table structure is used within
the kernel to implement the poll and
select calls; it is declared in
<linux/poll.h>.

36

poll_wait

 Every event queue that could wake up
the process and change the status of
the poll operation can be added to the
poll_table structure by calling the
function poll_wait:

 void poll_wait (struct file *,
wait_queue_head_t *, poll_table *);

37

poll return value

 Another task performed by the poll
method is returning the bit mask
describing which operations could
be completed immediately:
POLLIN
POLLRDNORM
POLLOUT
POLLWRNORM

38

Sample

unsigned int scull_p_poll(struct file *filp, poll_table *wait)
{

Scull_Pipe *dev = filp->private_data;
unsigned int mask = 0;
int left = (dev->rp + dev->buffersize - dev->wp) % dev-
>buffersize;
poll_wait(filp, &dev->inq, wait);
poll_wait(filp, &dev->outq, wait);
if (dev->rp != dev->wp)

mask |= POLLIN | POLLRDNORM;
if (left != 1)

mask |= POLLOUT | POLLWRNORM;
return mask;

}

39

Userspace poll

 #include <sys/poll.h>
 int poll(struct pollfd *ufds, unsigned int

nfds, int timeout);
 struct pollfd
 {

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

};

40

Userspace sample

struct pollfd pfd[2];
pfd[0].fd = 0;
pfd[0].events = POLLIN;
pfd[0].revents = 0;
pfd[1].fd = 1;
pfd[1].events = POLLOUT;
pfd[1].revents = 0;

switch (poll (pfd, 2, 10000))
{

case -1:
perror ("poll()");
break;

case 0:
printf (“none is ready.\n");
break;

default:
if (pfd[0].revents == POLLIN || pfd[1].revents == POLLOUT)

printf (“event\n”);
break

}

41

Question?

