
Linux Device Driver
(Character Devices)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 Major and Minor number
 Important Structures
 Open and Release
 Read and Write
 Device Filesystem

3

Major and Minor numbers
 Special files under /dev “c” for char & “b” for

block
 Major number identifies driver use at open time
 Minor number is used only by driver to control

several devices

crw-rw-rw- 1 root root 1, 3 Feb 23 1999 null
crw------- 1 root root 10, 1 Feb 23 1999 psaux
crw------- 1 rubini tty 4, 1 Aug 16 22:22 tty1
crw-rw-rw- 1 root dialout 4, 64 Jun 30 11:19 ttyS0
crw-rw-rw- 1 root dialout 4, 65 Aug 16 00:00 ttyS1
crw------- 1 root sys 7, 1 Feb 23 1999 vcs1
crw------- 1 root sys 7, 129 Feb 23 1999 vcsa1
crw-rw-rw- 1 root root 1, 5 Feb 23 1999 zero

4

Register a new driver

 int register_chrdev (unsigned int
major, const
char *name, struct file_operations
*fops);
Tells the kernel to remember the major

number and the name of the device
driver associated with it.

fops point to a global structure which
kernel finds

5

Create device node

 mknod /dev/name c major minor
The name should be the same
Now users can access the device

6

Dynamic major number

 register_chrdev (major, “name”,
*fops)
when major = 0, it returns a dynamically

allocated major number
 Disadvantage

You can’t create the device nodes
because the major number assigned to
your module can’t be guaranteed to
always be the same.

7

Dynamic major number

 Use /proc/devices
Character devices:
 1 mem
 2 pty
 3 ttyp
 4 ttyS
 6 lp
 7 vcs
 10 misc
 13 input
 14 sound
 21 sg
 180 usb
Block devices:
 2 fd
 8 sd
 11 sr
 65 sd
 66 sd

major=‘awk "\\$2==\"$module\" {print \\$1}" /proc/devices‘

8

Dynamic major number

result = register_chrdev(major, “scull”, &scull_fops);
if (result < 0)
{
 printk(w_level “scull: cannot get a major %d\n”

major);
return result;

}
if (major == 0) //dynamic major allocation
 major = result;

9

Remove a driver

 int unregister_chrdev(unsigned int
major, const char *name);

10

Minor number

 Every time the kernel calls a device driver,
it tells the driver which device is being
acted upon.

 The major and minor numbers are paired
in a single data type that the driver uses
to identify a particular device.
 It resides in the field i_rdev of the inode

structure.

11

dev_t

 Historically, Unix declared dev_t to
hold the device numbers.

 It used to be a 16-bit integer value.
 Nowadays, more than 256 minor

numbers are needed at times,
Changing dev_t is difficult

12

kdev_t

 Within the Linux kernel, a different
type, kdev_t, is used.

13

kdev_t macros

 MAJOR(kdev_t dev);
 Extract the major number from a kdev_t

structure.
 MINOR(kdev_t dev);

 Extract the minor number.
 MKDEV(int ma, int mi);

 Create a kdev_t built from major and minor
numbers.

 kdev_t_to_nr(kdev_t dev);
 Convert a kdev_t type to a number (a dev_t).

 to_kdev_t(int dev);
 Convert a number to kdev_t.

14

Contents

 Major and Minor number
 Important Structures
 Open and Release
 Read and Write
 Device Filesystem

15

file_operations structure

 An open device is identified internally
by a file structure.

 The kernel uses the file_operations
structure to access the driver’s
functions.

 The structure, defined in
<linux/fs.h>.

 It is an array of function pointers.

16

file_operations structure
struct file_operations
{
 loff_t (*llseek) (struct file *, loff_t, int)
 ssize_t (*read) (struct file *, char *, size_t, loff_t *)
 ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
 int (*readdir) (struct file *, void *, filldir_t);
 unsigned int (*poll) (struct file *, struct poll_table_struct *);
 int (*open) (struct inode *, struct file *);
 int (*release) (struct inode *, struct file *);
 int (*flush) (struct file *);
 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
 int (*mmap) (struct file *, struct vm_area_struct *);
 int (*fsync) (struct inode *, struct dentry *, int);
 int (*fasync) (int, struct file *, int);
 int (*lock) (struct file *, int, struct file_lock *);
 ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
 ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
 struct module *owner;
};

17

file_operations functions

 llseek
 It is used to change the current

read/write position in a file.
 read

Used to retrieve data from the device.
 write

Sends data to the device.

18

file_operations functions

 readdir
 This field should be NULL for device files; it is

used for reading directories, and is only useful
to filesystems.

 poll
 Used to inquire if a device is readable or

writable or in some special state.
 ioctl

 It offers a way to issue device-specific
commands (like formatting a track of a floppy
disk, which is neither reading nor writing).

19

file_operations functions

 mmap
 It is used to request a mapping of device

memory to a process’s address space.
 open

 This is always the first operation performed on
the device file.

 release
 This operation is invoked when the file structure

is being released.

20

file_operations functions

 flush
 The flush operation is invoked when a process

closes its copy of a file descriptor for a device.
 fsync

 When user calls to flush any pending data.

 fasync
 This operation is used to notify the device of a

change in its FASYNC flag.

21

file_operations functions

 lock
 It is used to implement file locking.

 readv and writev
 These system calls allow them to do read or

write operation involving multiple memory areas
without forcing extra copy operations on the
data.

 owner
 It is a pointer to the module that “owns” this

structure.

22

file_operations sample

struct file_operations scull_fops = {
 read: scull_read,
 write: scull_write,
 open: scull_open,
 release: scull_release,
 owner: THIS_MODULE
};

23

file structure

 The file structure represents an open
file.

 It is created by the kernel on open
and is passed to any function that
operates on the file, until the last
close.

 It is defined in <linux/fs.h>.

24

file structure

 An open file is different from a disk
file, represented by struct inode.

 A struct file has nothing to do with
the FILEs of user-space programs.
A FILE is defined in the C library and

never appears in kernel code.
A struct file is a kernel structure that

never appears in user programs.

25

file structure

struct file
{
 mode_t f_mode;

 loff_t f_pos;

 unsigned int f_flags;
 struct file_operations *f_op;
 void *private_data;

 …
};

26

file structure fields

 mode_t f_mode
The file mode identifies the file as either

readable or writable (or both).
 loff_t f_pos

The current reading or writing position.
 unsigned int f_flags

These are the file flags, such as
O_RDONLY, O_NONBLOCK, and O_SYNC.

27

file structure fields

 struct file_operations *f_op
The operations associated with the file.

 void *private_data
The driver can use this field to point to

allocated data.

28

Contents

 Major and Minor number
 Important Structures
 Open and Release
 Read and Write
 Device Filesystem

29

The open method

 Increment the usage count.
 Check for device-specific errors.
 Initialize the device, if it is being

opened for the first time.
 Identify the minor number and

update the f_op pointer.
 Allocate and fill any data structure to

be put in filp->private_data.

30

The open method

 int open(struct inode *inode, struct
file *file);

31

The release method

 Deallocate anything that open
allocated in filp->private_data.

 Shut down the device on last close.
 Decrement the usage count.

32

The release method

 int release(struct inode *inode, struct
file *filp);

33

Contents

 Major and Minor number
 Important Structures
 Open and Release
 Read and Write
 Device Filesystem

34

Read and Write

 The read and write methods perform
a similar task, that is, copying data
from and to application code.

35

Read and Write

 ssize_t read(struct file *filp, char *buff,
size_t count, loff_t *offp);

 ssize_t write(struct file *filp, const char
*buff, size_t count, loff_t *offp);

 The buff argument points to the user
buffer holding the data.

 offp is a pointer to a “long offset type”
object that indicates the file position the
user is accessing.

36

Kernel space to User space

 unsigned long copy_to_user(void *to,
const void *from, unsigned long
count);

37

User space to Kernel space

 unsigned long copy_from_user(void
*to, const void *from, unsigned long
count);

38

Contents

 Major and Minor number
 Important Structures
 Open and Release
 Read and Write
 Device Filesystem

39

Device filesystem

 Version 2.4 of the kernel
 introduced a new (optional) feature, the

device file system or devfs.
 If this file system is used,

management of device files is
simplified and quite different;

40

Advantage of devfs

 Device entry points in /dev are
created at device initialization and
removed at device removal.

 There is no need to allocate a major
number for the device driver and
deal with minor numbers.

41

Devfs functions

 devfs_handle_t devfs_mk_dir
(devfs_handle_t dir, const char *name,
void *info);

 devfs_handle_t devfs_register
(devfs_handle_t dir, const char *name,
unsigned int flags, unsigned int major,
unsigned int minor, umode_t mode, void
*ops, void *info);

 void devfs_unregister (devfs_handle_t de);

42

Question?

