
Linux Device Driver
(Character Devices)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 Major and Minor number
 Important Structures
 Open and Release
 Read and Write
 Device Filesystem

3

Major and Minor numbers
 Special files under /dev “c” for char & “b” for

block
 Major number identifies driver use at open time
 Minor number is used only by driver to control

several devices

crw-rw-rw- 1 root root 1, 3 Feb 23 1999 null
crw------- 1 root root 10, 1 Feb 23 1999 psaux
crw------- 1 rubini tty 4, 1 Aug 16 22:22 tty1
crw-rw-rw- 1 root dialout 4, 64 Jun 30 11:19 ttyS0
crw-rw-rw- 1 root dialout 4, 65 Aug 16 00:00 ttyS1
crw------- 1 root sys 7, 1 Feb 23 1999 vcs1
crw------- 1 root sys 7, 129 Feb 23 1999 vcsa1
crw-rw-rw- 1 root root 1, 5 Feb 23 1999 zero

4

Register a new driver

 int register_chrdev (unsigned int
major, const
char *name, struct file_operations
*fops);
Tells the kernel to remember the major

number and the name of the device
driver associated with it.

fops point to a global structure which
kernel finds

5

Create device node

 mknod /dev/name c major minor
The name should be the same
Now users can access the device

6

Dynamic major number

 register_chrdev (major, “name”,
*fops)
when major = 0, it returns a dynamically

allocated major number
 Disadvantage

You can’t create the device nodes
because the major number assigned to
your module can’t be guaranteed to
always be the same.

7

Dynamic major number

 Use /proc/devices
Character devices:
 1 mem
 2 pty
 3 ttyp
 4 ttyS
 6 lp
 7 vcs
 10 misc
 13 input
 14 sound
 21 sg
 180 usb
Block devices:
 2 fd
 8 sd
 11 sr
 65 sd
 66 sd

major=‘awk "\\$2==\"$module\" {print \\$1}" /proc/devices‘

8

Dynamic major number

result = register_chrdev(major, “scull”, &scull_fops);
if (result < 0)
{
 printk(w_level “scull: cannot get a major %d\n”

major);
return result;

}
if (major == 0) //dynamic major allocation
 major = result;

9

Remove a driver

 int unregister_chrdev(unsigned int
major, const char *name);

10

Minor number

 Every time the kernel calls a device driver,
it tells the driver which device is being
acted upon.

 The major and minor numbers are paired
in a single data type that the driver uses
to identify a particular device.
 It resides in the field i_rdev of the inode

structure.

11

dev_t

 Historically, Unix declared dev_t to
hold the device numbers.

 It used to be a 16-bit integer value.
 Nowadays, more than 256 minor

numbers are needed at times,
Changing dev_t is difficult

12

kdev_t

 Within the Linux kernel, a different
type, kdev_t, is used.

13

kdev_t macros

 MAJOR(kdev_t dev);
 Extract the major number from a kdev_t

structure.
 MINOR(kdev_t dev);

 Extract the minor number.
 MKDEV(int ma, int mi);

 Create a kdev_t built from major and minor
numbers.

 kdev_t_to_nr(kdev_t dev);
 Convert a kdev_t type to a number (a dev_t).

 to_kdev_t(int dev);
 Convert a number to kdev_t.

14

Contents

 Major and Minor number
 Important Structures
 Open and Release
 Read and Write
 Device Filesystem

15

file_operations structure

 An open device is identified internally
by a file structure.

 The kernel uses the file_operations
structure to access the driver’s
functions.

 The structure, defined in
<linux/fs.h>.

 It is an array of function pointers.

16

file_operations structure
struct file_operations
{
 loff_t (*llseek) (struct file *, loff_t, int)
 ssize_t (*read) (struct file *, char *, size_t, loff_t *)
 ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
 int (*readdir) (struct file *, void *, filldir_t);
 unsigned int (*poll) (struct file *, struct poll_table_struct *);
 int (*open) (struct inode *, struct file *);
 int (*release) (struct inode *, struct file *);
 int (*flush) (struct file *);
 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
 int (*mmap) (struct file *, struct vm_area_struct *);
 int (*fsync) (struct inode *, struct dentry *, int);
 int (*fasync) (int, struct file *, int);
 int (*lock) (struct file *, int, struct file_lock *);
 ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
 ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
 struct module *owner;
};

17

file_operations functions

 llseek
 It is used to change the current

read/write position in a file.
 read

Used to retrieve data from the device.
 write

Sends data to the device.

18

file_operations functions

 readdir
 This field should be NULL for device files; it is

used for reading directories, and is only useful
to filesystems.

 poll
 Used to inquire if a device is readable or

writable or in some special state.
 ioctl

 It offers a way to issue device-specific
commands (like formatting a track of a floppy
disk, which is neither reading nor writing).

19

file_operations functions

 mmap
 It is used to request a mapping of device

memory to a process’s address space.
 open

 This is always the first operation performed on
the device file.

 release
 This operation is invoked when the file structure

is being released.

20

file_operations functions

 flush
 The flush operation is invoked when a process

closes its copy of a file descriptor for a device.
 fsync

 When user calls to flush any pending data.

 fasync
 This operation is used to notify the device of a

change in its FASYNC flag.

21

file_operations functions

 lock
 It is used to implement file locking.

 readv and writev
 These system calls allow them to do read or

write operation involving multiple memory areas
without forcing extra copy operations on the
data.

 owner
 It is a pointer to the module that “owns” this

structure.

22

file_operations sample

struct file_operations scull_fops = {
 read: scull_read,
 write: scull_write,
 open: scull_open,
 release: scull_release,
 owner: THIS_MODULE
};

23

file structure

 The file structure represents an open
file.

 It is created by the kernel on open
and is passed to any function that
operates on the file, until the last
close.

 It is defined in <linux/fs.h>.

24

file structure

 An open file is different from a disk
file, represented by struct inode.

 A struct file has nothing to do with
the FILEs of user-space programs.
A FILE is defined in the C library and

never appears in kernel code.
A struct file is a kernel structure that

never appears in user programs.

25

file structure

struct file
{
 mode_t f_mode;

 loff_t f_pos;

 unsigned int f_flags;
 struct file_operations *f_op;
 void *private_data;

 …
};

26

file structure fields

 mode_t f_mode
The file mode identifies the file as either

readable or writable (or both).
 loff_t f_pos

The current reading or writing position.
 unsigned int f_flags

These are the file flags, such as
O_RDONLY, O_NONBLOCK, and O_SYNC.

27

file structure fields

 struct file_operations *f_op
The operations associated with the file.

 void *private_data
The driver can use this field to point to

allocated data.

28

Contents

 Major and Minor number
 Important Structures
 Open and Release
 Read and Write
 Device Filesystem

29

The open method

 Increment the usage count.
 Check for device-specific errors.
 Initialize the device, if it is being

opened for the first time.
 Identify the minor number and

update the f_op pointer.
 Allocate and fill any data structure to

be put in filp->private_data.

30

The open method

 int open(struct inode *inode, struct
file *file);

31

The release method

 Deallocate anything that open
allocated in filp->private_data.

 Shut down the device on last close.
 Decrement the usage count.

32

The release method

 int release(struct inode *inode, struct
file *filp);

33

Contents

 Major and Minor number
 Important Structures
 Open and Release
 Read and Write
 Device Filesystem

34

Read and Write

 The read and write methods perform
a similar task, that is, copying data
from and to application code.

35

Read and Write

 ssize_t read(struct file *filp, char *buff,
size_t count, loff_t *offp);

 ssize_t write(struct file *filp, const char
*buff, size_t count, loff_t *offp);

 The buff argument points to the user
buffer holding the data.

 offp is a pointer to a “long offset type”
object that indicates the file position the
user is accessing.

36

Kernel space to User space

 unsigned long copy_to_user(void *to,
const void *from, unsigned long
count);

37

User space to Kernel space

 unsigned long copy_from_user(void
*to, const void *from, unsigned long
count);

38

Contents

 Major and Minor number
 Important Structures
 Open and Release
 Read and Write
 Device Filesystem

39

Device filesystem

 Version 2.4 of the kernel
 introduced a new (optional) feature, the

device file system or devfs.
 If this file system is used,

management of device files is
simplified and quite different;

40

Advantage of devfs

 Device entry points in /dev are
created at device initialization and
removed at device removal.

 There is no need to allocate a major
number for the device driver and
deal with minor numbers.

41

Devfs functions

 devfs_handle_t devfs_mk_dir
(devfs_handle_t dir, const char *name,
void *info);

 devfs_handle_t devfs_register
(devfs_handle_t dir, const char *name,
unsigned int flags, unsigned int major,
unsigned int minor, umode_t mode, void
*ops, void *info);

 void devfs_unregister (devfs_handle_t de);

42

Question?

