
Linux Device Driver
(Debugging Techniques)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 Debugging by Printing
 Debugging by Querying

3

Debugging by Printing

 The most common debugging
technique is monitoring, which
in applications programming is
done by calling printf at
suitable points.

 When you are debugging
kernel code, you can
accomplish the same goal with
printk.

4

printk

 It works like printf.
 One of the differences is that printk

lets you classify messages according
to their severity by associating
different loglevels, or priorities, with
the messages.

5

Loglevels

 KERN_EMERG
 Used for emergency messages, usually those that

precede a crash.
 KERN_ALERT

 A situation requiring immediate action.
 KERN_CRIT

 Critical conditions, often related to serious hardware or
software failures.

 KERN_ERR
 Used to report error conditions; device drivers will often

use KERN_ERR to report hardware difficulties.

6

Loglevels

 KERN_WARNING
 Warnings about problematic situations that do not, in

themselves, create serious problems with the system.
 KERN_NOTICE

 Situations that are normal, but still worthy of note. A
number of security related conditions are reported at
this level.

 KERN_INFO
 Informational messages. Many drivers print information

about the hardware they find at startup time at this
level.

 KERN_DEBUG
 Used for debugging messages.

7

Loglevels

 Each string represents an integer in
angle brackets.

 Integers range from 0 to 7, with
smaller values representing higher
priorities.

8

Loglevels

 A printk statement with no specified
priority defaults to
DEFAULT_MESSAGE_LOGLEVEL,
specified in kernel/printk.c as an
integer.

 The default loglevel value has
changed several times during Linux
development, so we suggest that you
always specify an explicit loglevel.

9

Loglevels

 If the priority is less than the integer
variable console_loglevel, the
message is displayed.

 If both klogd and syslogd are running
on the system, kernel messages are
appended to /var/log/messages
independent of console_loglevel.

10

Kernel loglevel

 It is possible to read and modify the
console loglevel using the text file
/proc/sys/kernel/printk.

 The file hosts four integer values.

11

Kernel loglevels

 console_loglevel
 Messages with a higher priority than console_loglevel

will be printed to the console.
 default_message_loglevel

 Messages without an explicit priority will be printed
with priority default_message_level.

 minimum_console_level
 It is the minimum (highest) value to which

console_loglevel can be set.
 default_console_loglevel.

 It is the default value for console_loglevel.

12

Changing loglevel

 klogd
klogd –c <loglevel>

 echo
echo <loglevel> >

/proc/sys/kernel/printk

13

Turning the Messages On and Off

#ifdef SCULL_DEBUG
define PDEBUG(fmt, args...) printk(
KERN_DEBUG "scull: " fmt, ## args)

#endif

14

Turning the Messages On and Off

DEBUG = y

ifeq ($(DEBUG),y)
DEBFLAGS = -O -g -DSCULL_DEBUG

else
DEBFLAGS = -O2

Endif

CFLAGS += $(DEBFLAGS)

15

Contents

 Debugging by Printing
 Debugging by Querying

16

Debugging by querying

 A massive use of printk can slow
down the system noticeably.
because syslogd keeps syncing its

output files.
 thus, every line that is printed causes a

disk operation.

17

Debugging by querying

 This problem can be solved by
prefixing the name of your log file as
it appears in /etc/syslogd.conf with a
minus.

 Two main techniques are available to
driver developers for querying the
system:
Creating a file in the /proc filesystem.
Using the ioctl driver method.

18

Using the /proc

 The /proc filesystem is a special,
software-created filesystem that is
used by the kernel to export
information to the world.

 Each file under /proc is tied to a
kernel function that generates the
file’s “contents” on the fly when the
file is read.

19

Using the /proc

 /proc is heavily used in the Linux
system.

 Many utilities on a modern Linux
distribution, such as ps, top, and
uptime, get their information from
/proc.

20

Create /proc file

 All modules that work with /proc
should include <linux/proc_fs.h>.

 To create a read-only /proc file, your
driver must implement a function to
produce the data when the file is
read.

21

Read_proc

 int (*read_proc)(char *page, char **start,
off_t offset, int count, int *eof, void *data);
 page pointer is the buffer where you’ll write

your data.
 start is used by the function to say where the

interesting data has been written in page.
 offset and count have the same meaning as in

the read implementation.
 eof argument points to an integer that must be

set by the driver to signal that it has no more
data to return.

 data is a driver specific data pointer you can use
for internal bookkeeping.

22

Create_proc_read_entry

 int create_proc_read_entry(char
*entry_name, int mode, char
*proc_dir_entry, int *proc_func, char
*clinet_data);
 entry_name is the name of the /proc entry.
 mode is the file permissions to apply to the

entry
 proc_dir_entry is a pointer to the parent

directory for this file.
 proc_func is the pointer to the read_proc

function,
 client_data is data pointer that will be passed

back to the read_proc function.

23

remove_proc_entry

 int remove_proc_entry(char
*entry_name, char *proc_dir_entry);
entry_name is the name of the /proc

entry.
parent_dir is a pointer to the parent

directory for this file.

24

Question?

