
Linux Device Driver
(Debugging Techniques)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 Debugging by Printing
 Debugging by Querying

3

Debugging by Printing

 The most common debugging
technique is monitoring, which
in applications programming is
done by calling printf at
suitable points.

 When you are debugging
kernel code, you can
accomplish the same goal with
printk.

4

printk

 It works like printf.
 One of the differences is that printk

lets you classify messages according
to their severity by associating
different loglevels, or priorities, with
the messages.

5

Loglevels

 KERN_EMERG
 Used for emergency messages, usually those that

precede a crash.
 KERN_ALERT

 A situation requiring immediate action.
 KERN_CRIT

 Critical conditions, often related to serious hardware or
software failures.

 KERN_ERR
 Used to report error conditions; device drivers will often

use KERN_ERR to report hardware difficulties.

6

Loglevels

 KERN_WARNING
 Warnings about problematic situations that do not, in

themselves, create serious problems with the system.
 KERN_NOTICE

 Situations that are normal, but still worthy of note. A
number of security related conditions are reported at
this level.

 KERN_INFO
 Informational messages. Many drivers print information

about the hardware they find at startup time at this
level.

 KERN_DEBUG
 Used for debugging messages.

7

Loglevels

 Each string represents an integer in
angle brackets.

 Integers range from 0 to 7, with
smaller values representing higher
priorities.

8

Loglevels

 A printk statement with no specified
priority defaults to
DEFAULT_MESSAGE_LOGLEVEL,
specified in kernel/printk.c as an
integer.

 The default loglevel value has
changed several times during Linux
development, so we suggest that you
always specify an explicit loglevel.

9

Loglevels

 If the priority is less than the integer
variable console_loglevel, the
message is displayed.

 If both klogd and syslogd are running
on the system, kernel messages are
appended to /var/log/messages
independent of console_loglevel.

10

Kernel loglevel

 It is possible to read and modify the
console loglevel using the text file
/proc/sys/kernel/printk.

 The file hosts four integer values.

11

Kernel loglevels

 console_loglevel
 Messages with a higher priority than console_loglevel

will be printed to the console.
 default_message_loglevel

 Messages without an explicit priority will be printed
with priority default_message_level.

 minimum_console_level
 It is the minimum (highest) value to which

console_loglevel can be set.
 default_console_loglevel.

 It is the default value for console_loglevel.

12

Changing loglevel

 klogd
klogd –c <loglevel>

 echo
echo <loglevel> >

/proc/sys/kernel/printk

13

Turning the Messages On and Off

#ifdef SCULL_DEBUG
define PDEBUG(fmt, args...) printk(
KERN_DEBUG "scull: " fmt, ## args)

#endif

14

Turning the Messages On and Off

DEBUG = y

ifeq ($(DEBUG),y)
DEBFLAGS = -O -g -DSCULL_DEBUG

else
DEBFLAGS = -O2

Endif

CFLAGS += $(DEBFLAGS)

15

Contents

 Debugging by Printing
 Debugging by Querying

16

Debugging by querying

 A massive use of printk can slow
down the system noticeably.
because syslogd keeps syncing its

output files.
 thus, every line that is printed causes a

disk operation.

17

Debugging by querying

 This problem can be solved by
prefixing the name of your log file as
it appears in /etc/syslogd.conf with a
minus.

 Two main techniques are available to
driver developers for querying the
system:
Creating a file in the /proc filesystem.
Using the ioctl driver method.

18

Using the /proc

 The /proc filesystem is a special,
software-created filesystem that is
used by the kernel to export
information to the world.

 Each file under /proc is tied to a
kernel function that generates the
file’s “contents” on the fly when the
file is read.

19

Using the /proc

 /proc is heavily used in the Linux
system.

 Many utilities on a modern Linux
distribution, such as ps, top, and
uptime, get their information from
/proc.

20

Create /proc file

 All modules that work with /proc
should include <linux/proc_fs.h>.

 To create a read-only /proc file, your
driver must implement a function to
produce the data when the file is
read.

21

Read_proc

 int (*read_proc)(char *page, char **start,
off_t offset, int count, int *eof, void *data);
 page pointer is the buffer where you’ll write

your data.
 start is used by the function to say where the

interesting data has been written in page.
 offset and count have the same meaning as in

the read implementation.
 eof argument points to an integer that must be

set by the driver to signal that it has no more
data to return.

 data is a driver specific data pointer you can use
for internal bookkeeping.

22

Create_proc_read_entry

 int create_proc_read_entry(char
*entry_name, int mode, char
*proc_dir_entry, int *proc_func, char
*clinet_data);
 entry_name is the name of the /proc entry.
 mode is the file permissions to apply to the

entry
 proc_dir_entry is a pointer to the parent

directory for this file.
 proc_func is the pointer to the read_proc

function,
 client_data is data pointer that will be passed

back to the read_proc function.

23

remove_proc_entry

 int remove_proc_entry(char
*entry_name, char *proc_dir_entry);
entry_name is the name of the /proc

entry.
parent_dir is a pointer to the parent

directory for this file.

24

Question?

