
Linux Device Driver
(Hardware Management)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 I/O Ports and I/O Memory
 Using I/O Ports
 Using I/O Memory
 Optimization

3

I/O Ports and I/O Memory

 Every peripheral device is
controlled by writing and reading
its registers.

 Most of the time a device has
several registers.

 They are accessed at consecutive
addresses, either in the memory
address space or in the I/O address
space.

4

I/O Ports and I/O Memory

 At the hardware level, there is no
conceptual difference between
memory regions and I/O regions.
Both of them are accessed by

asserting electrical signals on the
address bus and control bus and by
reading from or writing to the data
bus.

5

I/O Ports and I/O Memory

 Some CPU manufacturers
implement a single address space
in their chips.

 Some others decided that
peripheral devices are different
from memory.
 Therefore deserve a separate address space.
 Some processors have separate read and

write electrical lines for I/O ports, and special
CPU instructions to access ports.

6

I/O Ports and I/O Memory

 Because peripheral devices are
built to fit a peripheral bus, Linux
implements the concept of I/O
ports on all computer platforms it
runs on, even on platforms where
the CPU implements a single
address space.

7

I/O Ports and I/O Memory

 Even if the peripheral bus has a
separate address space for I/O
ports, not all devices map their
registers to I/O ports.

 Use of I/O ports is common for ISA
peripheral boards.

 Most PCI devices map registers
into a memory address region.

8

Contents

 I/O Ports and I/O Memory
 Using I/O Ports
 Using I/O Memory
 Optimization

9

I/O Ports

 I/O ports are the means by which
drivers communicate with many
devices out there.

 Information about registered
resources is available in
/proc/ioports.

10

Allocating I/O ports

 int check_region(unsigned long start,
unsigned long len);

 struct resource
*request_region(unsigned long start,
unsigned long len, char *name);

 void release_region(unsigned long start,
unsigned long len);

 They are defined in <linux/ioport.h>

11

Sample
static int skull_detect(unsigned int port, unsigned int

range)
{

int err;
if ((err = check_region(port,range)) < 0)

return err; /* busy */
request_region(port,range,"skull"); /* "Can’t fail" */
return 0;

}

static void skull_release(unsigned int port, unsigned int
range)

{
release_region(port,range);

}

12

Read and write I/O ports

 unsigned inb(unsigned port);
 void outb(unsigned char byte, unsigned

port);
 unsigned inw(unsigned port);
 void outw(unsigned short word, unsigned

port);
 unsigned inl(unsigned port);
 void outl(unsigned longword, unsigned

port);
 They are defined in <asm/io.h>

13

User space I/O ports

 They can be used from user space.
 The GNU C library defines them in

<sys/io.h>.
 User space conditions:

The program must be compiled with
the -O option.

The ioperm or iopl system calls must
be used to get permission to perform
I/O operations on ports.

14

String operations
 void insb(unsigned port, void *addr, unsigned long count);
 void outsb(unsigned port, void *addr, unsigned long count);
 void insw(unsigned port, void *addr, unsigned long count);
 void outsw(unsigned port, void *addr, unsigned long count);
 void insl(unsigned port, void *addr, unsigned long count);
 void outsl(unsigned port, void *addr, unsigned long count);

15

Pausing I/O

 Some platforms can have problems
when the processor tries to transfer
data too quickly to or from the bus.

 The pausing functions are exactly
like those listed previously, but their
names end in _p.
They are called inb_p, outb_p, and so

on.

16

Contents

 I/O Ports and I/O Memory
 Using I/O Ports
 Using I/O Memory
 Optimization

17

I/O memory

 Despite the popularity of I/O ports in
the x86 world, the main mechanism
used to communicate with devices
is through memory-mapped
registers and device memory.

 Both are called I/O memory because
the difference between registers
and memory is transparent to
software.

18

I/O memory

 I/O memory is simply a region of
RAM-like locations that the device
makes available to the processor
over the bus.

 Information about I/O memory
registered resources is available in
/proc/iomem.

19

Advantage of I/O memory

 It doesn’t require use of special-
purpose processor instructions.

 CPU cores access memory much
more efficiently, and the compiler
has much more freedom in register
allocation and addressing-mode
selection when accessing memory.

20

Accessing I/O memory
 According to the computer platform and

bus being used, I/O memory may or may
not be accessed through page tables.

 When access passes though page tables,
the kernel must first arrange for the
physical address to be visible from your
driver.
 ioremap

 If no page tables are needed, then I/O
memory locations look pretty much like
I/O ports, and you can just read and write
to them using proper wrapper functions.

21

Allocating I/O memory

 int check_mem_region(unsigned
long start, unsigned long len);

 void request_mem_region(unsigned
long start, unsigned long len, char
*name);

 void release_mem_region(unsigned
long start, unsigned long len);

22

Allocating I/O memory

 The start argument to pass to the
functions is the physical address of
the memory region, before any
remapping takes place.

23

Sample

if (check_mem_region(mem_addr, mem_size))
 {

printk("drivername: memory already in use\n");
return -EBUSY;

}

request_mem_region(mem_addr, mem_size,
"drivername");

release_mem_region(mem_addr, mem_size);

24

Read and write I/O memory

 unsigned readb(address);
 void writeb(unsigned value, address);
 unsigned readw(address);
 void writew(unsigned value, address);
 unsigned readl(address);
 void writel(unsigned value, address);

25

Software mapped I/O memory

 Devices live at well-known physical
addresses, but the CPU has no
predefined virtual address to access
them.

 The well-known physical address
can be either hardwired in the
device (ISA) or assigned by system
firmware at boot time (PCI).

26

Software mapped I/O memory

 For software to access I/O memory,
there must be a way to assign a
virtual address to the device.
This is the role of the ioremap function.

27

Ioremap

 void *ioremap(unsigned long
phys_addr, unsigned long size);

 void iounmap(void * addr);
 They are defined in <asm/io.h>.

28

Sample

check_mem_region(reset, 84);
request_mem_region(reset, 84,

“mydev”);
virtual_reset = ioremap(reset, 84);
writeb(0x40, virtual_reset + 83);
iounmap(virtual_reset);
release_mem_region(reset, 84);

29

Contents

 I/O Ports and I/O Memory
 Using I/O Ports
 Using I/O Memory
 Optimization

30

Optimization

 Despite the strong similarity
between hardware registers and
memory, a programmer must be
careful to avoid being tricked by
CPU (or compiler) optimizations
that can modify the expected I/O
behavior.

31

I/O Ports and I/O Memory
optimization
 I/O operations have side

effects.
 Memory operations have none.
 Because memory access speed is

so critical to CPU performance, the
values are cached and read/write
instructions are reordered.

32

I/O Ports and I/O Memory
optimization
 These optimizations are

transparent and benign when
applied to memory

 But they can be fatal to correct I/O
operations.

33

Driver optimization view

 A driver must therefore ensure
that no caching is performed and
no read or write reordering takes
place when accessing registers.

34

Optimization solution

 The solution to compiler
optimization and hardware
reordering is to place a memory
barrier between operations that
must be visible to the hardware in
a particular order.

35

Memory barrier

 void barrier(void);
 void rmb(void);
 void wmb(void);
 void mb(void);

36

Barrier

 Compiled code will store to
memory all values that are
currently modified and resident in
CPU registers, and will reread them
later when they are needed.

 It is defined in <linux/kernel.h>

37

rmb, wmb, mb

 The rmb (read memory barrier)
guarantees that any reads appearing
before the barrier are completed prior
to the execution of any subsequent
read.

 The wmb (write memory barrier)
guarantees ordering in write operations,

 The mb (memory barrier) instruction
guarantees both.

 They are defined in <asm/system.h>

38

Sample

writel(dev->registers.addr,
io_destination_address);

writel(dev->registers.size, io_size);
writel(dev->registers.operation, DEV_READ);
wmb();
writel(dev->registers.control, DEV_GO);

39

Question?

