
Linux Device Driver
(Hardware Management)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 I/O Ports and I/O Memory
 Using I/O Ports
 Using I/O Memory
 Optimization

3

I/O Ports and I/O Memory

 Every peripheral device is
controlled by writing and reading
its registers.

 Most of the time a device has
several registers.

 They are accessed at consecutive
addresses, either in the memory
address space or in the I/O address
space.

4

I/O Ports and I/O Memory

 At the hardware level, there is no
conceptual difference between
memory regions and I/O regions.
Both of them are accessed by

asserting electrical signals on the
address bus and control bus and by
reading from or writing to the data
bus.

5

I/O Ports and I/O Memory

 Some CPU manufacturers
implement a single address space
in their chips.

 Some others decided that
peripheral devices are different
from memory.
 Therefore deserve a separate address space.
 Some processors have separate read and

write electrical lines for I/O ports, and special
CPU instructions to access ports.

6

I/O Ports and I/O Memory

 Because peripheral devices are
built to fit a peripheral bus, Linux
implements the concept of I/O
ports on all computer platforms it
runs on, even on platforms where
the CPU implements a single
address space.

7

I/O Ports and I/O Memory

 Even if the peripheral bus has a
separate address space for I/O
ports, not all devices map their
registers to I/O ports.

 Use of I/O ports is common for ISA
peripheral boards.

 Most PCI devices map registers
into a memory address region.

8

Contents

 I/O Ports and I/O Memory
 Using I/O Ports
 Using I/O Memory
 Optimization

9

I/O Ports

 I/O ports are the means by which
drivers communicate with many
devices out there.

 Information about registered
resources is available in
/proc/ioports.

10

Allocating I/O ports

 int check_region(unsigned long start,
unsigned long len);

 struct resource
*request_region(unsigned long start,
unsigned long len, char *name);

 void release_region(unsigned long start,
unsigned long len);

 They are defined in <linux/ioport.h>

11

Sample
static int skull_detect(unsigned int port, unsigned int

range)
{

int err;
if ((err = check_region(port,range)) < 0)

return err; /* busy */
request_region(port,range,"skull"); /* "Can’t fail" */
return 0;

}

static void skull_release(unsigned int port, unsigned int
range)

{
release_region(port,range);

}

12

Read and write I/O ports

 unsigned inb(unsigned port);
 void outb(unsigned char byte, unsigned

port);
 unsigned inw(unsigned port);
 void outw(unsigned short word, unsigned

port);
 unsigned inl(unsigned port);
 void outl(unsigned longword, unsigned

port);
 They are defined in <asm/io.h>

13

User space I/O ports

 They can be used from user space.
 The GNU C library defines them in

<sys/io.h>.
 User space conditions:

The program must be compiled with
the -O option.

The ioperm or iopl system calls must
be used to get permission to perform
I/O operations on ports.

14

String operations
 void insb(unsigned port, void *addr, unsigned long count);
 void outsb(unsigned port, void *addr, unsigned long count);
 void insw(unsigned port, void *addr, unsigned long count);
 void outsw(unsigned port, void *addr, unsigned long count);
 void insl(unsigned port, void *addr, unsigned long count);
 void outsl(unsigned port, void *addr, unsigned long count);

15

Pausing I/O

 Some platforms can have problems
when the processor tries to transfer
data too quickly to or from the bus.

 The pausing functions are exactly
like those listed previously, but their
names end in _p.
They are called inb_p, outb_p, and so

on.

16

Contents

 I/O Ports and I/O Memory
 Using I/O Ports
 Using I/O Memory
 Optimization

17

I/O memory

 Despite the popularity of I/O ports in
the x86 world, the main mechanism
used to communicate with devices
is through memory-mapped
registers and device memory.

 Both are called I/O memory because
the difference between registers
and memory is transparent to
software.

18

I/O memory

 I/O memory is simply a region of
RAM-like locations that the device
makes available to the processor
over the bus.

 Information about I/O memory
registered resources is available in
/proc/iomem.

19

Advantage of I/O memory

 It doesn’t require use of special-
purpose processor instructions.

 CPU cores access memory much
more efficiently, and the compiler
has much more freedom in register
allocation and addressing-mode
selection when accessing memory.

20

Accessing I/O memory
 According to the computer platform and

bus being used, I/O memory may or may
not be accessed through page tables.

 When access passes though page tables,
the kernel must first arrange for the
physical address to be visible from your
driver.
 ioremap

 If no page tables are needed, then I/O
memory locations look pretty much like
I/O ports, and you can just read and write
to them using proper wrapper functions.

21

Allocating I/O memory

 int check_mem_region(unsigned
long start, unsigned long len);

 void request_mem_region(unsigned
long start, unsigned long len, char
*name);

 void release_mem_region(unsigned
long start, unsigned long len);

22

Allocating I/O memory

 The start argument to pass to the
functions is the physical address of
the memory region, before any
remapping takes place.

23

Sample

if (check_mem_region(mem_addr, mem_size))
 {

printk("drivername: memory already in use\n");
return -EBUSY;

}

request_mem_region(mem_addr, mem_size,
"drivername");

release_mem_region(mem_addr, mem_size);

24

Read and write I/O memory

 unsigned readb(address);
 void writeb(unsigned value, address);
 unsigned readw(address);
 void writew(unsigned value, address);
 unsigned readl(address);
 void writel(unsigned value, address);

25

Software mapped I/O memory

 Devices live at well-known physical
addresses, but the CPU has no
predefined virtual address to access
them.

 The well-known physical address
can be either hardwired in the
device (ISA) or assigned by system
firmware at boot time (PCI).

26

Software mapped I/O memory

 For software to access I/O memory,
there must be a way to assign a
virtual address to the device.
This is the role of the ioremap function.

27

Ioremap

 void *ioremap(unsigned long
phys_addr, unsigned long size);

 void iounmap(void * addr);
 They are defined in <asm/io.h>.

28

Sample

check_mem_region(reset, 84);
request_mem_region(reset, 84,

“mydev”);
virtual_reset = ioremap(reset, 84);
writeb(0x40, virtual_reset + 83);
iounmap(virtual_reset);
release_mem_region(reset, 84);

29

Contents

 I/O Ports and I/O Memory
 Using I/O Ports
 Using I/O Memory
 Optimization

30

Optimization

 Despite the strong similarity
between hardware registers and
memory, a programmer must be
careful to avoid being tricked by
CPU (or compiler) optimizations
that can modify the expected I/O
behavior.

31

I/O Ports and I/O Memory
optimization
 I/O operations have side

effects.
 Memory operations have none.
 Because memory access speed is

so critical to CPU performance, the
values are cached and read/write
instructions are reordered.

32

I/O Ports and I/O Memory
optimization
 These optimizations are

transparent and benign when
applied to memory

 But they can be fatal to correct I/O
operations.

33

Driver optimization view

 A driver must therefore ensure
that no caching is performed and
no read or write reordering takes
place when accessing registers.

34

Optimization solution

 The solution to compiler
optimization and hardware
reordering is to place a memory
barrier between operations that
must be visible to the hardware in
a particular order.

35

Memory barrier

 void barrier(void);
 void rmb(void);
 void wmb(void);
 void mb(void);

36

Barrier

 Compiled code will store to
memory all values that are
currently modified and resident in
CPU registers, and will reread them
later when they are needed.

 It is defined in <linux/kernel.h>

37

rmb, wmb, mb

 The rmb (read memory barrier)
guarantees that any reads appearing
before the barrier are completed prior
to the execution of any subsequent
read.

 The wmb (write memory barrier)
guarantees ordering in write operations,

 The mb (memory barrier) instruction
guarantees both.

 They are defined in <asm/system.h>

38

Sample

writel(dev->registers.addr,
io_destination_address);

writel(dev->registers.size, io_size);
writel(dev->registers.operation, DEV_READ);
wmb();
writel(dev->registers.control, DEV_GO);

39

Question?

