
Linux Device Driver
(Interrupt Handling)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 introduction
 Installing an interrupt handler
 Implementing a handler
 Interrupt sharing

3

Introduction

 An interrupt is simply a signal that
the hardware can send when it
wants the processor’s attention.

 For the most part, a driver need
only register a handler for its
device’s interrupts, and handle
them properly when they arrive.

4

Introduction

 There were just 16 interrupt lines
and one processor to deal with
them.
Modern hardware can have many

more interrupts.
 Unix-like systems have used the

functions cli and sti to disable and
enable interrupts for many years.

5

Contents

 introduction
 Installing an interrupt handler
 Implementing a handler
 Interrupt sharing

6

Installing interrupt handler

 Interrupt lines are a precious and
often limited resource.

 The kernel keeps a registry of
interrupt lines (similar to the
registry of I/O ports).

 A module is expected to request
an interrupt channel before using
it, and to release it when it’s done.

7

Installing interrupt handler

 int request_irq(unsigned int irq,
 void (*handler)(int, void *, struct
pt_regs *),
 unsigned long flags,
 const char *dev_name,
 void *dev_id);

 void free_irq(unsigned int irq, void
*dev_id);

 They are defined in <linux/sched.h>.

8

Request_irq
 irq

 This is the interrupt number being requested.
 void (*handler)(int, void *, struct pt_regs *)

 The pointer to the handling function being installed.
 Flags

 SA_INTERRUPT
 SA_SHIRQ

 dev_name
 The string passed to request_irq is used in

/proc/interrupts to show the owner of the interrupt.
 void *dev_id

 This pointer is used for shared interrupt lines. It is a
unique identifier.

9

Installing place

 The correct place to call
request_irq is when the device is
first opened, before the hardware
is instructed to generate
interrupts.

 The place to call free_irq is the
last time the device is closed,
after the hardware is told not to
interrupt the processor any more.

10

Auto detecting IRQ
number
 One of the most compelling

problems for a driver at
initialization time can be how to
determine which IRQ line is going
to be used by the device.

 The Linux kernel offers a low-level
facility for probing the interrupt
number.

 It only works for nonshared
interrupts.

11

Kernel-assisted probing
 unsigned long probe_irq_on(void);

 This function returns a bit mask of unassigned interrupts.
 The driver must preserve the returned bit mask and pass it

to pr obe_irq_off later.
 int probe_irq_off(unsigned long);

 After the device has requested an interrupt, the driver
calls this function, passing as argument the bit mask
previously returned by probe_irq_on.

 probe_irq_off returns the number of the interrupt that was
issued after ‘‘probe_on.’’

 If no interrupts occurred, 0 is returned.
 If more than one interrupt occurred probe_irq_off returns a

negative value.
 They are defined in <linux/interrupt.h>.

12

Parallel port registers

13

Sample
unsigned long mask;
mask = probe_irq_on();
outb_p(0x10,short_base+2); /* enable reporting */
outb_p(0x00,short_base); /* clear the bit */
outb_p(0xFF,short_base); /* set the bit: interrupt! */
outb_p(0x00,short_base+2); /* disable reporting */
udelay(5); /* give it some time */
short_irq = probe_irq_off(mask);
if (short_irq == 0)
{

printk(KERN_INFO "short: no irq reported by probe\n");
short_irq = -1;

}
if (short_irq < 0)

printk("short: probe failed %i times, giving up\n", count);

14

Do-it-yourself probing
int trials[] = {3, 5, 7, 9, 0}, tried[] = {0, 0, 0, 0, 0}, i;
for (i=0; trials[i]; i++)

tried[i] = request_irq(trials[i], short_probing, SA_INTERRUPT, "short probe", NULL);
short_irq = 0; /* none obtained yet */
outb_p(0x10,short_base+2); /* enable */
outb_p(0x00,short_base);
outb_p(0xFF,short_base); /* toggle the bit */
outb_p(0x00,short_base+2); /* disable */
udelay(5); /* give it some time */
if (short_irq == 0)
{ /* none of them? */

printk(KERN_INFO "short: no irq reported by probe\n");
}
for (i=0; trials[i]; i++)

if (tried[i] == 0)
free_irq(trials[i], NULL);

if (short_irq < 0)
printk("short: probe failed %i times, giving up\n", count);

15

Contents

 introduction
 Installing an interrupt handler
 Implementing a handler
 Interrupt sharing

16

Implementing a handler

 The role of an interrupt handler is
to give feedback to its device
about interrupt reception.

 And to read or write data
according to the meaning of the
interrupt being serviced.

 A typical task for an interrupt
handler is awakening processes
sleeping on the device.

17

Interrupt handler

 void (*handler)(int irq, void
*dev_id, struct pt_regs *regs);

18

Sample

void irq_handle (int irq, void* dev, struct pt_regs*
regs)

{
wake_up_interruptible (&q);

}
//--
static int device_open (struct inode *inode, struct

file *file)
{

irq = request_irq (7, irq_handle, SA_INTERRUPT,
“my_irq", NULL);
return 0;

}

19

Contents

 introduction
 Installing an interrupt handler
 Implementing a handler
 Interrupt sharing

20

Interrupt sharing

 In general, IRQ lines on the PC have
not been able to serve more than one
device,

21

Installing a Shared Handler

 Shared interrupts are installed
through request_irq just like
nonshared ones, but

 there are two differences:
The SA_SHIRQ bit must be specified
The dev_id argument must be unique.

22

Question?

