
Linux Device Driver
(Interrupt Handling)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 introduction
 Installing an interrupt handler
 Implementing a handler
 Interrupt sharing

3

Introduction

 An interrupt is simply a signal that
the hardware can send when it
wants the processor’s attention.

 For the most part, a driver need
only register a handler for its
device’s interrupts, and handle
them properly when they arrive.

4

Introduction

 There were just 16 interrupt lines
and one processor to deal with
them.
Modern hardware can have many

more interrupts.
 Unix-like systems have used the

functions cli and sti to disable and
enable interrupts for many years.

5

Contents

 introduction
 Installing an interrupt handler
 Implementing a handler
 Interrupt sharing

6

Installing interrupt handler

 Interrupt lines are a precious and
often limited resource.

 The kernel keeps a registry of
interrupt lines (similar to the
registry of I/O ports).

 A module is expected to request
an interrupt channel before using
it, and to release it when it’s done.

7

Installing interrupt handler

 int request_irq(unsigned int irq,
 void (*handler)(int, void *, struct
pt_regs *),
 unsigned long flags,
 const char *dev_name,
 void *dev_id);

 void free_irq(unsigned int irq, void
*dev_id);

 They are defined in <linux/sched.h>.

8

Request_irq
 irq

 This is the interrupt number being requested.
 void (*handler)(int, void *, struct pt_regs *)

 The pointer to the handling function being installed.
 Flags

 SA_INTERRUPT
 SA_SHIRQ

 dev_name
 The string passed to request_irq is used in

/proc/interrupts to show the owner of the interrupt.
 void *dev_id

 This pointer is used for shared interrupt lines. It is a
unique identifier.

9

Installing place

 The correct place to call
request_irq is when the device is
first opened, before the hardware
is instructed to generate
interrupts.

 The place to call free_irq is the
last time the device is closed,
after the hardware is told not to
interrupt the processor any more.

10

Auto detecting IRQ
number
 One of the most compelling

problems for a driver at
initialization time can be how to
determine which IRQ line is going
to be used by the device.

 The Linux kernel offers a low-level
facility for probing the interrupt
number.

 It only works for nonshared
interrupts.

11

Kernel-assisted probing
 unsigned long probe_irq_on(void);

 This function returns a bit mask of unassigned interrupts.
 The driver must preserve the returned bit mask and pass it

to pr obe_irq_off later.
 int probe_irq_off(unsigned long);

 After the device has requested an interrupt, the driver
calls this function, passing as argument the bit mask
previously returned by probe_irq_on.

 probe_irq_off returns the number of the interrupt that was
issued after ‘‘probe_on.’’

 If no interrupts occurred, 0 is returned.
 If more than one interrupt occurred probe_irq_off returns a

negative value.
 They are defined in <linux/interrupt.h>.

12

Parallel port registers

13

Sample
unsigned long mask;
mask = probe_irq_on();
outb_p(0x10,short_base+2); /* enable reporting */
outb_p(0x00,short_base); /* clear the bit */
outb_p(0xFF,short_base); /* set the bit: interrupt! */
outb_p(0x00,short_base+2); /* disable reporting */
udelay(5); /* give it some time */
short_irq = probe_irq_off(mask);
if (short_irq == 0)
{

printk(KERN_INFO "short: no irq reported by probe\n");
short_irq = -1;

}
if (short_irq < 0)

printk("short: probe failed %i times, giving up\n", count);

14

Do-it-yourself probing
int trials[] = {3, 5, 7, 9, 0}, tried[] = {0, 0, 0, 0, 0}, i;
for (i=0; trials[i]; i++)

tried[i] = request_irq(trials[i], short_probing, SA_INTERRUPT, "short probe", NULL);
short_irq = 0; /* none obtained yet */
outb_p(0x10,short_base+2); /* enable */
outb_p(0x00,short_base);
outb_p(0xFF,short_base); /* toggle the bit */
outb_p(0x00,short_base+2); /* disable */
udelay(5); /* give it some time */
if (short_irq == 0)
{ /* none of them? */

printk(KERN_INFO "short: no irq reported by probe\n");
}
for (i=0; trials[i]; i++)

if (tried[i] == 0)
free_irq(trials[i], NULL);

if (short_irq < 0)
printk("short: probe failed %i times, giving up\n", count);

15

Contents

 introduction
 Installing an interrupt handler
 Implementing a handler
 Interrupt sharing

16

Implementing a handler

 The role of an interrupt handler is
to give feedback to its device
about interrupt reception.

 And to read or write data
according to the meaning of the
interrupt being serviced.

 A typical task for an interrupt
handler is awakening processes
sleeping on the device.

17

Interrupt handler

 void (*handler)(int irq, void
*dev_id, struct pt_regs *regs);

18

Sample

void irq_handle (int irq, void* dev, struct pt_regs*
regs)

{
wake_up_interruptible (&q);

}
//--
static int device_open (struct inode *inode, struct

file *file)
{

irq = request_irq (7, irq_handle, SA_INTERRUPT,
“my_irq", NULL);
return 0;

}

19

Contents

 introduction
 Installing an interrupt handler
 Implementing a handler
 Interrupt sharing

20

Interrupt sharing

 In general, IRQ lines on the PC have
not been able to serve more than one
device,

21

Installing a Shared Handler

 Shared interrupts are installed
through request_irq just like
nonshared ones, but

 there are two differences:
The SA_SHIRQ bit must be specified
The dev_id argument must be unique.

22

Question?

