
Linux Device Driver
(Network Drivers)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

3

Introduction
 Network interfaces are the third

standard class of Linux devices.
 The role of a network interface within

the system is similar to that of a
mounted block device.
 A block device registers its features in the

blk_dev array and other kernel structures,
and it then “transmits” and “receives” blocks
on request, by means of its request function.

 Similarly, a network interface must register
itself in specific data structures in order to be
invoked when packets are exchanged with
the outside world.

4

Introduction

 There are a few important differences
between mounted disks and packet-
delivery interfaces.
 A disk exists as a special file in the /dev

directory, whereas a network interface has
no such entry point.

 The read and write system calls when using
sockets, act on a software object that is
distinct from the interface.

 The block drivers operate only in response to
requests from the kernel, whereas network
drivers receive packets asynchronously from
the outside.

5

The snull design

 The snull module creates two
interfaces.
These interfaces are different from a

simple loopback.
Whatever you transmit through one of

the interfaces loops back to the other
one, not to itself.

6

The snull design

7

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

8

The net_device structure

 The net_device structure is at the very
core of the network driver layer.

 Struct net_device can be conceptually
divided into two parts: visible and
invisible.
 The visible part of the structure is made up

of the fields that can be explicitly assigned in
static net_device structures.

 The remaining fields are used internally by
the network code and usually are not
initialized at compilation time.

 It is defined in <linux/netdevice.h>.

9

The visible fields

 char name[IFNAMSIZ];
 The name of the device.

 unsigned long rmem_end;
 unsigned long rmem_start;
 unsigned long mem_end;
 unsigned long mem_start;

 These fields hold the beginning and ending
addresses of the shared memory used by the
device. The mem fields are used for transmit
memory and the rmem fields for receive
memory.

10

The visible fields

 unsigned long base_addr;
 The I/O base address of the network

interface.

 unsigned char irq;
 The assigned interrupt number.

 unsigned char if_port;
 Which port is in use on multiport devices.

 unsigned char dma;
 The DMA channel allocated by the device.

11

The visible fields

 unsigned long state;
Device state. The field includes

several flags.
 struct net_device *next;

Pointer to the next device in the
global linked list.

 int (*init)(struct net_device *dev);
The initialization function.

12

The hidden fields

 These fields are usually assigned at
device initialization.

 It has three separate groups.
 Interface information
The device method
Utility fields

13

Interface information

 Most of the information about the
interface is correctly set up by the
function ether_setup.

14

Interface information

 unsigned short hard_header_len;
 The hardware header length.

 unsigned mtu;
 The maximum transfer unit (MTU).

 unsigned long tx_queue_len;
 The maximum number of frames that can be queued on

the device’s transmission queue.
 unsigned short type;

 The hardware type of the interface.
 The type field is used by ARP to determine what kind of

hardware address the interface supports.

15

Interface information

 unsigned char addr_len;
 unsigned char broadcast[MAX_ADDR_LEN];
 unsigned char dev_addr[MAX_ADDR_LEN];

 Hardware (MAC) address length and device
hardware addresses.

 unsigned short flags;
 Interface flags.

16

The device method

 Device methods for a network
interface can be divided into two
groups: fundamental and optional.

 Fundamental methods include those
that are needed to be able to use the
interface.

 Optional methods implement more
advanced functionalities that are not
strictly required.

17

Fundamental methods

 int (*open)(struct net_device *dev);
 int (*stop)(struct net_device *dev);
 int (*hard_start_xmit) (struct sk_buff

*skb, struct net_device *dev);
 int (*hard_header) (struct sk_buff

*skb, struct net_device *dev,
unsigned short type, void *daddr,
void *saddr, unsigned len);

18

Fundamental methods

 int (*rebuild_header)(struct sk_buff *skb);
 void (*tx_timeout)(struct net_device *dev);
 struct net_device_stats *(*get_stats)(struct

net_device *dev);
 int (*set_config)(struct net_device *dev, struct

ifmap *map);

19

Optional methods

 int (*do_ioctl)(struct net_device *dev, struct ifreq
*ifr, int cmd);

 void (*set_multicast_list)(struct net_device *dev);
 int (*set_mac_address)(struct net_device *dev,

void *addr);
 int (*change_mtu)(struct net_device *dev, int

new_mtu);

20

Optional methods

 int (*header_cache) (struct neighbour
*neigh, struct hh_cache *hh);
 header_cache is called to fill in the hh_cache

structure with the results of an ARP query.
 int (*header_cache_update) (struct

hh_cache *hh, struct net_device *dev,
unsigned char *haddr);

 int (*hard_header_parse) (struct sk_buff
*skb, unsigned char *haddr);

21

Utility fields

 These fields are used by the
interface to hold useful status
information.

22

Utility fields

 unsigned long trans_start;
 unsigned long last_rx;

 Both of these fields are meant to hold a jiffies
value.

 int watchdog_timeo;
 The minimum time (in jiffies) that should pass

before the networking layer decides that a
transmission timeout has occurred.

 void *priv;
 The equivalent of filp->private_data.

23

Utility fields

 struct dev_mc_list *mc_list;
 int mc_count;

 These two fields are used in handling multicast
transmission.

 spinlock_t xmit_lock;
 The xmit_lock is used to avoid multiple simultaneous

calls to the driver’s hard_start_xmit function.
 int xmit_lock_owner;

 The xmit_lock_owner is the number of the CPU that has
obtained xmit_lock.

 struct module *owner;

24

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

25

Driver initialization

 Each interface is described by a
struct net_device item.

 Whenever you register a device, the
kernel asks the driver to initialize
itself.

 Initialization means probing for the
physical interface and filling the
net_device structure with the proper
values.

26

Sample

 The structures for sn0 and sn1, the
two snull interfaces, are declared like
this:

struct net_device snull_devs[2] = {
{ init: snull_init, },
{ init: snull_init, }

};

27

Device name

 The driver can hardwire a name for
the interface or it can allow dynamic
assignment.

28

Sample

if (!snull_eth)
{

strcpy(snull_devs[0].name, "sn0");
strcpy(snull_devs[1].name, "sn1");

}
else
{

strcpy(snull_devs[0].name, "eth%d");
strcpy(snull_devs[1].name, "eth%d");

}

29

Register the driver

 int register_netdev(struct net_device
*dev);

 void unregister_netdev(struct
net_device *dev);

30

Sample

for (i=0; i<2; i++)
register_netdev(snull_devs + i);

31

Initialize each device

 The main role of the initialization routine is
to fill in the dev structure for this device.
 The dev structure cannot be set up at compile

time in the same manner as a file_operations or
block_device_operations structure.

 Probing for the device should be
performed in the init function for the
interface.
 No real probing is performed for the snull

interface, because it is not bound to any
hardware.

32

Sample
ether_setup(dev);
dev->open = snull_open;
dev->stop = snull_release;
dev->set_config = snull_config;
dev->hard_start_xmit = snull_tx;
dev->do_ioctl = snull_ioctl;
dev->get_stats = snull_stats;
dev->rebuild_header = snull_rebuild_header;
dev->hard_header = snull_header;
#ifdef HAVE_TX_TIMEOUT
dev->tx_timeout = snull_tx_timeout;
dev->watchdog_timeo = timeout;
#endif
dev->flags |= IFF_NOARP;
dev->hard_header_cache = NULL;
SET_MODULE_OWNER(dev);

33

Module unloading

 The module cleanup function simply
unregisters the interfaces from the
list after releasing memory
associated with the private structure.

34

Sample

void snull_cleanup(void)
{

int i;
for (i=0; i<2; i++)
{

kfree(snull_devs[i].priv);
unregister_netdev(snull_devs + i);

}
return;

}

35

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

36

Opening and Closing

 Before the interface can carry
packets, however, the kernel must
open it and assign an address to it.

 The kernel will open or close an
interface in response to the ifconfig
command.

37

Open and stop

 open requests any system resources it
needs and tells the interface to come up.
 The open method should also start the

interface’s transmit queue.
 void netif_start_queue(struct net_device *dev);

 stop shuts down the interface and releases
system resources.
 void netif_stop_queue(struct net_device *dev);

38

Sample

int snull_open(struct net_device *dev)
{

MOD_INC_USE_COUNT;
memcpy(dev->dev_addr, "\0SNUL0", ETH_ALEN);
dev->dev_addr[ETH_ALEN-1] += (dev -
snull_devs);
netif_start_queue(dev);
return 0;

}

39

Sample

int snull_release(struct net_device
*dev)

{
netif_stop_queue(dev);
MOD_DEC_USE_COUNT;
return 0;

}

40

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

41

Packet transmission

 The most important tasks performed by
network interfaces are data transmission
and reception.

 Whenever the kernel needs to transmit a
data packet, it calls the
hard_start_transmit method.
 To put the data on an outgoing queue.

 Each packet handled by the kernel is
contained in a socket buffer structure
(struct sk_buff).
 It is defined in <linux/skbuff.h>.

42

Sample

int snull_tx(struct sk_buff *skb, struct net_device *dev)
{

int len;
char *data;
struct snull_priv *priv = (struct snull_priv *) dev->priv;
len = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
data = skb->data;
dev->trans_start = jiffies;
priv->skb = skb;
snull_hw_tx(data, len, dev);
return 0;

}

43

Transmission concurrency

 The hard_start_xmit function is
protected from concurrent calls by a
spinlock (xmit_lock) in the net_device
structure.
As soon as the function returns, it may

be called again.
The function returns when the software

is done instructing the hardware about
packet transmission, but hardware
transmission will likely not have been
completed.

44

Transmission concurrency

 Real hardware interfaces, transmit packets
asynchronously and have a limited amount
of memory available to store outgoing
packets.

 When that memory is exhausted, the
driver will need to tell the networking
system not to start any more
transmissions until the hardware is ready
to accept new data.

 This notification is accomplished by calling
netif_stop_queue.

45

Transmission concurrency

 Once your driver has stopped its
queue, it must arrange to restart the
queue at some point in the future,
when it is again able to accept
packets for transmission.

 void netif_wake_queue(struct
net_device *dev);

46

Transmission timeouts

 Interfaces can forget what they are doing, or the
system can lose an interrupt.

 Many drivers handle this problem by setting
timers.

 Network drivers need only set a timeout period,
which goes in the watchdog_timeo field of the
net_device structure.

 If the current system time exceeds the device’s
trans_start time by at least the timeout period, the
networking layer will eventually call the driver’s
tx_timeout method.

47

Sample

void snull_tx_timeout (struct net_device *dev)
{

struct snull_priv *priv = (struct snull_priv *) dev-
>priv;
priv->status = SNULL_TX_INTR;
snull_interrupt(0, dev, NULL);
priv->stats.tx_errors++;
netif_wake_queue(dev);
return;

}

48

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

49

Packet reception

 In receiving data from the network
an sk_buff must be allocated and
handed off to the upper layers from
within an interrupt handler.

 The function snull_rx is thus called
after the hardware has received the
packet and it is already in the
computer’s memory.

50

Sample

void snull_rx(struct net_device *dev, int len, unsigned char *buf)
{

struct sk_buff *skb;
struct snull_priv *priv = (struct snull_priv *) dev->priv;
skb = dev_alloc_skb(len+2);
memcpy(skb_put(skb, len), buf, len);
skb->dev = dev;
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don’t check it */
priv->stats.rx_packets++;
priv->stats.rx_bytes += len;
netif_rx(skb);
return;

}

51

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

52

The interrupt handler

 Most hardware interfaces are
controlled by means of an interrupt
handler.

 The interface interrupts the
processor to signal one of two
possible events:
A new packet has arrived.
A transmission of an outgoing packet is

complete.

53

Sample
void snull_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

int statusword;
struct snull_priv *priv;
struct net_device *dev = (struct net_device *)dev_id;
priv = (struct snull_priv *) dev->priv;
spin_lock(&priv->lock);
statusword = priv->status;
if (statusword & SNULL_RX_INTR)

snull_rx(dev, priv->rx_packetlen, priv->rx_packetdata);
if (statusword & SNULL_TX_INTR)
{

priv->stats.tx_packets++;
priv->stats.tx_bytes += priv->tx_packetlen;
dev_kfree_skb(priv->skb);

}
spin_unlock(&priv->lock);
return;

}

54

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

55

Custom ioctl commands

 When the ioctl system call is invoked
on a socket, the command number is
one of the symbols defined in
<linux/sockios.h>, and the function
sock_ioctl directly invokes a protocol-
specific function.

 Any ioctl command that is not
recognized by the protocol layer is
passed to the device layer.

56

Custom ioctl commands

 These device-related ioctl commands
accept a third argument from user space,
a struct ifreq *.

 This structure is defined in <linux/if.h>.
 The SIOCSIFADDR and SIOCSIFMAP

commands actually work on the ifreq
structure.

 The ioctl implementation for sockets
recognizes 16 commands as private to the
interface:
 SIOCDEVPRIVATE through SIOCDEVPRIVATE+15.

57

Custom ioctl commands

 When one of these commands is
recognized, dev->do_ioctl is called in
the relevant interface driver.

 int (*do_ioctl)(struct net_device *dev,
struct ifreq *ifr, int cmd);

58

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

59

Statistical information

 A method a driver needs is get_stats.
 This method returns a pointer to the

statistics for the device.

60

net_device_stats

 unsigned long rx_packets;
 unsigned long tx_packets;

 These fields hold the total number of incoming
and outgoing packets successfullytransferred by
the interface.

 unsigned long rx_bytes;
 unsigned long tx_bytes;

 The number of bytes received and transmitted
by the interface.

61

net_device_stats

 unsigned long rx_errors;
 unsigned long tx_errors;

 The number of erroneous receptions and transmissions.
 unsigned long rx_dropped;
 unsigned long tx_dropped;

 The number of packets dropped during reception and
transmission.

 unsigned long collisions;
 The number of collisions due to congestion on the

medium.
 unsigned long multicast;

 The number of multicast packets received.

62

Sample

struct snull_priv
{

struct net_device_stats stats;
…

};

struct net_device_stats *snull_stats(struct net_device
*dev)

{
struct snull_priv *priv = (struct snull_priv *) dev-
>priv;
return &priv->stats;

}

63

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

64

The socket buffer

 This structure is at the core of the
network subsystem of the Linux
kernel.

 It is defined in <linux/skbuff.h>.

65

The important fields

 struct net_device *rx_dev;
 struct net_device *dev;

 The devices receiving and sending this buffer.
 union { /* . . . */ } h;
 union { /* . . . */ } nh;
 union { /* . . . */} mac;

 Pointers to the various levels of headers contained
within the packet.

 h hosts pointers to transport layer headers.
 nh includes network layer headers.
 mac collects pointers to link layer headers.

66

The socket buffer

 This structure is at the core of the
network subsystem of the Linux
kernel.

 It is defined in <linux/skbuff.h>.

67

The important fields

 struct net_device *rx_dev;
 struct net_device *dev;

 The devices receiving and sending this buffer.
 union { /* . . . */ } h;
 union { /* . . . */ } nh;
 union { /* . . . */} mac;

 Pointers to the various levels of headers contained
within the packet.

 h hosts pointers to transport layer headers.
 nh includes network layer headers.
 mac collects pointers to link layer headers.

68

The important fields

 unsigned char *head;
 unsigned char *data;
 unsigned char *tail;
 unsigned char *end;

 Pointers used to address the data in the packet.
 unsigned long len;

 The length of the data itself (skb->tail - skb->data).
 unsigned char ip_summed;

 The checksum policy for this packet.
 unsigned char pkt_type;

 Packet classification used in delivering it.

69

Socket buffer functions

 struct sk_buff *alloc_skb(unsigned int
len, int priority);

 struct sk_buff
*dev_alloc_skb(unsigned int len);
Allocate a buffer.

 void kfree_skb(struct sk_buff *skb);
 void dev_kfree_skb(struct sk_buff

*skb);
Free a buffer.

70

Socket buffer functions

 unsigned char *skb_put(struct sk_buff
*skb, int len);

 unsigned char *_ _skb_put(struct sk_buff
*skb, int len);
 They are used to add data to the end of the buffer.

 unsigned char *skb_push(struct sk_buff
*skb, int len);

 unsigned char *_ _skb_push(struct sk_buff
*skb, int len);
 They are similar to skb_put, except that data is added to

the beginning of the packet instead of the end.

71

Socket buffer functions

 int skb_tailroom(struct sk_buff *skb);
 This function returns the amount of space available for

putting data in the buffer.
 int skb_headroom(struct sk_buff *skb);

 Returns the amount of space available in front of data.
 void skb_reserve(struct sk_buff *skb, int len);

 This function increments both data and tail.
 unsigned char *skb_pull(struct sk_buff *skb, int

len);
 Removes data from the head of the packet.

72

Contents

 Introduction
 The net_device structure
 Register the driver
 Opening and Closing
 Packet transmission
 Packet reception
 The interrupt handler
 Ioctl
 Statistical information
 The socket buffer
 MAC address resolution

73

MAC address resolution

 An interesting issue with Ethernet
communication is how to associate
the MAC addresses with the IP
number.

 The usual way to deal with address
resolution is by using ARP.

74

MAC address resolution

 Fortunately, ARP is managed by the
kernel, and an Ethernet interface doesn’t
need to do anything special to support
ARP.

 As long as dev->addr and dev->addr_len
are correctly assigned at open time, the
driver doesn’t need to worry about
resolving IP numbers to physical
addresses;
 ether_setup assigns the correct device methods

to dev->hard_header and dev->rebuild_header.

75

Overriding ARP

 If your device wants to use the usual
hardware header without running
ARP, you need to override the default
 dev->hard_header method.

76

Sample

int snull_header(struct sk_buff *skb, struct net_device *dev,
unsigned short type, void *daddr, void *saddr,
unsigned int len)
{

struct ethhdr *eth = (struct ethhdr
*)skb_push(skb,ETH_HLEN);
eth->h_proto = htons(type);
memcpy(eth->h_source, saddr ? saddr : dev->dev_addr,
dev->addr_len);
memcpy(eth->h_dest, daddr ? daddr : dev->dev_addr, dev-
>addr_len);
eth->h_dest[ETH_ALEN-1] ˆ= 0x01;
return (dev->hard_header_len);

}

77

Question?

