Linux Device Driver

(The PCI Interface)

Amir Hossein Payberah
payberah@yahoo.com

Contents
"

Introduction

Introduction
= SRS
® The PCI architecture was designed

as a replacement for the ISA
standard, with three main goals:
UTo get better performance when

transferring data between the
computer and its peripherals.

UTo be as platform independent as
possible.

UTo simplify adding and removing
peripherals to the system.

Contents
"

PCl addressing

PCl addressing
=SSR
® Each PCI peripheral is identified by a
bus number, a device number, and a
function number.

L The PCI specification permits a system to
host up to 256 buses.

L Each bus hosts up to 32 devices.
[Each device can be a multifunction board
with a maximum of eight functions.
® Each function can thus be identified at
hardware level by a 16-bit address, or
key.

PCl addressing 2
g

®" The 16-bit hardware addresses
associated with PCI peripherals,
are still visible occasionally:
Ulspci
C/proc/pci
L/proc/bus/pci

PCl addressing
= SEES————
® \When the hardware address is

displayed, it can either be shown
as a 16-bit value, as two values:

AN 8-bit bus number

AN 8-bit device and function number
® As three values

LBus

ODevice

LOFunctions

2

Contents
"

Boot time

Boot time 2
g
" When power is applied to a PCl device,
the hardware remains inactive.

® The device will respond only to
configuration transactions.

® At power on, the device has no memory
and no |/O ports mapped in the
computer’s address space.

® Every other device-specific feature,
such as interrupt reporting, is disabled
as well.

Boot time 2
= S
" Every PClI motherboard is equipped with
PCl-aware firmware:
O BIOS

LNVRAM
L PROM

® At system boot, the firmware (or the Linux
kernel, if so configured) performs
configuration transactions with every PCI
peripheral in order to allocate a safe place
for any address region it offers.

10

Boot time
=SSR
® PCl| device list
L/proc/bus/pci/devices

®" The devices’ configuration
O /proc/bus/pci/*/*

11

Contents
"

Configuration registers and initialization

Configuration registers 2
= SN
®" The layout of the configuration
space is device independent.

® PCl devices feature a 256-byte
address space.

® The first 64 bytes are
standardized, while the rest are
device dependent.

13

Configuration registers (3
=

0x0 0x1 O0x2 0x3 Ox4 0Ox5 Ox6 0x7 OxB 0x9 Oxa Oxb 0Oxc Oxd Oxe Oxf
Vendor | Device | Command Status |Revis-| Class Code Cache |Latency(Header | BIST
0x00 ID ID Reg Reg. Illlnll Line | Timer | Type
Base Base Base Base
0x10 Address 0 Address 1 Address 2 Address 3
Base Base CardBus Subsytem Subsytem
0x20 Address 4 Address 5 CIS pointer Vendor ID Device ID
Expansion ROM IRO IRO |Min_Gnt|{Max_Lat
0x30 Base Address Reserved Line | Pin
- Required Register
- Optional Register

14

Configuration registers 2
= SRS

® vendorlD

U This 16-bit register identifies a hardware manufacturer.
U For instance, every Intel device is marked with the same vendor
number, 0x8086.
" devicelD
U This is another 16-bit register, selected by the manufacturer.
0 This ID is usually paired with the vendor ID to make a unique 32-
bit identifier for a hardware device.
® Class
[Every peripheral device belongs to a class.

U The class register is a 16-bit value whose top 8 bits identify the
““base class’’ (or group).

L For example, ‘‘ethernet’’ and “‘token ring”’ are two classes
belonging to the ‘““‘network’’ group,

15

PCl necessary fields 2
=SSR
® #include <linux/config.h>

LBy including this header, the driver
gains access to the CONFIG_ macros.

= CONFIG PCl

LThis macro Is defined if the kernel
iIncludes support for PCI calls.

16

PCl necessary fields 2
= ST
" #include <linux/pci.h>

L This header declares all the prototypes as well
as the symbolic names associated with PCI
registers and bits.

" int pci_present(void);

L The pci_present function allows one to check if
PCI functionality is available or not.

B struct pci_dev;

L't is at the core of every PCl operation in the
system.

17

PCI functions £
= SN
® struct pci_dev *pci find device (unsigned int

vendor, unsigned int device, const struct pci_dev
*from);

L This function is used to scan the list of installed devices
looking for a device featuring a specific signature.

B struct pci_dev *pci find class (unsigned int class,
const struct pci_dev *from);

0 This function is similar to the previous one, but it looks
for devices belonging to a specific class.

" int pci enable device (struct pci_dev *dev);
0 This function actually enables the device.

18

Sample
= SN

#ifndef CONFIG_PCI

error "This driver needs PCI support to be available"
#endif

int jail_find_all_devices(void)
{
struct pci_dev *dev = NULL;
int found;
if (pci_present())
return -ENODEV;
for (found=0; found < JAIL_ MAX _DEV;)

{
dev = pci find device(JAIL_ VENDOR, JAIL ID, dev);
if (!dev)
break;
found += jail_init_one(dev);
}

return (index == 0) ? -ENODEV : 0O;

19

Contents
"

Accessing the configuration space

Accessing the Configuration Space@

g

® After the driver has detected the device, it
usually needs to read from or write to the
three address spaces:
L Memory
L Port
L Configuration

B Accessing the configuration space is vital
to the driver because it is the only way it
can find out where the device is mapped
In memory and in the |I/O space.

21

Configuration access 2
= SN

" int pci read config byte (struct pci_dev *dev, int
where, u8 *ptr);

" int pci read config word (struct pci_dev *dev, int

where, ul6 *ptr);

" int pci read config dword (struct pci_dev *dev, int

where, u32 *ptr);

" int pci write config byte (struct pci_dev *dev, int
where, u8 val);

" int pci write config word (struct pci_dev *dev, int
where, ul6 val);

" int pci write config dword (struct pci_dev *dev, int
where, u32 val);

22

Contents
"

Accessing the I/O and memory space

Accessing the I/O and mem Space@
- -
" A PCI device implements up to six I/O
address regions.

® Each region consists of either
memory or |/O locations.

24

/O and mem access method Q
= S

® unsigned long pci resource start (struct pci_dev
*dev, int bar);

U The function returns the first address (memory address

or I/O port number) associated with one of the six PCI I/O
regions.

B unsignhed long pci resource end (struct pci_dev
*dev, int bar);

U The function returns the last address that is part of the
/O region number bar.

® unsigned long pci resource flags (struct pci_dev
*dev, Int bar);

U This function returns the flags associated with this
resource.

25

A

Question?

