
Linux Device Driver
(The PCI Interface)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

3

Introduction

 The PCI architecture was designed
as a replacement for the ISA
standard, with three main goals:
To get better performance when

transferring data between the
computer and its peripherals.

To be as platform independent as
possible.

To simplify adding and removing
peripherals to the system.

4

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

5

PCI addressing

 Each PCI peripheral is identified by a
bus number, a device number, and a
function number.
 The PCI specification permits a system to

host up to 256 buses.
 Each bus hosts up to 32 devices.
 Each device can be a multifunction board

with a maximum of eight functions.
 Each function can thus be identified at

hardware level by a 16-bit address, or
key.

6

PCI addressing

 The 16-bit hardware addresses
associated with PCI peripherals,
are still visible occasionally:
 lspci
/proc/pci
/proc/bus/pci

7

PCI addressing

 When the hardware address is
displayed, it can either be shown
as a 16-bit value, as two values:
An 8-bit bus number
An 8-bit device and function number

 As three values
Bus
Device
Functions

8

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

9

Boot time

 When power is applied to a PCI device,
the hardware remains inactive.

 The device will respond only to
configuration transactions.

 At power on, the device has no memory
and no I/O ports mapped in the
computer’s address space.

 Every other device-specific feature,
such as interrupt reporting, is disabled
as well.

10

Boot time

 Every PCI motherboard is equipped with
PCI-aware firmware:
 BIOS
 NVRAM
 PROM

 At system boot, the firmware (or the Linux
kernel, if so configured) performs
configuration transactions with every PCI
peripheral in order to allocate a safe place
for any address region it offers.

11

Boot time

 PCI device list
/proc/bus/pci/devices

 The devices’ configuration
/proc/bus/pci/*/*

12

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

13

Configuration registers

 The layout of the configuration
space is device independent.

 PCI devices feature a 256-byte
address space.

 The first 64 bytes are
standardized, while the rest are
device dependent.

14

Configuration registers

15

Configuration registers
 vendorID

 This 16-bit register identifies a hardware manufacturer.
 For instance, every Intel device is marked with the same vendor

number, 0x8086.
 deviceID

 This is another 16-bit register, selected by the manufacturer.
 This ID is usually paired with the vendor ID to make a unique 32-

bit identifier for a hardware device.
 Class

 Every peripheral device belongs to a class.
 The class register is a 16-bit value whose top 8 bits identify the

‘‘base class’’ (or group).
 For example, ‘‘ethernet’’ and ‘‘token ring’’ are two classes

belonging to the ‘‘network’’ group,

16

PCI necessary fields

 #include <linux/config.h>
By including this header, the driver

gains access to the CONFIG_ macros.
 CONFIG_PCI

This macro is defined if the kernel
includes support for PCI calls.

17

PCI necessary fields

 #include <linux/pci.h>
 This header declares all the prototypes as well

as the symbolic names associated with PCI
registers and bits.

 int pci_present(void);
 The pci_present function allows one to check if

PCI functionality is available or not.

 struct pci_dev;
 It is at the core of every PCI operation in the

system.

18

PCI functions

 struct pci_dev *pci_find_device (unsigned int
vendor, unsigned int device, const struct pci_dev
*from);
 This function is used to scan the list of installed devices

looking for a device featuring a specific signature.
 struct pci_dev *pci_find_class (unsigned int class,

const struct pci_dev *from);
 This function is similar to the previous one, but it looks

for devices belonging to a specific class.
 int pci_enable_device (struct pci_dev *dev);

 This function actually enables the device.

19

Sample
#ifndef CONFIG_PCI
error "This driver needs PCI support to be available"
#endif

int jail_find_all_devices(void)
{

struct pci_dev *dev = NULL;
int found;
if (!pci_present())

return -ENODEV;
for (found=0; found < JAIL_MAX_DEV;)
{

dev = pci_find_device(JAIL_VENDOR, JAIL_ID, dev);
if (!dev)
 break;
found += jail_init_one(dev);

}
return (index == 0) ? -ENODEV : 0;

}

20

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

21

Accessing the Configuration Space

 After the driver has detected the device, it
usually needs to read from or write to the
three address spaces:
 Memory
 Port
 Configuration

 Accessing the configuration space is vital
to the driver because it is the only way it
can find out where the device is mapped
in memory and in the I/O space.

22

Configuration access

 int pci_read_config_byte (struct pci_dev *dev, int
where, u8 *ptr);

 int pci_read_config_word (struct pci_dev *dev, int
where, u16 *ptr);

 int pci_read_config_dword (struct pci_dev *dev, int
where, u32 *ptr);

 int pci_write_config_byte (struct pci_dev *dev, int
where, u8 val);

 int pci_write_config_word (struct pci_dev *dev, int
where, u16 val);

 int pci_write_config_dword (struct pci_dev *dev, int
where, u32 val);

23

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

24

Accessing the I/O and mem Space

 A PCI device implements up to six I/O
address regions.

 Each region consists of either
memory or I/O locations.

25

I/O and mem access method

 unsigned long pci_resource_start (struct pci_dev
*dev, int bar);
 The function returns the first address (memory address

or I/O port number) associated with one of the six PCI I/O
regions.

 unsigned long pci_resource_end (struct pci_dev
*dev, int bar);
 The function returns the last address that is part of the

I/O region number bar.
 unsigned long pci_resource_flags (struct pci_dev

*dev, int bar);
 This function returns the flags associated with this

resource.

26

Question?

