
Linux Device Driver
(The PCI Interface)

Amir Hossein Payberah
payberah@yahoo.com

2

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

3

Introduction

 The PCI architecture was designed
as a replacement for the ISA
standard, with three main goals:
To get better performance when

transferring data between the
computer and its peripherals.

To be as platform independent as
possible.

To simplify adding and removing
peripherals to the system.

4

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

5

PCI addressing

 Each PCI peripheral is identified by a
bus number, a device number, and a
function number.
 The PCI specification permits a system to

host up to 256 buses.
 Each bus hosts up to 32 devices.
 Each device can be a multifunction board

with a maximum of eight functions.
 Each function can thus be identified at

hardware level by a 16-bit address, or
key.

6

PCI addressing

 The 16-bit hardware addresses
associated with PCI peripherals,
are still visible occasionally:
 lspci
/proc/pci
/proc/bus/pci

7

PCI addressing

 When the hardware address is
displayed, it can either be shown
as a 16-bit value, as two values:
An 8-bit bus number
An 8-bit device and function number

 As three values
Bus
Device
Functions

8

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

9

Boot time

 When power is applied to a PCI device,
the hardware remains inactive.

 The device will respond only to
configuration transactions.

 At power on, the device has no memory
and no I/O ports mapped in the
computer’s address space.

 Every other device-specific feature,
such as interrupt reporting, is disabled
as well.

10

Boot time

 Every PCI motherboard is equipped with
PCI-aware firmware:
 BIOS
 NVRAM
 PROM

 At system boot, the firmware (or the Linux
kernel, if so configured) performs
configuration transactions with every PCI
peripheral in order to allocate a safe place
for any address region it offers.

11

Boot time

 PCI device list
/proc/bus/pci/devices

 The devices’ configuration
/proc/bus/pci/*/*

12

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

13

Configuration registers

 The layout of the configuration
space is device independent.

 PCI devices feature a 256-byte
address space.

 The first 64 bytes are
standardized, while the rest are
device dependent.

14

Configuration registers

15

Configuration registers
 vendorID

 This 16-bit register identifies a hardware manufacturer.
 For instance, every Intel device is marked with the same vendor

number, 0x8086.
 deviceID

 This is another 16-bit register, selected by the manufacturer.
 This ID is usually paired with the vendor ID to make a unique 32-

bit identifier for a hardware device.
 Class

 Every peripheral device belongs to a class.
 The class register is a 16-bit value whose top 8 bits identify the

‘‘base class’’ (or group).
 For example, ‘‘ethernet’’ and ‘‘token ring’’ are two classes

belonging to the ‘‘network’’ group,

16

PCI necessary fields

 #include <linux/config.h>
By including this header, the driver

gains access to the CONFIG_ macros.
 CONFIG_PCI

This macro is defined if the kernel
includes support for PCI calls.

17

PCI necessary fields

 #include <linux/pci.h>
 This header declares all the prototypes as well

as the symbolic names associated with PCI
registers and bits.

 int pci_present(void);
 The pci_present function allows one to check if

PCI functionality is available or not.

 struct pci_dev;
 It is at the core of every PCI operation in the

system.

18

PCI functions

 struct pci_dev *pci_find_device (unsigned int
vendor, unsigned int device, const struct pci_dev
*from);
 This function is used to scan the list of installed devices

looking for a device featuring a specific signature.
 struct pci_dev *pci_find_class (unsigned int class,

const struct pci_dev *from);
 This function is similar to the previous one, but it looks

for devices belonging to a specific class.
 int pci_enable_device (struct pci_dev *dev);

 This function actually enables the device.

19

Sample
#ifndef CONFIG_PCI
error "This driver needs PCI support to be available"
#endif

int jail_find_all_devices(void)
{

struct pci_dev *dev = NULL;
int found;
if (!pci_present())

return -ENODEV;
for (found=0; found < JAIL_MAX_DEV;)
{

dev = pci_find_device(JAIL_VENDOR, JAIL_ID, dev);
if (!dev)
 break;
found += jail_init_one(dev);

}
return (index == 0) ? -ENODEV : 0;

}

20

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

21

Accessing the Configuration Space

 After the driver has detected the device, it
usually needs to read from or write to the
three address spaces:
 Memory
 Port
 Configuration

 Accessing the configuration space is vital
to the driver because it is the only way it
can find out where the device is mapped
in memory and in the I/O space.

22

Configuration access

 int pci_read_config_byte (struct pci_dev *dev, int
where, u8 *ptr);

 int pci_read_config_word (struct pci_dev *dev, int
where, u16 *ptr);

 int pci_read_config_dword (struct pci_dev *dev, int
where, u32 *ptr);

 int pci_write_config_byte (struct pci_dev *dev, int
where, u8 val);

 int pci_write_config_word (struct pci_dev *dev, int
where, u16 val);

 int pci_write_config_dword (struct pci_dev *dev, int
where, u32 val);

23

Contents

 Introduction
 PCI addressing
 Boot time
 Configuration registers and initialization
 Accessing the configuration space
 Accessing the I/O and memory space

24

Accessing the I/O and mem Space

 A PCI device implements up to six I/O
address regions.

 Each region consists of either
memory or I/O locations.

25

I/O and mem access method

 unsigned long pci_resource_start (struct pci_dev
*dev, int bar);
 The function returns the first address (memory address

or I/O port number) associated with one of the six PCI I/O
regions.

 unsigned long pci_resource_end (struct pci_dev
*dev, int bar);
 The function returns the last address that is part of the

I/O region number bar.
 unsigned long pci_resource_flags (struct pci_dev

*dev, int bar);
 This function returns the flags associated with this

resource.

26

Question?

