Cloud Computing

Amir H. Payberah amir@sics.se

Amirkabir University of Technology (Tehran Polytechnic)

What is Cloud Computing?

Cloud Disclaimers

We've redefined Cloud Computing to include everything that we already do. I don't understand what we would do differently other than change the wording of some of our ads.

- Larry Ellison (Oracle CEO)

Cloud Disclaimers

It's stupidity. It's worse than stupidity: it's a marketing hype campaign. Somebody is saying this is inevitable - and whenever you hear somebody saying that, it's very likely to be a set of businesses campaigning to make it true.

- Richard Stallman

► Cloud Computing refers to both

- ► Cloud Computing refers to both
 - 1 the applications delivered as services over the Internet, and

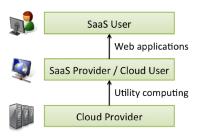
- Cloud Computing refers to both
 - 1 the applications delivered as services over the Internet, and
 - 2 the hardware and systems software in the datacenters that provide those services.

- Cloud Computing refers to both
 - 1 the applications delivered as services over the Internet, and
 - 2 the hardware and systems software in the datacenters that provide those services.
- ► The services themselves have long been referred to as Software as a Service (SaaS).

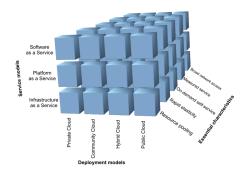
- Cloud Computing refers to both
 - 1 the applications delivered as services over the Internet, and
 - 2 the hardware and systems software in the datacenters that provide those services.
- ► The services themselves have long been referred to as Software as a Service (SaaS).
- ► The datacenter hardware and software is what we will call a Cloud.

► When a Cloud is made available in a pay-as-you-go manner to the public, we call it a Public Cloud.

- When a Cloud is made available in a pay-as-you-go manner to the public, we call it a Public Cloud.
- ► The service being sold is Utility Computing.
 - Amazon Web Services, Google App Engine, and Microsoft Azure


- When a Cloud is made available in a pay-as-you-go manner to the public, we call it a Public Cloud.
- ► The service being sold is Utility Computing.
 - Amazon Web Services, Google App Engine, and Microsoft Azure
- Private Cloud refers to internal datacenters of a business or other organization that are not made available to the public.

Cloud Computing is the sum of SaaS and Utility Computing, but does not normally include Private Clouds.


- ▶ Based on the NIST definition, the cloud model is composed of:
 - · Five characteristics
 - Three service models
 - Four deployment models

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

Cloud Characteristics

[http://cdn.katescomment.com/wordpress/wp-content/uploads/2010/02/CloudCube1.png]

Cloud Characteristics

- ► On-demand self-service
- ► Broad network access
- ► Resource pooling
- Measured service
- ► Rapid elasticity

Cloud Characteristics - On-demand Self-Service

- ► A consumer can unilaterally provision computing capabilities without human interaction with the service provider.
- Computing capabilities
 - Server time, network storage, number of servers, ...

Cloud Characteristics - Broad Network Access

- Capabilities are
 - Available over the network.
 - Accessed through standard mechanisms.
- Promote use by
 - Heterogeneous thin or thick client platforms, e.g., mobile phones, laptops, ...

Cloud Characteristics - Resource Pooling

- Provider's computing resources are pooled to serve multiple consumers.
- Computing resources
 - Storage, processing, memory, network bandwidth and virtual machines

Cloud Characteristics - Resource Pooling

- Provider's computing resources are pooled to serve multiple consumers.
- Computing resources
 - Storage, processing, memory, network bandwidth and virtual machines
- ► Location independence
 - No control over the exact location of the resources

Cloud Characteristics - Measured Service

► Control and optimize resource use automatically.

Cloud Characteristics - Measured Service

- Control and optimize resource use automatically.
- ▶ Metering capability of service/resource abstractions.
 - Storage, processing, bandwidth, active user accounts, ...

Cloud Characteristics - Measured Service

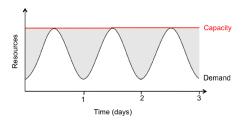
- Control and optimize resource use automatically.
- ► Metering capability of service/resource abstractions.
 - Storage, processing, bandwidth, active user accounts, ...
- Resource usage can be monitored, controlled, and reported providing transparency for both the provider and consumer.

► Capabilities can be rapidly and elastically provisioned, in some cases automatically.

- Capabilities can be rapidly and elastically provisioned, in some cases automatically.
- ► To quickly scale out and rapidly released to quickly scale in.

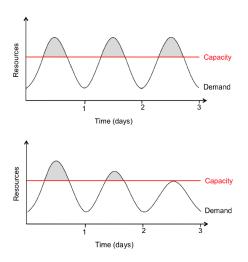
- Capabilities can be rapidly and elastically provisioned, in some cases automatically.
- ► To quickly scale out and rapidly released to quickly scale in.
- ► To the consumer, the capabilities available for provisioning often appear to be unlimited.

- Capabilities can be rapidly and elastically provisioned, in some cases automatically.
- ► To quickly scale out and rapidly released to quickly scale in.
- To the consumer, the capabilities available for provisioning often appear to be unlimited.
- ► Capabilities can be purchased in any quantity at any time.

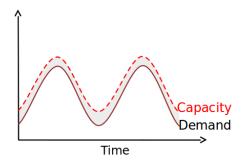

More About Elasticity

Elasticity

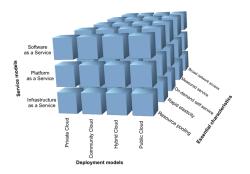
Cloud Computing's ability to add or remove resources at a fine grain and with a lead time of minutes rather than weeks allows matching resources to workload much more closely.


[Armbrust et al., Above the Clouds: A Berkeley View of Cloud Computing, Tech. Doc, 2009]

Over Provisioning


[Armbrust et al., Above the Clouds: A Berkeley View of Cloud Computing, Tech. Doc, 2009]

Under Provisioning



[Armbrust et al., Above the Clouds: A Berkeley View of Cloud Computing, Tech. Doc, 2009]

Dynamic Provisioning

Cloud Service Models

[http://cdn.katescomment.com/wordpress/wp-content/uploads/2010/02/CloudCube1.png]

Service Models

- ► Software as a Service (SaaS)
- ► Platform as a Service (PaaS)
- ► Infrastructure as a Service (laaS)

► Assume, you just moved to a city and you are looking for a place to live.

► What is your choice?

- ► What is your choice?
 - Built a new house?

- ► What is your choice?
 - Built a new house?
 - Buy an empty house?

- ► What is your choice?
 - Built a new house?
 - Buy an empty house?
 - Live in a hotel?

► Let's built a new house!

- ► Let's built a new house!
- You can fully control everything your like your new house to have.
- ▶ But that is a hard work.

► What if you buy an empty house?

- ► What if you buy an empty house?
- ➤ You can customize some part of your house.
- ► But never change the original architecture.

► How about live in a hotel?

- ► How about live in a hotel?
- Live in a hotel will be a good idea if the only thing you care is enjoy your life.
- ► There is nothing you can do with the house except living in it.

Let's translate it to Cloud Computing

Service Models

- ► Infrastructure as a Service (laaS): similar to build a new house.
- ▶ Platform as a Service (PaaS): similar to buy an empty house.
- ► Software as a Service (SaaS): similar to live in a hotel.

- ► Vendor provides computing resources.
 - Processing, storage, network, ...

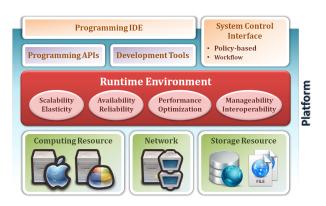
- Vendor provides computing resources.
 - Processing, storage, network, ...
- Consumer is provided customized virtual machines.

- Vendor provides computing resources.
 - Processing, storage, network, ...
- Consumer is provided customized virtual machines.
- Consumer has control over:
 - OS, memory
 - Storage
 - Servers and deployment configurations

- ► Vendor provides computing resources.
 - Processing, storage, network, ...
- Consumer is provided customized virtual machines.
- Consumer has control over:
 - OS, memory
 - Storage
 - Servers and deployment configurations
- ► Example: Amazon Web Services (AWS), Rackspace, ...

► System architecture Resource Management Interface **System Monitoring Interface** Infrastructure Virtualization Layer **Computing System** Network System Storage System

► Advantages:


- Infrastructure scalability
- Native integrated management: performance, resource consumption/utilization, load
- Economical cost: hardware, IT support

- ► Vendor provides development environment.
 - Tools and technology selected by vendor.
 - · Control over data life-cycle.

- ► Vendor provides development environment.
 - Tools and technology selected by vendor.
 - Control over data life-cycle.
- ► Example: Google app engine, Microsoft Azure

PaaS - (2/3)

► System architecture

PaaS - (3/3)

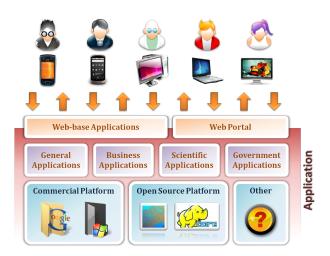
Advantages:

- Rapid development and deployment
- Small startup cost

▶ Disadvantages:

 Choice of development technology is limited to vendor provided/supported tools and services

SaaS - (1/4)


▶ Vendor provides applications accessed over the network.

SaaS - (1/4)

- ► Vendor provides applications accessed over the network.
- ► Example: Google Docs, Salesforce.com

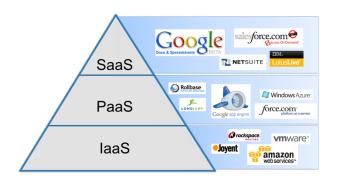
SaaS - (2/4)

► System architecture

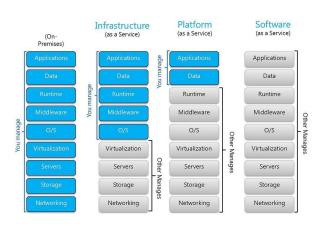
SaaS - (3/4)

- ▶ Web Service
- ▶ Web 2.0 is the trend of using the full potential of the web.
- ► Viewing the Internet as a computing platform.
- Running interactive applications through a web browser.

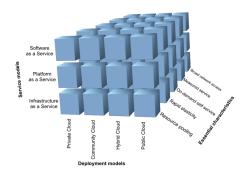
SaaS - (4/4)


Advantages:

- Easy to use
- Scalability startup
- Lower cost
- Upgrades

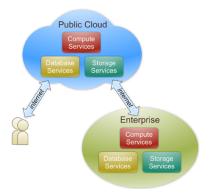

► Disadvantages:

- Dependency on network, cloud service provider
- Performance: limited client bandwidth
- User privacy


laaS - PaaS - SaaS

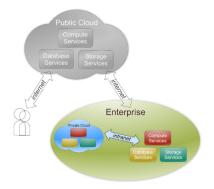
laaS - PaaS - SaaS

Cloud Deployment Models

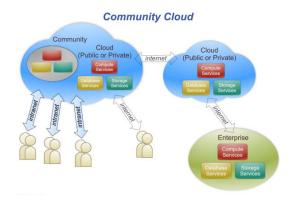

[http://cdn.katescomment.com/wordpress/wp-content/uploads/2010/02/CloudCube1.png]

Deployment Models

- ▶ Public cloud
- ► Private cloud
- ► Community cloud
- ► Hybrid cloud


Public Cloud

- ► Infrastructure is made available to the general public.
- Owned by an organization selling cloud services.


Private Cloud

- ▶ Infrastructure is operated solely for an organization.
- ▶ Managed by the organization or by a third party.

Community Cloud

- Supports a specific community.
- ▶ Infrastructure is shared by several organizations.

Hybrid Cloud

- Infrastructure is a composition of two or more clouds deployment models.
- Enables data and application portability.

Public Cloud Compute Services Services

Cloud Providers

Main Players

Cloud Platform Services

► Computing

Storage

Cloud Platform Services

- Computing
 - Platform as a Service (PaaS)
 - Infrastructure as a Service (laaS)
- Storage
 - Relational storage: with support SQL
 - NoSQL databases: massively scalable, but not support SQL
 - Blobs: storage for Binary Large OBjects in the cloud, e.g., videos, backups, ...

Amazon Web Services (AWS)

	Computing		Storage		
Provider	laaS	PaaS	Relational	NoSQL	Blobs
AWS	Elastic Compute Cloud (EC2)	Elastic Beanstalk	Relational Database Service (RDS)	SimpleDB DynamoDB	Simple Storage Service (S3)

Google

	Computing		Storage			
Provider	laaS	PaaS	Relational	NoSQL	Blobs	
AWS	Elastic Compute Cloud (EC2)	Elastic Beanstalk	Relational Database Service (RDS)	SimpleDB DynamoDB	Simple Storage Service (S3)	
Google		App Engine		Datastore	Blobstore	

Microsoft

	Computing		Storage			
Provider	laaS	PaaS	Relational	NoSQL	Blobs	
AWS	Elastic Compute Cloud (EC2)	Elastic Beanstalk	Relational Database Service (RDS)	SimpleDB DynamoDB	Simple Storage Service (S3)	
Google		App Engine		Datastore	Blobstore	
Microsoft		Windows Azure	Windows Azure Tables	SQL Azure	Windows Azure Blobs	

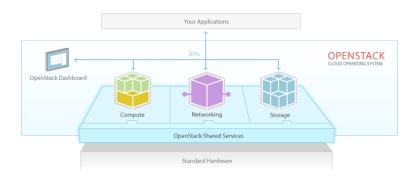
Cloud Platforms

Cloud Platforms

- ► Tools to deploy a cloud infrastructure plan.
- ▶ These tools provide different services, i.e., laaS, PaaS, and SaaS.

► Open source cloud computing platform.

- Open source cloud computing platform.
- ► It controls large pools of compute, storage, and networking resources throughout a datacenter.


- ► Open source cloud computing platform.
- ► It controls large pools of compute, storage, and networking resources throughout a datacenter.
- ► All managed through a dashboard through a web interface.

- Open source cloud computing platform.
- ► It controls large pools of compute, storage, and networking resources throughout a datacenter.
- ► All managed through a dashboard through a web interface.
- ► Launched by NASA and Rackspace in 2010.

OpenStack Architecture

[http://www.openstack.org/software/]

OpenStack Compute - Nova

► OpenStack Compute: cloud computing controller, called Nova.

OpenStack Compute - Nova

- ► OpenStack Compute: cloud computing controller, called Nova.
- ▶ Provision and manage large networks of virtual machines.

OpenStack Compute - Nova

- ► OpenStack Compute: cloud computing controller, called Nova.
- ▶ Provision and manage large networks of virtual machines.
- ► Compute resources are accessible via APIs for developers, web interfaces for administrators and users.

OpenStack Storage - Swift/Cinder

► OpenStack Storage: object and block storage for use with servers and applications, called Swift and Cinder.

OpenStack Storage - Swift/Cinder

- OpenStack Storage: object and block storage for use with servers and applications, called Swift and Cinder.
- Swift: distributed storage system for static data, e.g., VM images, photo storage, email storage.
 - · Redundancy, backup, archive and failover management

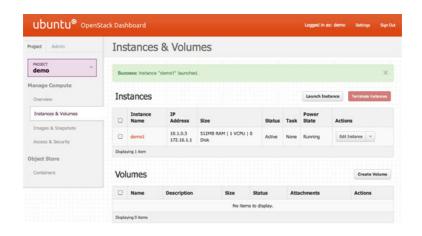
OpenStack Storage - Swift/Cinder

- OpenStack Storage: object and block storage for use with servers and applications, called Swift and Cinder.
- Swift: distributed storage system for static data, e.g., VM images, photo storage, email storage.
 - · Redundancy, backup, archive and failover management
- ► Cinder: block storage, e.g., databases, and file systems

OpenStack Networking - Neutron

- ► OpenStack Networking: network and IP management, called Neutron.
 - · Provides flexible networking models.
 - Manages IP addresses, allowing for dedicated static IPs or DHCP.
 - Software Define Network (SDN)
 - Different network services, e.g., intrusion detection systems, load balancing, firewalls and virtual private networks.

OpenStack Administration - Horizon (1/3)

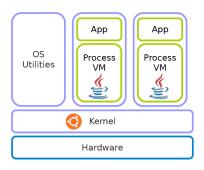

- ► OpenStack Administration: administration interface (dashboard), called Horizon.
 - · Automate complex deployments
 - · Control provisioning

OpenStack Administration - Horizon (2/3)

OpenStack Administration - Horizon (3/3)

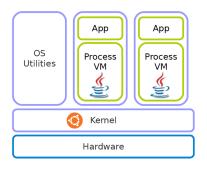
► Technique for hiding the physical characterizes of computing resources from the way other systems, applications or end users interact with them.

- ► Technique for hiding the physical characterizes of computing resources from the way other systems, applications or end users interact with them.
- ► Offer a different interface.

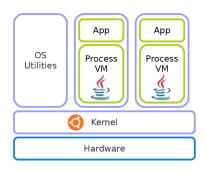

- ► Technique for hiding the physical characterizes of computing resources from the way other systems, applications or end users interact with them.
- Offer a different interface.
- ► Virtualized interface is not necessarily simpler.

Different Types of Virtualization

- ► Process-level virtualization
- ► OS-level virtualization
- ► System-level virtualization


Process-Level Virtualization (1/2)

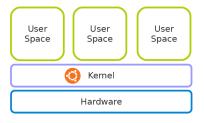
► Usually implemented on top of an OS.


Process-Level Virtualization (1/2)

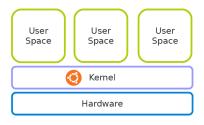
- Usually implemented on top of an OS.
- ▶ Application has to be written specifically for the VM.

Process-Level Virtualization (1/2)

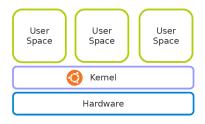
- Usually implemented on top of an OS.
- ▶ Application has to be written specifically for the VM.
- ► The virtual machine runs one application (one process).



Process-Level Virtualization (2/2)


OS-Level Virtualization (1/2)

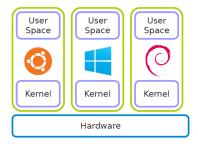
▶ The virtual machine runs a set of userland processes.

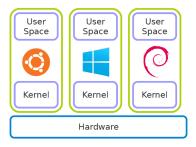

OS-Level Virtualization (1/2)

- ▶ The virtual machine runs a set of userland processes.
- ▶ Userland domains are separated.

OS-Level Virtualization (1/2)

- ▶ The virtual machine runs a set of userland processes.
- Userland domains are separated.
- Kernel is the same for all userland domains.


OS-Level Virtualization (2/2)


System-Level Virtualization (1/3)

- ► Emulates a computer similar to a real physical one.
 - With CPU(s), memory, disk(s), network interface(s), etc.

System-Level Virtualization (1/3)

- ► Emulates a computer similar to a real physical one.
 - With CPU(s), memory, disk(s), network interface(s), etc.
- ► The virtual machine runs a full OS.

System-Level Virtualization (2/3)

► Full virtualization vs. Paravirtualization.

System-Level Virtualization (2/3)

- ► Full virtualization vs. Paravirtualization.
- ► Full virtualization: the guest OS is not aware it is being virtualized and requires no modification.

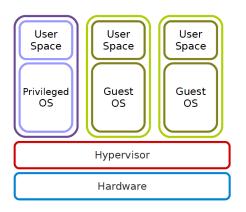
System-Level Virtualization (2/3)

- ► Full virtualization vs. Paravirtualization.
- ► Full virtualization: the guest OS is not aware it is being virtualized and requires no modification.
- Paravirtualization: the guest OS should be modified in order to be operated in the virtual environment.

System-Level Virtualization (3/3)

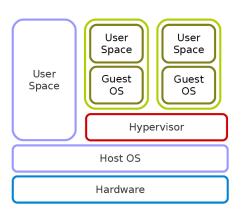
Hypervisor

▶ In the system-level virtualization, virtual machines are managed by another software layer.


Hypervisor

- ► In the system-level virtualization, virtual machines are managed by another software layer.
- ▶ It is called hypervisor or Virtual Machine Manager (VMM).

Hypervisor


- ▶ In the system-level virtualization, virtual machines are managed by another software layer.
- ▶ It is called hypervisor or Virtual Machine Manager (VMM).
- ► Two types of hypervisors:
 - Type 1: runs directly on hardware (Native/Bare-Metal)
 - Type 2: hosted on top of another operating system (Hosted)

Bare Metal Hypervisor

▶ Xen, ...

Hosted Hypervisor

▶ VMWare, KVM, Virtualbox, ...

Summary

References:

- Michael Armbrust, Above the Clouds: A Berkeley View of Cloud Computing, Technical Document, 2009
- Peter Mell et al., The NIST Definition of Cloud Computing, National Institute of Standards and Technology, 2011
- VMWare, Understanding Full Virtualization, Paravirtualization, and Hardware Assist, 2007
- ▶ Daniel Firestone, A Comparison of Public Clouds: Amazon Web Services, Windows Azure and Google App Engine, 2011
- ▶ http://docs.openstack.org

Questions?