
Epidemic Algorithms

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 1 / 60

What is the Problem?

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 2 / 60

What is the Problem?

I Application-level broadcast/multicast

• Database replication
• Video streaming
• RSS feeds
• ...

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 3 / 60

What is the Problem?

I Application-level broadcast/multicast
• Database replication
• Video streaming
• RSS feeds
• ...

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 3 / 60

Possible Solutions

I Flooding
• Robust, but inefficient (O(n2))

I Tree
• Efficient (O(n)), but fragile

I Gossip
• Efficient (O(nlogn)) and robust, but has relative high latency

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 4 / 60

Possible Solutions

I Flooding
• Robust, but inefficient (O(n2))

I Tree
• Efficient (O(n)), but fragile

I Gossip
• Efficient (O(nlogn)) and robust, but has relative high latency

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 4 / 60

Possible Solutions

I Flooding
• Robust, but inefficient (O(n2))

I Tree
• Efficient (O(n)), but fragile

I Gossip
• Efficient (O(nlogn)) and robust, but has relative high latency

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 4 / 60

Possible Solutions

I Flooding
• Robust, but inefficient (O(n2))

I Tree
• Efficient (O(n)), but fragile

I Gossip
• Efficient (O(nlogn)) and robust, but has relative high latency

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 4 / 60

Epidemic/Gossip Algorithms

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 5 / 60

Introduction

I Epidemiology studies the spread of a disease or infection in terms
of populations of infected/uninfected individuals and their rates of
change.

I Nodes infect each other trough messages.

I Total number of messages is less than O(n2).

I No node is overloaded.

I But
• No deterministic guarantee on reliability.
• Only probabilistic ones.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 6 / 60

Introduction

I Epidemiology studies the spread of a disease or infection in terms
of populations of infected/uninfected individuals and their rates of
change.

I Nodes infect each other trough messages.

I Total number of messages is less than O(n2).

I No node is overloaded.

I But
• No deterministic guarantee on reliability.
• Only probabilistic ones.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 6 / 60

Introduction

I Epidemiology studies the spread of a disease or infection in terms
of populations of infected/uninfected individuals and their rates of
change.

I Nodes infect each other trough messages.

I Total number of messages is less than O(n2).

I No node is overloaded.

I But
• No deterministic guarantee on reliability.
• Only probabilistic ones.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 6 / 60

History of the Epidemic/Gossip Paradigm

I First defined by Alan Demers et al. (1987)

I 90s: gossip applied to the information dissemination problem

I 00s: gossip beyond dissemination

I 2006: Workshop on the future of gossip (Leiden, the Netherlands)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 7 / 60

History of the Epidemic/Gossip Paradigm (1987)

I Database replicated at thousands of nodes.

I Heterogeneous and unreliable network.

I Independent updates to single elements of the DB are injected at
multiple nodes.

I Updates must propagate to all nodes or be supplanted by later up-
dates of the same element.

I Replicas become consistent after no more new updates.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 8 / 60

History of the Epidemic/Gossip Paradigm (1987)

I Database replicated at thousands of nodes.

I Heterogeneous and unreliable network.

I Independent updates to single elements of the DB are injected at
multiple nodes.

I Updates must propagate to all nodes or be supplanted by later up-
dates of the same element.

I Replicas become consistent after no more new updates.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 8 / 60

History of the Epidemic/Gossip Paradigm (1987)

I Database replicated at thousands of nodes.

I Heterogeneous and unreliable network.

I Independent updates to single elements of the DB are injected at
multiple nodes.

I Updates must propagate to all nodes or be supplanted by later up-
dates of the same element.

I Replicas become consistent after no more new updates.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 8 / 60

History of the Epidemic/Gossip Paradigm (1987)

I Database replicated at thousands of nodes.

I Heterogeneous and unreliable network.

I Independent updates to single elements of the DB are injected at
multiple nodes.

I Updates must propagate to all nodes or be supplanted by later up-
dates of the same element.

I Replicas become consistent after no more new updates.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 8 / 60

History of the Epidemic/Gossip Paradigm (1987)

I Database replicated at thousands of nodes.

I Heterogeneous and unreliable network.

I Independent updates to single elements of the DB are injected at
multiple nodes.

I Updates must propagate to all nodes or be supplanted by later up-
dates of the same element.

I Replicas become consistent after no more new updates.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 8 / 60

History of the Epidemic/Gossip Paradigm (Today)

I Amazon uses a gossip protocol to quickly spread information
throughout the S3 system.

I Amazon’s Dynamo uses a gossip-based failure detection service.

I The basic information exchange in BitTorrent is based on gossip.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 9 / 60

SIR Model (1/2)

I Kermack and McKendrick, 1927

I An individual p can be:
• Susceptible: if p is not yet infected by the disease.
• Infective: if p is infected and capable to spread the disease.
• Removed: if p has been infected and has recovered from the disease.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 10 / 60

SIR Model (2/2)

I Initially, a single individual is infective.

I Individuals get in touch with each other, spreading the disease.

I Susceptible individuals are turned into infective ones.

I Eventually, infective individuals will become removed.

[http://en.wikipedia.org/wiki/File:Sirsys-p9.png]

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 11 / 60

From Epidemiology to Distributed Systems

I The idea
• Disease spread quickly and robustly.
• Our goal is to spread an update as fast and as reliable as possible.
• Can we apply these ideas to distributed systems?

I SIR Model for database replication:
• Susceptible: if p has not yet received an update.
• Infective: if p has not yet received an update.
• Removed: if p has the update but is no longer willing to share it.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 12 / 60

From Epidemiology to Distributed Systems

I The idea
• Disease spread quickly and robustly.
• Our goal is to spread an update as fast and as reliable as possible.
• Can we apply these ideas to distributed systems?

I SIR Model for database replication:
• Susceptible: if p has not yet received an update.
• Infective: if p has not yet received an update.
• Removed: if p has the update but is no longer willing to share it.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 12 / 60

Two Styles of Epidemic Protocols

I Anti-entropy

I Rumor mongering

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 13 / 60

Anti-Entropy

I Each node p periodically contacts a random partner q selected from
the current population.

I Then, p and q engage in an information exchange protocol, where
updates known to p but not to q are transferred from p to q (push),
or vice-versa (pull), or in both direction (push-pull).

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 14 / 60

Anti-Entropy

I Each node p periodically contacts a random partner q selected from
the current population.

I Then, p and q engage in an information exchange protocol, where
updates known to p but not to q are transferred from p to q (push),
or vice-versa (pull), or in both direction (push-pull).

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 14 / 60

Rumor Mongering

I Nodes are initially ignorant.

I When an update is learned by a node, it becomes a hot rumor.

I While a node holds a hot rumor, it periodically chooses a random
node from the current population and sends (pushes) the rumor to
it.

I Eventually, a node will lose interest in spreading the rumor.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 15 / 60

Rumor Mongering

I Nodes are initially ignorant.

I When an update is learned by a node, it becomes a hot rumor.

I While a node holds a hot rumor, it periodically chooses a random
node from the current population and sends (pushes) the rumor to
it.

I Eventually, a node will lose interest in spreading the rumor.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 15 / 60

Rumor Mongering

I Nodes are initially ignorant.

I When an update is learned by a node, it becomes a hot rumor.

I While a node holds a hot rumor, it periodically chooses a random
node from the current population and sends (pushes) the rumor to
it.

I Eventually, a node will lose interest in spreading the rumor.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 15 / 60

Rumor Mongering

I Nodes are initially ignorant.

I When an update is learned by a node, it becomes a hot rumor.

I While a node holds a hot rumor, it periodically chooses a random
node from the current population and sends (pushes) the rumor to
it.

I Eventually, a node will lose interest in spreading the rumor.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 15 / 60

Epidemic Algorithms Applications

I Aggregation

I Peer sampling (Cyclon)

I Topology management (Tman)

I ...

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 16 / 60

Aggregation

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 17 / 60

Aggregation

I Aggregation provides a summary of some global system property.

I It allows local access to global information.

I Examples of aggregation functions:
• The average load of nodes in a cluster.
• The sum of free space in a distributed storage.
• The total number of nodes in a P2P system.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 18 / 60

Aggregation

I Aggregation provides a summary of some global system property.

I It allows local access to global information.

I Examples of aggregation functions:
• The average load of nodes in a cluster.
• The sum of free space in a distributed storage.
• The total number of nodes in a P2P system.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 18 / 60

Aggregation

I Aggregation provides a summary of some global system property.

I It allows local access to global information.

I Examples of aggregation functions:
• The average load of nodes in a cluster.
• The sum of free space in a distributed storage.
• The total number of nodes in a P2P system.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 18 / 60

Aggregation Generic Framework (1/3)

I Executed by all processes:

repeat evert t time units:

q = selectRandomPeer() // Select a random neighbor

send <p, pullRequest, Sp> to q

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 19 / 60

Aggregation Generic Framework (2/3)

I Executed by all processes:

upon receive<p, pullRequest, Sp> do:

send <q, pullResponse, Sq> to p

Sq = update(Sp, Sq)

I update function:
• avg: return (Sp + Sq) / 2
• max: return max(Sp, Sq)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 20 / 60

Aggregation Generic Framework (2/3)

I Executed by all processes:

upon receive<p, pullRequest, Sp> do:

send <q, pullResponse, Sq> to p

Sq = update(Sp, Sq)

I update function:
• avg: return (Sp + Sq) / 2
• max: return max(Sp, Sq)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 20 / 60

Aggregation Generic Framework (3/3)

I Executed by all processes:

upon receive<q, pullResponse, Sq> do:

Sp = update(Sp, Sq)

I update function:
• avg: return (Sp + Sq) / 2
• max: return max(Sp, Sq)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 21 / 60

Aggregation Generic Framework (3/3)

I Executed by all processes:

upon receive<q, pullResponse, Sq> do:

Sp = update(Sp, Sq)

I update function:
• avg: return (Sp + Sq) / 2
• max: return max(Sp, Sq)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 21 / 60

Aggregation Example (1/5)

I Taking the average of the numbers in the nodes.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 22 / 60

Aggregation Example (2/5)

I Taking the average of the numbers in the nodes.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 23 / 60

Aggregation Example (3/5)

I Taking the average of the numbers in the nodes.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 24 / 60

Aggregation Example (4/5)

I Taking the average of the numbers in the nodes.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 25 / 60

Aggregation Example (5/5)

I Taking the average of the numbers in the nodes.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 26 / 60

Network Size Estimation

I Any ideas?

I All nodes set their states to 0.

I The initiator sets its state to 1 and starts gossiping for the average.

I Eventually all nodes converge to the avg = 1
N .

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 27 / 60

Network Size Estimation

I Any ideas?

I All nodes set their states to 0.

I The initiator sets its state to 1 and starts gossiping for the average.

I Eventually all nodes converge to the avg = 1
N .

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 27 / 60

Network Size Estimation

I Any ideas?

I All nodes set their states to 0.

I The initiator sets its state to 1 and starts gossiping for the average.

I Eventually all nodes converge to the avg = 1
N .

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 27 / 60

Network Size Estimation

I Any ideas?

I All nodes set their states to 0.

I The initiator sets its state to 1 and starts gossiping for the average.

I Eventually all nodes converge to the avg = 1
N .

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 27 / 60

Peer Sampling Service

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 28 / 60

Epidemic Protocols

I In a epidemic (gossip) protocol, each node in the system periodically
exchanges information with a subset of nodes.

I The choice of this subset is crucial.

I Ideally, the nodes should be selected following a uniform random
sample of all nodes currently in the system.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 29 / 60

Epidemic Protocols

I In a epidemic (gossip) protocol, each node in the system periodically
exchanges information with a subset of nodes.

I The choice of this subset is crucial.

I Ideally, the nodes should be selected following a uniform random
sample of all nodes currently in the system.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 29 / 60

Epidemic Protocols

I In a epidemic (gossip) protocol, each node in the system periodically
exchanges information with a subset of nodes.

I The choice of this subset is crucial.

I Ideally, the nodes should be selected following a uniform random
sample of all nodes currently in the system.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 29 / 60

Achieving a Uniform Random Sample

I Each node may be assumed to know every other node in the system.

I Providing each node with a complete membership table is unrealistic
in a large scale dynamic system.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 30 / 60

Achieving a Uniform Random Sample

I Each node may be assumed to know every other node in the system.

I Providing each node with a complete membership table is unrealistic
in a large scale dynamic system.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 30 / 60

Peer Sampling

I An alternative solution.

I Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

I Periodically refreshes the table using a gossiping procedure.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 31 / 60

Peer Sampling

I An alternative solution.

I Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

I Periodically refreshes the table using a gossiping procedure.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 31 / 60

Peer Sampling

I An alternative solution.

I Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

I Periodically refreshes the table using a gossiping procedure.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 31 / 60

Peer Sampling Generic Framework (1/4)

I Executed by all processes:

repeat evert t time units:

q = selectPeer()

buf = ((myAddress, 0))

view.permute()

move oldest H items to the end of view

buf.append(view.head(c/2-1))

send <p, psRequest, buf> to q

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 32 / 60

Peer Sampling Generic Framework (2/4)

I Executed by all processes:

upon receive<p, psRequest, bufp> do:

buf = ((myAddress, 0))

view.permute()

move oldest H items to the end of view

buf.append(view.head(c/2-1))

send <q, psResponse, buf> to p

view.select(c, H, S, bufp)

view.increaseAge()

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 33 / 60

Peer Sampling Generic Framework (3/4)

I Executed by all processes:

upon receive<q, psResponse, bufq> do:

view.select(c, H, S, bufq)

view.increaseAge()

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 34 / 60

Peer Sampling Generic Framework (4/4)

method view.select(c, H, S, bufp)

view.append(bufp)

view.removeDuplicates()

view.removeOldItems(min(H, view.size-c))

view.removeHead(min(S, view.size-c))

view.removeAtRandom(view.size-c)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 35 / 60

Gossip-based Peer Sampling (1/7)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 36 / 60

Gossip-based Peer Sampling (2/7)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 37 / 60

Gossip-based Peer Sampling (3/7)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 38 / 60

Gossip-based Peer Sampling (4/7)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 39 / 60

Gossip-based Peer Sampling (5/7)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 40 / 60

Gossip-based Peer Sampling (6/7)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 41 / 60

Gossip-based Peer Sampling (7/7)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 42 / 60

Peer Sampling Design Space

I Peer Selection
• Rand: uniform random
• Tail: highest age

I View Propagation
• Push
• Push-Pull

I View Selection
• Blind: H = 0, S = 0
• Healer: H = c/2
• Swapper: H = 0, S = c/2

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 43 / 60

Cyclon as a Peer Sampling Service

I Peer Selection
• Rand: uniform random
• Tail: highest age

I View Propagation
• Push
• Push-Pull

I View Selection
• Blind: H = 0, S = 0
• Healer: H = c/2
• Swapper: H = 0, S = c/2

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 44 / 60

Cyclon (1/5)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 45 / 60

Cyclon (2/5)

I Pick the oldest node from my view and remove it from the view
(tail)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 46 / 60

Cyclon (3/5)

I Exchange some of the nodes in neighbours (push-pull)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 47 / 60

Cyclon (4/5)

I Exchange some of the nodes in neighbours (push-pull)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 48 / 60

Cyclon (5/5)

I Update the views (swapper)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 49 / 60

Topology Management

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 50 / 60

T-Man

I T-man is a protocol to construct and maintain any topology with
the help of a ranking function.

I The ranking function orders any set of nodes according to their
desirability to be neighbors of a given node.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 51 / 60

T-Man

I T-man is a protocol to construct and maintain any topology with
the help of a ranking function.

I The ranking function orders any set of nodes according to their
desirability to be neighbors of a given node.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 51 / 60

T-Man Generic Framework (1/3)

I Executed by all processes.

repeat evert t time units:

q = selectPeer()

myDescriptor = (myAddress, myProfile)

buf = merge(view, myDescriptor)

buf = merge(buf, view.rnd)

send <p, tmanRequest, buf> to q

I selectPeer
• Sort all nodes in the view based on ranking.
• Pick randomly one node from the first half.

I view.rnd
• Provides a random sample of the nodes from the entire network,

e.g., using cyclon.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 52 / 60

T-Man Generic Framework (1/3)

I Executed by all processes.

repeat evert t time units:

q = selectPeer()

myDescriptor = (myAddress, myProfile)

buf = merge(view, myDescriptor)

buf = merge(buf, view.rnd)

send <p, tmanRequest, buf> to q

I selectPeer
• Sort all nodes in the view based on ranking.
• Pick randomly one node from the first half.

I view.rnd
• Provides a random sample of the nodes from the entire network,

e.g., using cyclon.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 52 / 60

T-Man Generic Framework (1/3)

I Executed by all processes.

repeat evert t time units:

q = selectPeer()

myDescriptor = (myAddress, myProfile)

buf = merge(view, myDescriptor)

buf = merge(buf, view.rnd)

send <p, tmanRequest, buf> to q

I selectPeer
• Sort all nodes in the view based on ranking.
• Pick randomly one node from the first half.

I view.rnd
• Provides a random sample of the nodes from the entire network,

e.g., using cyclon.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 52 / 60

T-Man Generic Framework (2/3)

I Executed by all processes.

upon receive<p, psRequest, bufp> do:

myDescriptor = (myAddress, myProfile)

buf = merge(view, myDescriptor)

buf = merge(buf, rnd.view)

send <q, tmanResponse, buf> to p

buf = merge(bufp, view)

view = selectView(buf)

I selectView
• Sort all nodes in buffer (about double size of the view).
• Pick out c highest ranked nodes.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 53 / 60

T-Man Generic Framework (2/3)

I Executed by all processes.

upon receive<p, psRequest, bufp> do:

myDescriptor = (myAddress, myProfile)

buf = merge(view, myDescriptor)

buf = merge(buf, rnd.view)

send <q, tmanResponse, buf> to p

buf = merge(bufp, view)

view = selectView(buf)

I selectView
• Sort all nodes in buffer (about double size of the view).
• Pick out c highest ranked nodes.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 53 / 60

T-Man Generic Framework (3/3)

I Executed by all processes.

upon receive<q, tmanResponse, bufq> do:

buf = merge(bufq, view)

view = selectView(buf)

I selectView
• Sort all nodes in buffer (about double size of the view).
• Pick out c highest ranked nodes.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 54 / 60

T-Man Generic Framework (3/3)

I Executed by all processes.

upon receive<q, tmanResponse, bufq> do:

buf = merge(bufq, view)

view = selectView(buf)

I selectView
• Sort all nodes in buffer (about double size of the view).
• Pick out c highest ranked nodes.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 54 / 60

Ranking Function

I Sample ranking functions:
• Line: d(a, b) = |a− b|
• Ring: d(a, b) = min(N − |a− b|, |a− b|)

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 55 / 60

Illustration of T-Man

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 56 / 60

Summary

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 57 / 60

Summary

I Epidemic/Gossip algorithms: anti-entropy and rumor mongering

I Aggregation

I Peer sampling service: cyclon
• Peer selection
• View propagation
• View selection

I Topology management: T-man

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 58 / 60

References:

I M. Jelasity, and A. Montresor, Epidemic-style proactive aggregation
in large overlay networks, ICDCS, 2004.

I M. Jelasity, and O. Babaoglu, T-Man: Gossip-based overlay topol-
ogy management, Engineering Self-Organising Systems, 2006.

I M. Jelasity et al., Gossip-based peer sampling, TOCS, 2007.

I S. Voulgaris, D. Gavidia, and M. Van Steen, Cyclon: Inexpensive
membership management for unstructured P2P overlays, Journal of
Network and Systems Management, 2005.

I A. Demers et al., Epidemic algorithms for replicated database main-
tenance, PODC, 1987.

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 59 / 60

Questions?

Acknowledgements

Some slides were derived from Alberto Montresor (Trento University).

Amir H. Payberah (Tehran Polytechnic) Epidemic Algorithms 1393/7/7 60 / 60

