
MapReduce
Simplified Data Processing on Large Clusters

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 1 / 50

What do we do when there is too much data to
process?

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 2 / 50

Scale Up vs. Scale Out (1/2)

I Scale up or scale vertically: adding resources to a single node in a
system.

I Scale out or scale horizontally: adding more nodes to a system.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 3 / 50

Scale Up vs. Scale Out (2/2)

I Scale up: more expensive than scaling out.

I Scale out: more challenging for fault tolerance and software devel-
opment.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 4 / 50

Taxonomy of Parallel Architectures

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 5 / 50

Taxonomy of Parallel Architectures

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 5 / 50

MapReduce

I A shared nothing architecture for processing large data sets with a
parallel/distributed algorithm on clusters of commodity hardware.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 6 / 50

Challenges

I How to distribute computation?

I How can we make it easy to write distributed programs?

I Machines failure.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 7 / 50

Idea

I Issue:
• Copying data over a network takes time.

I Idea:
• Bring computation close to the data.
• Store files multiple times for reliability.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 8 / 50

Idea

I Issue:
• Copying data over a network takes time.

I Idea:
• Bring computation close to the data.
• Store files multiple times for reliability.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 8 / 50

Simplicity

I Don’t worry about parallelization, fault tolerance, data distribution,
and load balancing (MapReduce takes care of these).

I Hide system-level details from programmers.

Simplicity!

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 9 / 50

MapReduce Definition

I A programming model: to batch process large data sets (inspired
by functional programming).

I An execution framework: to run parallel algorithms on clusters of
commodity hardware.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 10 / 50

MapReduce Definition

I A programming model: to batch process large data sets (inspired
by functional programming).

I An execution framework: to run parallel algorithms on clusters of
commodity hardware.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 10 / 50

Programming Model

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 11 / 50

Warm-up Task (1/2)

I We have a huge text document.

I Count the number of times each distinct word appears in the file

I Application: analyze web server logs to find popular URLs.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 12 / 50

Warm-up Task (2/2)

I File too large for memory, but all 〈word, count〉 pairs fit in memory.

I words(doc.txt) | sort | uniq -c
• where words takes a file and outputs the words in it, one per a line

I It captures the essence of MapReduce: great thing is that it is
naturally parallelizable.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 13 / 50

Warm-up Task (2/2)

I File too large for memory, but all 〈word, count〉 pairs fit in memory.

I words(doc.txt) | sort | uniq -c
• where words takes a file and outputs the words in it, one per a line

I It captures the essence of MapReduce: great thing is that it is
naturally parallelizable.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 13 / 50

Warm-up Task (2/2)

I File too large for memory, but all 〈word, count〉 pairs fit in memory.

I words(doc.txt) | sort | uniq -c
• where words takes a file and outputs the words in it, one per a line

I It captures the essence of MapReduce: great thing is that it is
naturally parallelizable.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 13 / 50

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 14 / 50

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 14 / 50

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 14 / 50

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 14 / 50

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 14 / 50

MapReduce Overview

I words(doc.txt) | sort | uniq -c

I Sequentially read a lot of data.

I Map: extract something you care about.

I Group by key: sort and shuffle.

I Reduce: aggregate, summarize, filter or transform.

I Write the result.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 14 / 50

MapReduce Dataflow

I map function: processes data and generates a set of intermediate
key/value pairs.

I reduce function: merges all intermediate values associated with the
same intermediate key.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 15 / 50

Example: Word Count

I Consider doing a word count of the following file using MapReduce:

Hello World Bye World

Hello Hadoop Goodbye Hadoop

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 16 / 50

Example: Word Count - map

I The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

I The map function output is:

(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 17 / 50

Example: Word Count - shuffle

I The shuffle phase between map and reduce phase creates a list of
values associated with each key.

I The reduce function input is:

(Bye, (1))

(Goodbye, (1))

(Hadoop, (1, 1)

(Hello, (1, 1))

(World, (1, 1))

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 18 / 50

Example: Word Count - reduce

I The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

I The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)

(Goodbye, 1)

(Hadoop, 2)

(Hello, 2)

(World, 2)

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 19 / 50

Combiner Function (1/2)

I In some cases, there is significant repetition in the intermediate keys
produced by each map task, and the reduce function is commutative
and associative.

Machine 1:
(Hello, 1)

(World, 1)

(Bye, 1)

(World, 1)

Machine 2:
(Hello, 1)

(Hadoop, 1)

(Goodbye, 1)

(Hadoop, 1)

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 20 / 50

Combiner Function (2/2)

I Users can specify an optional combiner function to merge partially
data before it is sent over the network to the reduce function.

I Typically the same code is used to implement both the combiner
and the reduce function.

Machine 1:
(Hello, 1)

(World, 2)

(Bye, 1)

Machine 2:
(Hello, 1)

(Hadoop, 2)

(Goodbye, 1)

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 21 / 50

Example: Word Count - map

public static class MyMap extends Mapper<...> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

context.write(word, one);

}

}

}

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 22 / 50

Example: Word Count - reduce

public static class MyReduce extends Reducer<...> {

public void reduce(Text key, Iterator<...> values, Context context)

throws IOException, InterruptedException {

int sum = 0;

while (values.hasNext())

sum += values.next().get();

context.write(key, new IntWritable(sum));

}

}

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 23 / 50

Example: Word Count - driver

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setMapperClass(MyMap.class);

job.setCombinerClass(MyReduce.class);

job.setReducerClass(MyReduce.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompletion(true);

}

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 24 / 50

Example: Word Count - Compile and Run (1/2)

start hdfs

> hadoop-daemon.sh start namenode

> hadoop-daemon.sh start datanode

make the input folder in hdfs

> hdfs dfs -mkdir -p input

copy input files from local filesystem into hdfs

> hdfs dfs -put file0 input/file0

> hdfs dfs -put file1 input/file1

> hdfs dfs -ls input/

input/file0

input/file1

> hdfs dfs -cat input/file0

Hello World Bye World

> hdfs dfs -cat input/file1

Hello Hadoop Goodbye Hadoop

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 25 / 50

Example: Word Count - Compile and Run (2/2)

> mkdir wordcount_classes

> javac -classpath

$HADOOP_HOME/share/hadoop/common/hadoop-common-2.2.0.jar:

$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.2.0.jar:

$HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar

-d wordcount_classes sics/WordCount.java

> jar -cvf wordcount.jar -C wordcount_classes/ .

> hadoop jar wordcount.jar sics.WordCount input output

> hdfs dfs -ls output

output/part-00000

> hdfs dfs -cat output/part-00000

Bye 1

Goodbye 1

Hadoop 2

Hello 2

World 2

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 26 / 50

Execution Engine

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 27 / 50

MapReduce Execution (1/7)

I The user program divides the input files into M splits.
• A typical size of a split is the size of a HDFS block (64 MB).
• Converts them to key/value pairs.

I It starts up many copies of the program on a cluster of machines.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 28 / 50

MapReduce Execution (2/7)

I One of the copies of the program is master, and the rest are workers.

I The master assigns works to the workers.
• It picks idle workers and assigns each one a map task or a reduce

task.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 29 / 50

MapReduce Execution (3/7)

I A map worker reads the contents of the corresponding input splits.

I It parses key/value pairs out of the input data and passes each pair
to the user defined map function.

I The intermediate key/value pairs produced by the map function are
buffered in memory.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 30 / 50

MapReduce Execution (4/7)

I The buffered pairs are periodically written to local disk.
• They are partitioned into R regions (hash(key) mod R).

I The locations of the buffered pairs on the local disk are passed back
to the master.

I The master forwards these locations to the reduce workers.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 31 / 50

MapReduce Execution (5/7)

I A reduce worker reads the buffered data from the local disks of the
map workers.

I When a reduce worker has read all intermediate data, it sorts it by
the intermediate keys.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 32 / 50

MapReduce Execution (6/7)

I The reduce worker iterates over the intermediate data.

I For each unique intermediate key, it passes the key and the cor-
responding set of intermediate values to the user defined reduce
function.

I The output of the reduce function is appended to a final output file
for this reduce partition.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 33 / 50

MapReduce Execution (7/7)

I When all map tasks and reduce tasks have been completed, the
master wakes up the user program.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 34 / 50

Hadoop MapReduce and HDFS

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 35 / 50

Fault Tolerance - Worker

I Detect failure via periodic heartbeats.

I Re-execute in-progress map and reduce tasks.

I Re-execute completed map tasks: their output is stored on the local
disk of the failed machine and is therefore inaccessible.

I Completed reduce tasks do not need to be re-executed since their
output is stored in a global filesystem.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 36 / 50

Fault Tolerance - Master

I State is periodically checkpointed: a new copy of master starts
from the last checkpoint state.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 37 / 50

MapReduce Weaknesses
and

Solving Techniques

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 38 / 50

Weakness 1

W1: Access to Input Data

I Scanning the entire input to perform the map-side processing.

I Initiating map tasks on all input partitions.
• Accessing only a subset of input data would be enough in certain

cases.

I Lack of selective access to data.

I High communication cost.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 39 / 50

Solution 1

S1: Access to Input Data

I Efficient access to data.

I Indexing data: Hadoop++, HAIL

I Intentional data placement: CoHadoop

I Data layout: Llama, Cheetah, RCFile, CIF

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 40 / 50

Weakness 2

W2: Redundant Processing and Recomputation

I Performing similar processing by different jobs over the same data.
• Jobs are processed independently: redundant processing

I No way to reuse the results produced by previous jobs.
• Future jobs may require those results: recompute everything

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 41 / 50

Solution 2

S2: Redundant Processing and Recomputation

I Batch processing of jobs: MRShare

I Result sharing and materialization: ReStore

I Incremental processing: Incoop

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 42 / 50

Weakness 3

W3: Lack of Early Termination

I Map tasks must process the entire input data before any reduce task
can start processing.

I Some jobs may need only sampling of data.

I Quick retrieval of approximate results.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 43 / 50

Solution 3

S3: Lack of Early Termination

I Sampling: EARL

I Sorting: RanKloud

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 44 / 50

Weakness 4

W4: Lack of Iteration

I MapReduce programmers need to write a sequence of MapReduce
jobs and coordinate their execution, in order to implement an iter-
ative processing.

I Data should be reloaded and reprocessed in each iteration.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 45 / 50

Solution 4

S4: Lack of Iteration

I Looping, caching, pipelining: Stratosphere, Haloop, MapReduce on-
line, NOVA, Twister, CBP, Pregel, PrIter

I Incremental processing: Stratosphere, REX, Differential dataflow

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 46 / 50

Weakness 5

W5: Lack of Interactive and Real-Time Processing

I Various overheads to guarantee fault-tolerance that negatively im-
pact the performance.

I Many applications require fast response times, interactive analysis,
and online analytics.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 47 / 50

Solution 5

S5: Lack of Interactive and Real-Time Processing

I Streaming, pipelining: Dremel, Impala, Hyracks, Tenzing

I In-memory processing: PowerDrill, Spark/Shark, M3R

I Pre-computation: BlikDB

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 48 / 50

Summary

I Programming model: Map and Reduce

I Execution framework

I Batch processing

I Shared nothing architecture

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 49 / 50

Questions?

Amir H. Payberah (Tehran Polytechnic) MapReduce 1393/8/5 50 / 50

	
	Weakness 1
	Solution 1
	Weakness 2
	Solution 2
	Weakness 3
	Solution 3
	Weakness 4
	Solution 4
	Weakness 5
	Solution 5

