
Pregel: A System for Large-Scale Graph Processing

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 1 / 40



Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 2 / 40



Introduction

I Graphs provide a flexible abstraction for describing relationships be-
tween discrete objects.

I Many problems can be modeled by graphs and solved with appro-
priate graph algorithms.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 3 / 40



Large Graph

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 4 / 40



Large-Scale Graph Processing

I Large graphs need large-scale processing.

I A large graph either cannot fit into memory of single computer or
it fits with huge cost.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 5 / 40



Question

Can we use platforms like MapReduce or Spark, which are based on data-parallel

model, for large-scale graph proceeding?

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 6 / 40



Data-Parallel Model for Large-Scale Graph Processing

I The platforms that have worked well for developing parallel applica-
tions are not necessarily effective for large-scale graph problems.

I Why?

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 7 / 40



Graph Algorithms Characteristics (1/2)

I Unstructured problems

• Difficult to extract parallelism based on partitioning of the data: the
irregular structure of graphs.

• Limited scalability: unbalanced computational loads resulting from
poorly partitioned data.

I Data-driven computations

• Difficult to express parallelism based on partitioning of computation:
the structure of computations in the algorithm is not known a priori.

• The computations are dictated by nodes and links of the graph.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 8 / 40



Graph Algorithms Characteristics (1/2)

I Unstructured problems

• Difficult to extract parallelism based on partitioning of the data: the
irregular structure of graphs.

• Limited scalability: unbalanced computational loads resulting from
poorly partitioned data.

I Data-driven computations

• Difficult to express parallelism based on partitioning of computation:
the structure of computations in the algorithm is not known a priori.

• The computations are dictated by nodes and links of the graph.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 8 / 40



Graph Algorithms Characteristics (2/2)

I Poor data locality

• The computations and data access patterns do not have much local-
ity: the irregular structure of graphs.

I High data access to computation ratio

• Graph algorithms are often based on exploring the structure of a
graph to perform computations on the graph data.

• Runtime can be dominated by waiting memory fetches: low locality.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 9 / 40



Graph Algorithms Characteristics (2/2)

I Poor data locality

• The computations and data access patterns do not have much local-
ity: the irregular structure of graphs.

I High data access to computation ratio

• Graph algorithms are often based on exploring the structure of a
graph to perform computations on the graph data.

• Runtime can be dominated by waiting memory fetches: low locality.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 9 / 40



Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 10 / 40



Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 10 / 40



Graph-Parallel Processing

I Restricts the types of computation.

I New techniques to partition and distribute graphs.

I Exploit graph structure.

I Executes graph algorithms orders-of-magnitude faster than more
general data-parallel systems.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 11 / 40



Data-Parallel vs. Graph-Parallel Computation

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 12 / 40



Data-Parallel vs. Graph-Parallel Computation

I Data-parallel computation
• Record-centric view of data.
• Parallelism: processing independent data on separate resources.

I Graph-parallel computation
• Vertex-centric view of graphs.
• Parallelism: partitioning graph (dependent) data across processing

resources, and resolving dependencies (along edges) through
iterative computation and communication.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 13 / 40



Data-Parallel vs. Graph-Parallel Computation

I Data-parallel computation
• Record-centric view of data.
• Parallelism: processing independent data on separate resources.

I Graph-parallel computation
• Vertex-centric view of graphs.
• Parallelism: partitioning graph (dependent) data across processing

resources, and resolving dependencies (along edges) through
iterative computation and communication.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 13 / 40



Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 14 / 40



Seven Bridges of Königsberg

I Finding a walk through the city that would cross each bridge once
and only once.

I Euler proved that the problem has no solution.

Map of Königsberg in Euler’s time, highlighting the river Pregel and the bridges.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 15 / 40



Pregel

I Large-scale graph-parallel processing platform developed at Google.

I Inspired by bulk synchronous parallel (BSP) model.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 16 / 40



Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:

• A set of processor-memory pairs.
• A communications network that delivers messages in a point-

to-point manner.
• A mechanism for the efficient barrier synchronization for all or

a subset of the processes.
• There are no special combining, replicating, or broadcasting fa-

cilities.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 17 / 40



Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:
• A set of processor-memory pairs.

• A communications network that delivers messages in a point-
to-point manner.

• A mechanism for the efficient barrier synchronization for all or
a subset of the processes.

• There are no special combining, replicating, or broadcasting fa-
cilities.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 17 / 40



Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:
• A set of processor-memory pairs.
• A communications network that delivers messages in a point-

to-point manner.

• A mechanism for the efficient barrier synchronization for all or
a subset of the processes.

• There are no special combining, replicating, or broadcasting fa-
cilities.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 17 / 40



Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:
• A set of processor-memory pairs.
• A communications network that delivers messages in a point-

to-point manner.
• A mechanism for the efficient barrier synchronization for all or

a subset of the processes.

• There are no special combining, replicating, or broadcasting fa-
cilities.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 17 / 40



Bulk Synchronous Parallel (1/2)

I It is a parallel programming model.

I The model consists of:
• A set of processor-memory pairs.
• A communications network that delivers messages in a point-

to-point manner.
• A mechanism for the efficient barrier synchronization for all or

a subset of the processes.
• There are no special combining, replicating, or broadcasting fa-

cilities.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 17 / 40



Bulk Synchronous Parallel (2/2)

All vertices update in parallel (at the same time).

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 18 / 40



Vertex-Centric Programs

I Think as a vertex.

I Each vertex computes individually its value: in parallel

I Each vertex can see its local context, and updates its value accord-
ingly.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 19 / 40



Vertex-Centric Programs

I Think as a vertex.

I Each vertex computes individually its value: in parallel

I Each vertex can see its local context, and updates its value accord-
ingly.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 19 / 40



Vertex-Centric Programs

I Think as a vertex.

I Each vertex computes individually its value: in parallel

I Each vertex can see its local context, and updates its value accord-
ingly.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 19 / 40



Data Model

I A directed graph that stores the program state, e.g., the current
value.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 20 / 40



Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 21 / 40



Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 21 / 40



Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 21 / 40



Execution Model (1/3)

I Applications run in sequence of iterations: supersteps

I During a superstep, user-defined functions for each vertex is invoked
(method Compute()): in parallel

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 21 / 40



Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 22 / 40



Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 22 / 40



Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 22 / 40



Execution Model (2/3)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 22 / 40



Execution Model (3/3)

I Aggregation: a mechanism for global communication, monitoring,
and data.

I Runs after each superstep.

I Each vertex can provide a value to an aggregator in superstep S.

I The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.

I A number of predefined aggregators, e.g., min, max, sum.

I Aggregation operators should be commutative and associative.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 23 / 40



Execution Model (3/3)

I Aggregation: a mechanism for global communication, monitoring,
and data.

I Runs after each superstep.

I Each vertex can provide a value to an aggregator in superstep S.

I The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.

I A number of predefined aggregators, e.g., min, max, sum.

I Aggregation operators should be commutative and associative.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 23 / 40



Execution Model (3/3)

I Aggregation: a mechanism for global communication, monitoring,
and data.

I Runs after each superstep.

I Each vertex can provide a value to an aggregator in superstep S.

I The system combines those values and the resulting value is made
available to all vertices in superstep S + 1.

I A number of predefined aggregators, e.g., min, max, sum.

I Aggregation operators should be commutative and associative.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 23 / 40



Example: Max Value (1/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 24 / 40



Example: Max Value (2/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 25 / 40



Example: Max Value (3/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 26 / 40



Example: Max Value (4/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 27 / 40



Example: PageRank

I Update ranks in parallel.

I Iterate until convergence.

R[i] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j]

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 28 / 40



Example: PageRank

Pregel_PageRank(i, messages):

// receive all the messages

total = 0

foreach(msg in messages):

total = total + msg

// update the rank of this vertex

R[i] = 0.15 + total

// send new messages to neighbors

foreach(j in out_neighbors[i]):

sendmsg(R[i] * wij) to vertex j

R[i] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j]

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 29 / 40



Partitioning the Graph

I The pregel library divides a graph into a number of partitions.

I Each consisting of a set of vertices and all of those vertices’ outgoing
edges.

I Vertices are assigned to partitions based on their vertex-ID (e.g.,
hash(ID)).

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 30 / 40



Implementation (1/4)

I Master-worker model.

I User programs are copied on machines.

I One copy becomes the master.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 31 / 40



Implementation (2/4)

I The master is responsible for
• Coordinating workers activity.
• Determining the number of partitions.

I Each worker is responsible for
• Maintaining the state of its partitions.
• Executing the user’s Compute() method on its vertices.
• Managing messages to and from other workers.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 32 / 40



Implementation (3/4)

I The master assigns one or more partitions to each worker.

I The master assigns a portion of user input to each worker.

• Set of records containing an arbitrary number of vertices and edges.

• If a worker loads a vertex that belongs to that worker’s partitions,
the appropriate data structures are immediately updated.

• Otherwise the worker enqueues a message to the remote peer that
owns the vertex.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 33 / 40



Implementation (3/4)

I The master assigns one or more partitions to each worker.

I The master assigns a portion of user input to each worker.

• Set of records containing an arbitrary number of vertices and edges.

• If a worker loads a vertex that belongs to that worker’s partitions,
the appropriate data structures are immediately updated.

• Otherwise the worker enqueues a message to the remote peer that
owns the vertex.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 33 / 40



Implementation (4/4)

I After the input has finished loading, all vertices are marked as active.

I The master instructs each worker to perform a superstep.

I After the computation halts, the master may instruct each worker
to save its portion of the graph.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 34 / 40



Combiner

I Sending a message between workers incurs some overhead: use com-
biner.

I This can be reduced in some cases: sometimes vertices only care
about a summary value for the messages it is sent (e.g., min, max,
sum, avg).

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 35 / 40



Fault Tolerance (1/2)

I Fault tolerance is achieved through checkpointing.

I At start of each superstep, master tells workers to save their state:
• Vertex values, edge values, incoming messages
• Saved to persistent storage

I Master saves aggregator values (if any).

I This is not necessarily done at every superstep: costly

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 36 / 40



Fault Tolerance (2/2)

I When master detects one or more worker failures:

• All workers revert to last checkpoint.

• Continue from there.

• That is a lot of repeated work.

• At least it is better than redoing the whole job.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 37 / 40



Pregel Limitations

I Inefficient if different regions of the graph converge at different
speed.

I Can suffer if one task is more expensive than the others.

I Runtime of each phase is determined by the slowest machine.

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 38 / 40



Pregel Summary

I Bulk Synchronous Parallel model

I Vertex-centric

I Superstep: sequence of iterations

I Master-worker model

I Communication: message passing

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 39 / 40



Questions?

Amir H. Payberah (Tehran Polytechnic) Pregel 1393/9/3 40 / 40


