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Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

• Wireless sensor networks

• Traffic management applications

• Stock marketing

• Environmental monitoring applications

• Fraud detection tools

• ...
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Motivation

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.
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One Name, Different Technologies

I Several research communities are contribut-
ing in this area:

• Each brings its own expertise
• Point of view
• Vocabulary: event, data, stream, ...

Tower of Babel Syndrome!

Come on! Let’s go down and confuse them by making them speak different languages,
then they won’t be able to understand each other.

Genesis 11:7
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Information Flow Processing (IFP)

I Source: produces the incoming information flows

I Sink: consumes the results of processing

I IFP engine: processes incoming flows

I Processing rules: how to process the incoming flows

I Rule manager: adds/removes processing rules
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IFP Competing Models

I Data Stream Management Systems (DSMS)

I Complex Event Processing (CEP)
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Data Stream Management Systems (DSMS)

I An evolution of traditional data processing, as supported by DBMSs.
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DBMS vs. DSMS (1/3)

I DBMS: persistent data where updates are relatively infrequent.

I DSMS: transient data that is continuously updated.
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DBMS vs. DSMS (2/3)

I DBMS: runs queries just once to return a complete answer.

I DSMS: executes standing queries, which run continuously and pro-
vide updated answers as new data arrives.
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DBMS vs. DSMS (3/3)

I Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.
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Out of Scope of DSMS

I DSMSs focus on producing query answers.

I Detection and notification of complex patterns of elements are usu-
ally out of the scope of DSMSs:
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IFP Competing Models

I Data Stream Management Systems (DSMS)

I Complex Event Processing (CEP)
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Complex Event Processing (CEP)

I DSMSs limitation: detecting complex patterns of incoming items,
involving sequencing and ordering relationships.

I CEP models flowing information items as notifications of events
happening in the external world.

• They have to be filtered and combined to understand what is
happening in terms of higher-level events.
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CEP vs. Publish/Subscribe Systems

I CEP systems can be seen as an extension to traditional pub-
lish/subscribe systems.

I Traditional publish/subscribe systems consider each event separately
from the others, and filter them based on their topic or content.

I CEPs extend this functionality by increasing the expressive power of
the subscription language to consider complex event patterns that
involve the occurrence of multiple related events.
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IFP Modeling
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One Model, Several Models

I Different models to capture different viewpoints.

• Functional model

• Processing model

• Time model

• Data model

• Rule model

• Language model

• Interaction model

• Deployment model
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Functional Model
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Functional Model

I An abstract architecture of the main functional components of an
IFP engine.

[G. Cugolap et al., Processing Flows of Information: From Data Stream to Complex Event Processing, 2012]
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Receiver and Clock

I Receiver manages the channels connecting the sources with the IFP
engine.

I Clock models periodic processing of their inputs.

[G. Cugolap et al., Processing Flows of Information: From Data Stream to Complex Event Processing, 2012]
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Rules, Decider and Producer

I We assume rules can be (logically) decomposed in two parts:
• C → A
• C is the condition
• A is the action

I Example (in CQL):
Select IStream(Count(*)) (action)
From F1 [Range 1 Minute] Where F1.A > 0 (condition)

I This way we can split processing in two phases:
• Decider: determines the items that trigger the rule.
• Producer: use those items to produce the output of the rule.
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Detection-Production Cycle (1/2)

I The Detector evaluates all the rules in the Rules store to find those
whose condition part is true.

I With the newly arrived information, the Detector may also use the
information present in the Knowledge Base.

I At the end of this phase we have a set of rules that have to be
executed.
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Detection-Production Cycle (2/2)

I The Producer takes the information and executes each triggered rule
(i.e., its action part).

I In executing rules, the Producer may combine the items that trig-
gered the rule.

• Received from the Decider together with the information present in
the Knowledge Base.

I Usually, these new items are sent to sinks, through the Forwarder,
or sent internally to be processed again.
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Processing Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 23 / 83



Processing Model

I Three policies affect the behavior of the system:
• The selection policy
• The consumption policy
• The load shedding policy
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Selection Policy

I Determines if a rule fires once or multiple times and the items ac-
tually selected from the History.

[G. Cugolap et al., Processing Flows of Information: From Data Stream to Complex Event Processing, 2012]
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Consumption Policy

I Determines how the history changes after firing of a rule: what
happens when new items enter the Decider

[G. Cugolap et al., Processing Flows of Information: From Data Stream to Complex Event Processing, 2012]
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Load Shedding Policy

I A technique adopted by some IFP systems to deal with burst inputs.

I It can be described as an automatic drop of information items when
the input rate becomes too high for the processing capabilities of
the engine.
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Time Model
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Time Model

I The relationship between the information items flowing into the IFP
engine and the passing of time.

I Ability of an IFP system to associate some kind of happened-before
(ordering) relationship to information items.

I Four classes:
1 Stream-only
2 Causal
3 Absolute
4 Interval
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Stream-Only Time Model

I Not any special meaning to time.

I Timestamps are used mainly to order items at the frontier of the
engine (i.e., within the receiver).

I They are lost during processing.
• The ordering and timestamps of the output stream are conceptually

separate from the ordering and timestamps of the input streams.

I Example: CQL/Stream
Select DStream(*)

From F1[Rows 5], F2[Range 1 Minute]

Where F1.A = F2.A
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Causal Time Model

I Each item has a label reflecting some kind of causal relationship.

I Partial order

I Example: Gigascope
Select count(*)

From A, B

Where A.a-1 <= B.b and A.a+1 > B.b

A.a and B.b monotonically increase

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 31 / 83



Causal Time Model

I Each item has a label reflecting some kind of causal relationship.

I Partial order

I Example: Gigascope
Select count(*)

From A, B

Where A.a-1 <= B.b and A.a+1 > B.b

A.a and B.b monotonically increase

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 31 / 83



Causal Time Model

I Each item has a label reflecting some kind of causal relationship.

I Partial order

I Example: Gigascope
Select count(*)

From A, B

Where A.a-1 <= B.b and A.a+1 > B.b

A.a and B.b monotonically increase

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 31 / 83



Absolute Time Model

I Information items have an associated timestamp.

I Defining a single point in time, wrt a (logically) unique clock.

I Information items can be timestamped at source or entering the
engine

I Total order

I Example: TESLA/T-Rex
Define Fire(area: string, measuredTemp: double)

From Smoke(area=$a) and last Temp(area=$a and

value>45) within 5 min. from Smoke

Where area=Smoke.area and measuredTemp=Temp.value
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Interval Time Model

I Associate items with an interval, i.e., two timestamps taken from a
global time.

I Usually representing: the time when the related event started, the
time when it ended.
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Data Model
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Data Model

I Studies how the different systems

• Represent single data items

• Organize them into data flows
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Nature of Items

I The meaning we associate to information items
• Generic data
• Event notifications

I Influences other aspects of an IFP
system

• Time model
• Rule language
• Semantics of processing
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Format of Items

I How information is represented

I Influences the way items are processed,
e.g., relational model requires tuples
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Support for Uncertainty

I Ability to associate a degree of
uncertainty to information items.

I When present, probabilistic information
is usually exploited in rules during
processing.
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Data Flows

I Homogeneous
• Each flow contains data with the same format and kind.
• E.g., a sequence of unbounded tuples generated continuously in

time: · · · (a1, a2, · · · , an, t− 1)(a1, a2, · · · , an, t)(a1, a2, · · · , an, t+ 1) · · ·,
where ai denotes an attribute.

I Heterogeneous
• Information flows are seen as channels

connecting sources, processors, and sinks
• Each channel may transport items with

different kind and format.
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Rule Model
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Rule Model

I Rules are classified into two macro classes:
• Transforming rules
• Detecting rules
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Transforming Rules (1/2)

I No explicit distinction between detection and production.

I Execution plan of primitive operators (processing elements (PE)).
• A logical network of PEs connected in a DAG.

I Each PE transforms one or more input flows into one or more output
flows.
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Transforming Rules (2/2)

I PEs execute independently and in parallel

I Not synchronized

I Communicate through messaging

I Upstream node vs. downstream node
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Detecting Rules

I An explicit distinction between detection and production.

I Usually, the detection is based on a logical predicate that captures
patterns of interest in the history of received items.
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Language Model
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Language Model

I Following the rule model, we define two classes of languages:
• Transforming languages: declarative languages and imperative

languages
• Detecting languages: patternbased

I Specify operations to filter, join, aggregate, ...

I Input flows

I To produce one or more output flows
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Declarative Languages

I Specify the expected result rather than the desired execution flow.

I Usually derive from relational languages, e.g., SQL

I Example CQL/Stream:
Select IStream(*)

From F1[Rows 5], F2[Rows 10]

Where F1.A = F2.A
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Imperative Languages

I Specify the desired execution flow

I Starting from primitive operators, i.e., PEs

I Usually adopt a graphical notation
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Pattern-Based Languages

I Specify a firing condition as a pattern

I Select a portion of incoming flows

I The action uses selected items to produce new knowledge

I Example, TESLA / T-Rex
Define Fire(area: string, measuredTemp: double)

From Smoke(area=$a) and last

Temp(area=$a and value>45)

within 5 min. from Smoke

Where area=Smoke.area and measuredTemp=Temp.value
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Interaction Model
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Interaction Model

I Processing Element (PE): a processing unit in a IFP system.

I How do PEs interact?
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Interaction Model
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Deployment Model
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Deployment Model

I IFP applications may include a large number of sources, sinks, and
PEs.

I Possibly dispersed over a wide geographical area.

I How the components of the functional model can be distributed to
achieve scalability.
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Deployment Model
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Deployment Model

I Given a network of PEs.

I How to map it onto the physical network of nodes
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Scaling Mechanism

I How to scale with increasing the number queries and the rate of
incoming events?

I Two main solutions:
• Data partitioning: a reasonable data partitioning and merging scheme

as well as mechanisms to detect points for parallelization.
• Query Partitioning: to distribute the load across available hosts and

to achieve a load balance between these machines.
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Data Partitioning (1/3)

I Early approaches parallelize operators by introducing a splitter and
merge operator.

I The merge operator: union or sort

I E.g., parallelize a filter operation using a round robin scheme.

I E.g., parallelize an aggregation using a hash scheme.
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Data Partitioning (2/3)

I In more recent systems:

I E.g., in Storm a user can express data parallelism by defining the
number of parallel tasks per operator.

I E.g., S4 creates a PE for each new key in the data stream.

I In both approaches the user needs to understand the data parallelism
and explicitly enforce in its code the sequential ordering.
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Data Partitioning (3/3)

I An auto-parallelization approach has recently be proposed.

I A combination of compiler and runtime:
• The compiler detects regions for parallelization.
• The system runtime guarantees that output tuples follow the same

order as for a sequential execution.
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Query Partitioning

I Operator placement problem: the problem of assigning a set of
operators to a set of available hosts.

I A single PE can be running in parallel on different nodes.

I E.g., SEEP can dynamically vary the number of processing nodes
within the system based on the workload.
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Fault Tolerance Mechanism
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Recovery Methods

I The recovery methods of streaming frameworks must take:

• Correctness, e.g., data loss and duplicates

• Performance, e.g., low latency
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Basic Idea

I Each processing node has an associated backup node.

I The backup node’s stream processing engine is identical to the pri-
mary one.

I But the state of the backup node is not necessarily the same as that
of the primary.

I If a primary node fails, its backup node takes over the operation of
the failed node.
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Recovery Methods

I GAP recovery

I Rollback recovery

I Precise recovery
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GAP Recovery

I The weakest recovery guarantee

I A new task takes over the operations of the failed task.

I The new task starts from an empty state.

I Tuples can be lost during the recovery phase.
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Rollback Recovery

I The information loss is avoided, but the output may contain dupli-
cate tuples.

I Three types of rollback recovery:
• Active backup
• Passive backup
• Upstream backup
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Rollback Recovery - Active Backup

I Both primary and backup nodes are given the same input.

I The output tuples of the backup node are logged at the output
queues and they are not sent downstream.

I If the primary fails, the backup takes over by sending the logged tu-
ples to all downstream neighbors and then continuing its processing.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 68 / 83



Rollback Recovery - Passive Backup

I Periodically check-points processing state to a shared storage.

I The backup node takes over from the latest checkpoint when the
primary fails.

I The backup node is always equal or behind the primary.
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Rollback Recovery - Upstream Backup

I Upstream nodes store the tuples until the downstream nodes ac-
knowledge them.

I If a node fails, an empty node rebuilds the latest state of the failed
primary from the logs kept at the upstream server.

I There is no backup node in this model.
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Precise Recovery

I Post-failure output is exactly the same as the output without failure.

I Can be achieved by modifying the algorithms for rollback recovery.
• For example, in passive backup, after a failure occurs the backup

node can ask the downstream nodes for the latest tuples they
received and trim the output queues accordingly to prevent the
duplicates.
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Brief History of IFP Systems
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First Generation

I A stand-alone prototypes or as extensions of existing database en-
gines.

I They were developed with a specific use case in mind and are very
limited regarding the supported operator types as well as available
functionalities.

I Niagara, Telegraph, Aurora, ...
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First Generation Example - Aurora

I A single site stream-processing engine (centralized).

I DAG based processing model for streams.

I Push-based strategy.

I The first Aurora did not support fault tolerance.

I Stream Query Algebra (SQuAl), i.e., SQL with additional features,
e.g., windowed queries.
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Second Generation

I Systems extended the ideas of data stream processing with advanced
features such as fault tolerance, adaptive query processing, as well
as an enhanced operator expressiveness.

I Borealis, CEDR, System S, CAPE, ...
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Second Generation Example - Borealis

I Distributed version of Aurora.

I Advanced functionalities on top of Aurora:
• Dynamic revision of query results: correct errors in previously

reported data.
• Dynamic query modifications: change certain attributes of the

query at runtime.

I Pull-based strategy.

I Rollback recovery with active backup.
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Third Generation

I Driven by the trend towards cloud computing: highly scalable and
robust towards faults.

I Storm, Apache S4, D-Streams, SEEP, StreamCloud, ...

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 77 / 83



Third Generation Example - Storm (1/2)

I Stream processing is guaranteed: a message cannot be lost due to
node failures.

I DAG based processing:
• the DAG is called Topology
• the PEs are called Bolts
• the stream sources are called Spouts

I It does not have an explicit programming
paradigm.
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Third Generation Example - Storm (2/2)

I Pull-based strategy.

I Rollback recovery with upstream backup.

I Three sets of nodes:
• Nimbus: distributes the code among the worker nodes, and keeps

track of the progress of the worker nodes
• Supervisor: the set of worker nodes
• Zookeeper: coordination between supervisor nodes and the Nimbus

I Built by twitter
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Third Generation Example - S4 (1/2)

I S4: Simple Scalable Streaming System.

I Constructing a DAG structure of PEs at runtime.
• A PE is instantiated for each value of the key attribute.

I The processing model is inspired by MapReduce.

I Events are dispatched to nodes according to their key.
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Third Generation Example - S4 (2/2)

I Push-based strategy

I GAP recovery

I Communication layer: coordination between the processing nodes
and the messaging between nodes.

• Uses Zookeeper

I Built by yahoo
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Summary

I IFP: DSMS and CEP

I IFP modeling: functional, processing, time, data, rule, language,
interaction, deployment

I Recovering models: GAP, Rollback, and Precise
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Questions?
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