
Information Flow Processing

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 1 / 83

Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

• Wireless sensor networks

• Traffic management applications

• Stock marketing

• Environmental monitoring applications

• Fraud detection tools

• ...

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 2 / 83

Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

• Wireless sensor networks

• Traffic management applications

• Stock marketing

• Environmental monitoring applications

• Fraud detection tools

• ...

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 2 / 83

Motivation

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 3 / 83

Motivation

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

• Both aspects contrast with our requirements.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 3 / 83

Motivation

I Processing information as it flows, without storing them persistently.

I Traditional DBMSs:
• Store and index data before processing it.
• Process data only when explicitly asked by the users.
• Both aspects contrast with our requirements.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 3 / 83

One Name, Different Technologies

I Several research communities are contribut-
ing in this area:

• Each brings its own expertise
• Point of view
• Vocabulary: event, data, stream, ...

Tower of Babel Syndrome!

Come on! Let’s go down and confuse them by making them speak different languages,
then they won’t be able to understand each other.

Genesis 11:7

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 4 / 83

One Name, Different Technologies

I Several research communities are contribut-
ing in this area:

• Each brings its own expertise
• Point of view
• Vocabulary: event, data, stream, ...

Tower of Babel Syndrome!

Come on! Let’s go down and confuse them by making them speak different languages,
then they won’t be able to understand each other.

Genesis 11:7

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 4 / 83

Information Flow Processing (IFP)

I Source: produces the incoming information flows

I Sink: consumes the results of processing

I IFP engine: processes incoming flows

I Processing rules: how to process the incoming flows

I Rule manager: adds/removes processing rules

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 5 / 83

IFP Competing Models

I Data Stream Management Systems (DSMS)

I Complex Event Processing (CEP)

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 6 / 83

IFP Competing Models

I Data Stream Management Systems (DSMS)

I Complex Event Processing (CEP)

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 6 / 83

Data Stream Management Systems (DSMS)

I An evolution of traditional data processing, as supported by DBMSs.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 7 / 83

DBMS vs. DSMS (1/3)

I DBMS: persistent data where updates are relatively infrequent.

I DSMS: transient data that is continuously updated.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 8 / 83

DBMS vs. DSMS (2/3)

I DBMS: runs queries just once to return a complete answer.

I DSMS: executes standing queries, which run continuously and pro-
vide updated answers as new data arrives.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 9 / 83

DBMS vs. DSMS (3/3)

I Despite these differences, DSMSs resemble DBMSs: both process
incoming data through a sequence of transformations based on SQL
operators, e.g., selections, aggregates, joins.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 10 / 83

Out of Scope of DSMS

I DSMSs focus on producing query answers.

I Detection and notification of complex patterns of elements are usu-
ally out of the scope of DSMSs:

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 11 / 83

Out of Scope of DSMS

I DSMSs focus on producing query answers.

I Detection and notification of complex patterns of elements are usu-
ally out of the scope of DSMSs: Complex Event Processing

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 11 / 83

IFP Competing Models

I Data Stream Management Systems (DSMS)

I Complex Event Processing (CEP)

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 12 / 83

Complex Event Processing (CEP)

I DSMSs limitation: detecting complex patterns of incoming items,
involving sequencing and ordering relationships.

I CEP models flowing information items as notifications of events
happening in the external world.

• They have to be filtered and combined to understand what is
happening in terms of higher-level events.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 13 / 83

CEP vs. Publish/Subscribe Systems

I CEP systems can be seen as an extension to traditional pub-
lish/subscribe systems.

I Traditional publish/subscribe systems consider each event separately
from the others, and filter them based on their topic or content.

I CEPs extend this functionality by increasing the expressive power of
the subscription language to consider complex event patterns that
involve the occurrence of multiple related events.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 14 / 83

CEP vs. Publish/Subscribe Systems

I CEP systems can be seen as an extension to traditional pub-
lish/subscribe systems.

I Traditional publish/subscribe systems consider each event separately
from the others, and filter them based on their topic or content.

I CEPs extend this functionality by increasing the expressive power of
the subscription language to consider complex event patterns that
involve the occurrence of multiple related events.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 14 / 83

CEP vs. Publish/Subscribe Systems

I CEP systems can be seen as an extension to traditional pub-
lish/subscribe systems.

I Traditional publish/subscribe systems consider each event separately
from the others, and filter them based on their topic or content.

I CEPs extend this functionality by increasing the expressive power of
the subscription language to consider complex event patterns that
involve the occurrence of multiple related events.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 14 / 83

IFP Modeling

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 15 / 83

One Model, Several Models

I Different models to capture different viewpoints.

• Functional model

• Processing model

• Time model

• Data model

• Rule model

• Language model

• Interaction model

• Deployment model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 16 / 83

Functional Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 17 / 83

Functional Model

I An abstract architecture of the main functional components of an
IFP engine.

[G. Cugolap et al., Processing Flows of Information: From Data Stream to Complex Event Processing, 2012]

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 18 / 83

Receiver and Clock

I Receiver manages the channels connecting the sources with the IFP
engine.

I Clock models periodic processing of their inputs.

[G. Cugolap et al., Processing Flows of Information: From Data Stream to Complex Event Processing, 2012]

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 19 / 83

Rules, Decider and Producer

I We assume rules can be (logically) decomposed in two parts:
• C → A
• C is the condition
• A is the action

I Example (in CQL):
Select IStream(Count(*)) (action)
From F1 [Range 1 Minute] Where F1.A > 0 (condition)

I This way we can split processing in two phases:
• Decider: determines the items that trigger the rule.
• Producer: use those items to produce the output of the rule.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 20 / 83

Rules, Decider and Producer

I We assume rules can be (logically) decomposed in two parts:
• C → A
• C is the condition
• A is the action

I Example (in CQL):
Select IStream(Count(*)) (action)
From F1 [Range 1 Minute] Where F1.A > 0 (condition)

I This way we can split processing in two phases:
• Decider: determines the items that trigger the rule.
• Producer: use those items to produce the output of the rule.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 20 / 83

Detection-Production Cycle (1/2)

I The Detector evaluates all the rules in the Rules store to find those
whose condition part is true.

I With the newly arrived information, the Detector may also use the
information present in the Knowledge Base.

I At the end of this phase we have a set of rules that have to be
executed.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 21 / 83

Detection-Production Cycle (1/2)

I The Detector evaluates all the rules in the Rules store to find those
whose condition part is true.

I With the newly arrived information, the Detector may also use the
information present in the Knowledge Base.

I At the end of this phase we have a set of rules that have to be
executed.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 21 / 83

Detection-Production Cycle (1/2)

I The Detector evaluates all the rules in the Rules store to find those
whose condition part is true.

I With the newly arrived information, the Detector may also use the
information present in the Knowledge Base.

I At the end of this phase we have a set of rules that have to be
executed.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 21 / 83

Detection-Production Cycle (2/2)

I The Producer takes the information and executes each triggered rule
(i.e., its action part).

I In executing rules, the Producer may combine the items that trig-
gered the rule.

• Received from the Decider together with the information present in
the Knowledge Base.

I Usually, these new items are sent to sinks, through the Forwarder,
or sent internally to be processed again.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 22 / 83

Detection-Production Cycle (2/2)

I The Producer takes the information and executes each triggered rule
(i.e., its action part).

I In executing rules, the Producer may combine the items that trig-
gered the rule.

• Received from the Decider together with the information present in
the Knowledge Base.

I Usually, these new items are sent to sinks, through the Forwarder,
or sent internally to be processed again.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 22 / 83

Detection-Production Cycle (2/2)

I The Producer takes the information and executes each triggered rule
(i.e., its action part).

I In executing rules, the Producer may combine the items that trig-
gered the rule.

• Received from the Decider together with the information present in
the Knowledge Base.

I Usually, these new items are sent to sinks, through the Forwarder,
or sent internally to be processed again.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 22 / 83

Processing Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 23 / 83

Processing Model

I Three policies affect the behavior of the system:
• The selection policy
• The consumption policy
• The load shedding policy

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 24 / 83

Selection Policy

I Determines if a rule fires once or multiple times and the items ac-
tually selected from the History.

[G. Cugolap et al., Processing Flows of Information: From Data Stream to Complex Event Processing, 2012]

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 25 / 83

Consumption Policy

I Determines how the history changes after firing of a rule: what
happens when new items enter the Decider

[G. Cugolap et al., Processing Flows of Information: From Data Stream to Complex Event Processing, 2012]

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 26 / 83

Load Shedding Policy

I A technique adopted by some IFP systems to deal with burst inputs.

I It can be described as an automatic drop of information items when
the input rate becomes too high for the processing capabilities of
the engine.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 27 / 83

Time Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 28 / 83

Time Model

I The relationship between the information items flowing into the IFP
engine and the passing of time.

I Ability of an IFP system to associate some kind of happened-before
(ordering) relationship to information items.

I Four classes:
1 Stream-only
2 Causal
3 Absolute
4 Interval

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 29 / 83

Stream-Only Time Model

I Not any special meaning to time.

I Timestamps are used mainly to order items at the frontier of the
engine (i.e., within the receiver).

I They are lost during processing.
• The ordering and timestamps of the output stream are conceptually

separate from the ordering and timestamps of the input streams.

I Example: CQL/Stream
Select DStream(*)

From F1[Rows 5], F2[Range 1 Minute]

Where F1.A = F2.A

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 30 / 83

Stream-Only Time Model

I Not any special meaning to time.

I Timestamps are used mainly to order items at the frontier of the
engine (i.e., within the receiver).

I They are lost during processing.
• The ordering and timestamps of the output stream are conceptually

separate from the ordering and timestamps of the input streams.

I Example: CQL/Stream
Select DStream(*)

From F1[Rows 5], F2[Range 1 Minute]

Where F1.A = F2.A

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 30 / 83

Stream-Only Time Model

I Not any special meaning to time.

I Timestamps are used mainly to order items at the frontier of the
engine (i.e., within the receiver).

I They are lost during processing.
• The ordering and timestamps of the output stream are conceptually

separate from the ordering and timestamps of the input streams.

I Example: CQL/Stream
Select DStream(*)

From F1[Rows 5], F2[Range 1 Minute]

Where F1.A = F2.A

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 30 / 83

Stream-Only Time Model

I Not any special meaning to time.

I Timestamps are used mainly to order items at the frontier of the
engine (i.e., within the receiver).

I They are lost during processing.
• The ordering and timestamps of the output stream are conceptually

separate from the ordering and timestamps of the input streams.

I Example: CQL/Stream
Select DStream(*)

From F1[Rows 5], F2[Range 1 Minute]

Where F1.A = F2.A

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 30 / 83

Causal Time Model

I Each item has a label reflecting some kind of causal relationship.

I Partial order

I Example: Gigascope
Select count(*)

From A, B

Where A.a-1 <= B.b and A.a+1 > B.b

A.a and B.b monotonically increase

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 31 / 83

Causal Time Model

I Each item has a label reflecting some kind of causal relationship.

I Partial order

I Example: Gigascope
Select count(*)

From A, B

Where A.a-1 <= B.b and A.a+1 > B.b

A.a and B.b monotonically increase

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 31 / 83

Causal Time Model

I Each item has a label reflecting some kind of causal relationship.

I Partial order

I Example: Gigascope
Select count(*)

From A, B

Where A.a-1 <= B.b and A.a+1 > B.b

A.a and B.b monotonically increase

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 31 / 83

Absolute Time Model

I Information items have an associated timestamp.

I Defining a single point in time, wrt a (logically) unique clock.

I Information items can be timestamped at source or entering the
engine

I Total order

I Example: TESLA/T-Rex
Define Fire(area: string, measuredTemp: double)

From Smoke(area=$a) and last Temp(area=$a and

value>45) within 5 min. from Smoke

Where area=Smoke.area and measuredTemp=Temp.value

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 32 / 83

Absolute Time Model

I Information items have an associated timestamp.

I Defining a single point in time, wrt a (logically) unique clock.

I Information items can be timestamped at source or entering the
engine

I Total order

I Example: TESLA/T-Rex
Define Fire(area: string, measuredTemp: double)

From Smoke(area=$a) and last Temp(area=$a and

value>45) within 5 min. from Smoke

Where area=Smoke.area and measuredTemp=Temp.value

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 32 / 83

Absolute Time Model

I Information items have an associated timestamp.

I Defining a single point in time, wrt a (logically) unique clock.

I Information items can be timestamped at source or entering the
engine

I Total order

I Example: TESLA/T-Rex
Define Fire(area: string, measuredTemp: double)

From Smoke(area=$a) and last Temp(area=$a and

value>45) within 5 min. from Smoke

Where area=Smoke.area and measuredTemp=Temp.value

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 32 / 83

Absolute Time Model

I Information items have an associated timestamp.

I Defining a single point in time, wrt a (logically) unique clock.

I Information items can be timestamped at source or entering the
engine

I Total order

I Example: TESLA/T-Rex
Define Fire(area: string, measuredTemp: double)

From Smoke(area=$a) and last Temp(area=$a and

value>45) within 5 min. from Smoke

Where area=Smoke.area and measuredTemp=Temp.value

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 32 / 83

Absolute Time Model

I Information items have an associated timestamp.

I Defining a single point in time, wrt a (logically) unique clock.

I Information items can be timestamped at source or entering the
engine

I Total order

I Example: TESLA/T-Rex
Define Fire(area: string, measuredTemp: double)

From Smoke(area=$a) and last Temp(area=$a and

value>45) within 5 min. from Smoke

Where area=Smoke.area and measuredTemp=Temp.value

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 32 / 83

Interval Time Model

I Associate items with an interval, i.e., two timestamps taken from a
global time.

I Usually representing: the time when the related event started, the
time when it ended.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 33 / 83

Data Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 34 / 83

Data Model

I Studies how the different systems

• Represent single data items

• Organize them into data flows

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 35 / 83

Nature of Items

I The meaning we associate to information items
• Generic data
• Event notifications

I Influences other aspects of an IFP
system

• Time model
• Rule language
• Semantics of processing

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 36 / 83

Format of Items

I How information is represented

I Influences the way items are processed,
e.g., relational model requires tuples

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 37 / 83

Support for Uncertainty

I Ability to associate a degree of
uncertainty to information items.

I When present, probabilistic information
is usually exploited in rules during
processing.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 38 / 83

Data Flows

I Homogeneous
• Each flow contains data with the same format and kind.
• E.g., a sequence of unbounded tuples generated continuously in

time: · · · (a1, a2, · · · , an, t− 1)(a1, a2, · · · , an, t)(a1, a2, · · · , an, t+ 1) · · ·,
where ai denotes an attribute.

I Heterogeneous
• Information flows are seen as channels

connecting sources, processors, and sinks
• Each channel may transport items with

different kind and format.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 39 / 83

Data Flows

I Homogeneous
• Each flow contains data with the same format and kind.
• E.g., a sequence of unbounded tuples generated continuously in

time: · · · (a1, a2, · · · , an, t− 1)(a1, a2, · · · , an, t)(a1, a2, · · · , an, t+ 1) · · ·,
where ai denotes an attribute.

I Heterogeneous
• Information flows are seen as channels

connecting sources, processors, and sinks
• Each channel may transport items with

different kind and format.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 39 / 83

Rule Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 40 / 83

Rule Model

I Rules are classified into two macro classes:
• Transforming rules
• Detecting rules

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 41 / 83

Transforming Rules (1/2)

I No explicit distinction between detection and production.

I Execution plan of primitive operators (processing elements (PE)).
• A logical network of PEs connected in a DAG.

I Each PE transforms one or more input flows into one or more output
flows.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 42 / 83

Transforming Rules (1/2)

I No explicit distinction between detection and production.

I Execution plan of primitive operators (processing elements (PE)).
• A logical network of PEs connected in a DAG.

I Each PE transforms one or more input flows into one or more output
flows.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 42 / 83

Transforming Rules (1/2)

I No explicit distinction between detection and production.

I Execution plan of primitive operators (processing elements (PE)).
• A logical network of PEs connected in a DAG.

I Each PE transforms one or more input flows into one or more output
flows.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 42 / 83

Transforming Rules (2/2)

I PEs execute independently and in parallel

I Not synchronized

I Communicate through messaging

I Upstream node vs. downstream node

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 43 / 83

Detecting Rules

I An explicit distinction between detection and production.

I Usually, the detection is based on a logical predicate that captures
patterns of interest in the history of received items.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 44 / 83

Language Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 45 / 83

Language Model

I Following the rule model, we define two classes of languages:
• Transforming languages: declarative languages and imperative

languages
• Detecting languages: patternbased

I Specify operations to filter, join, aggregate, ...

I Input flows

I To produce one or more output flows

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 46 / 83

Language Model

I Following the rule model, we define two classes of languages:
• Transforming languages: declarative languages and imperative

languages
• Detecting languages: patternbased

I Specify operations to filter, join, aggregate, ...

I Input flows

I To produce one or more output flows

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 46 / 83

Declarative Languages

I Specify the expected result rather than the desired execution flow.

I Usually derive from relational languages, e.g., SQL

I Example CQL/Stream:
Select IStream(*)

From F1[Rows 5], F2[Rows 10]

Where F1.A = F2.A

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 47 / 83

Declarative Languages

I Specify the expected result rather than the desired execution flow.

I Usually derive from relational languages, e.g., SQL

I Example CQL/Stream:
Select IStream(*)

From F1[Rows 5], F2[Rows 10]

Where F1.A = F2.A

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 47 / 83

Imperative Languages

I Specify the desired execution flow

I Starting from primitive operators, i.e., PEs

I Usually adopt a graphical notation

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 48 / 83

Pattern-Based Languages

I Specify a firing condition as a pattern

I Select a portion of incoming flows

I The action uses selected items to produce new knowledge

I Example, TESLA / T-Rex
Define Fire(area: string, measuredTemp: double)

From Smoke(area=$a) and last

Temp(area=$a and value>45)

within 5 min. from Smoke

Where area=Smoke.area and measuredTemp=Temp.value

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 49 / 83

Pattern-Based Languages

I Specify a firing condition as a pattern

I Select a portion of incoming flows

I The action uses selected items to produce new knowledge

I Example, TESLA / T-Rex
Define Fire(area: string, measuredTemp: double)

From Smoke(area=$a) and last

Temp(area=$a and value>45)

within 5 min. from Smoke

Where area=Smoke.area and measuredTemp=Temp.value

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 49 / 83

Interaction Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 50 / 83

Interaction Model

I Processing Element (PE): a processing unit in a IFP system.

I How do PEs interact?

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 51 / 83

Interaction Model

I Processing Element (PE): a processing unit in a IFP system.

I How do PEs interact?

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 51 / 83

Interaction Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 52 / 83

Deployment Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 53 / 83

Deployment Model

I IFP applications may include a large number of sources, sinks, and
PEs.

I Possibly dispersed over a wide geographical area.

I How the components of the functional model can be distributed to
achieve scalability.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 54 / 83

Deployment Model

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 55 / 83

Deployment Model

I Given a network of PEs.

I How to map it onto the physical network of nodes

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 56 / 83

Scaling Mechanism

I How to scale with increasing the number queries and the rate of
incoming events?

I Two main solutions:
• Data partitioning: a reasonable data partitioning and merging scheme

as well as mechanisms to detect points for parallelization.
• Query Partitioning: to distribute the load across available hosts and

to achieve a load balance between these machines.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 57 / 83

Scaling Mechanism

I How to scale with increasing the number queries and the rate of
incoming events?

I Two main solutions:
• Data partitioning: a reasonable data partitioning and merging scheme

as well as mechanisms to detect points for parallelization.
• Query Partitioning: to distribute the load across available hosts and

to achieve a load balance between these machines.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 57 / 83

Data Partitioning (1/3)

I Early approaches parallelize operators by introducing a splitter and
merge operator.

I The merge operator: union or sort

I E.g., parallelize a filter operation using a round robin scheme.

I E.g., parallelize an aggregation using a hash scheme.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 58 / 83

Data Partitioning (1/3)

I Early approaches parallelize operators by introducing a splitter and
merge operator.

I The merge operator: union or sort

I E.g., parallelize a filter operation using a round robin scheme.

I E.g., parallelize an aggregation using a hash scheme.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 58 / 83

Data Partitioning (1/3)

I Early approaches parallelize operators by introducing a splitter and
merge operator.

I The merge operator: union or sort

I E.g., parallelize a filter operation using a round robin scheme.

I E.g., parallelize an aggregation using a hash scheme.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 58 / 83

Data Partitioning (1/3)

I Early approaches parallelize operators by introducing a splitter and
merge operator.

I The merge operator: union or sort

I E.g., parallelize a filter operation using a round robin scheme.

I E.g., parallelize an aggregation using a hash scheme.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 58 / 83

Data Partitioning (2/3)

I In more recent systems:

I E.g., in Storm a user can express data parallelism by defining the
number of parallel tasks per operator.

I E.g., S4 creates a PE for each new key in the data stream.

I In both approaches the user needs to understand the data parallelism
and explicitly enforce in its code the sequential ordering.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 59 / 83

Data Partitioning (2/3)

I In more recent systems:

I E.g., in Storm a user can express data parallelism by defining the
number of parallel tasks per operator.

I E.g., S4 creates a PE for each new key in the data stream.

I In both approaches the user needs to understand the data parallelism
and explicitly enforce in its code the sequential ordering.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 59 / 83

Data Partitioning (3/3)

I An auto-parallelization approach has recently be proposed.

I A combination of compiler and runtime:
• The compiler detects regions for parallelization.
• The system runtime guarantees that output tuples follow the same

order as for a sequential execution.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 60 / 83

Query Partitioning

I Operator placement problem: the problem of assigning a set of
operators to a set of available hosts.

I A single PE can be running in parallel on different nodes.

I E.g., SEEP can dynamically vary the number of processing nodes
within the system based on the workload.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 61 / 83

Query Partitioning

I Operator placement problem: the problem of assigning a set of
operators to a set of available hosts.

I A single PE can be running in parallel on different nodes.

I E.g., SEEP can dynamically vary the number of processing nodes
within the system based on the workload.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 61 / 83

Fault Tolerance Mechanism

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 62 / 83

Recovery Methods

I The recovery methods of streaming frameworks must take:

• Correctness, e.g., data loss and duplicates

• Performance, e.g., low latency

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 63 / 83

Basic Idea

I Each processing node has an associated backup node.

I The backup node’s stream processing engine is identical to the pri-
mary one.

I But the state of the backup node is not necessarily the same as that
of the primary.

I If a primary node fails, its backup node takes over the operation of
the failed node.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 64 / 83

Basic Idea

I Each processing node has an associated backup node.

I The backup node’s stream processing engine is identical to the pri-
mary one.

I But the state of the backup node is not necessarily the same as that
of the primary.

I If a primary node fails, its backup node takes over the operation of
the failed node.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 64 / 83

Basic Idea

I Each processing node has an associated backup node.

I The backup node’s stream processing engine is identical to the pri-
mary one.

I But the state of the backup node is not necessarily the same as that
of the primary.

I If a primary node fails, its backup node takes over the operation of
the failed node.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 64 / 83

Basic Idea

I Each processing node has an associated backup node.

I The backup node’s stream processing engine is identical to the pri-
mary one.

I But the state of the backup node is not necessarily the same as that
of the primary.

I If a primary node fails, its backup node takes over the operation of
the failed node.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 64 / 83

Recovery Methods

I GAP recovery

I Rollback recovery

I Precise recovery

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 65 / 83

GAP Recovery

I The weakest recovery guarantee

I A new task takes over the operations of the failed task.

I The new task starts from an empty state.

I Tuples can be lost during the recovery phase.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 66 / 83

Rollback Recovery

I The information loss is avoided, but the output may contain dupli-
cate tuples.

I Three types of rollback recovery:
• Active backup
• Passive backup
• Upstream backup

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 67 / 83

Rollback Recovery - Active Backup

I Both primary and backup nodes are given the same input.

I The output tuples of the backup node are logged at the output
queues and they are not sent downstream.

I If the primary fails, the backup takes over by sending the logged tu-
ples to all downstream neighbors and then continuing its processing.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 68 / 83

Rollback Recovery - Passive Backup

I Periodically check-points processing state to a shared storage.

I The backup node takes over from the latest checkpoint when the
primary fails.

I The backup node is always equal or behind the primary.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 69 / 83

Rollback Recovery - Upstream Backup

I Upstream nodes store the tuples until the downstream nodes ac-
knowledge them.

I If a node fails, an empty node rebuilds the latest state of the failed
primary from the logs kept at the upstream server.

I There is no backup node in this model.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 70 / 83

Precise Recovery

I Post-failure output is exactly the same as the output without failure.

I Can be achieved by modifying the algorithms for rollback recovery.
• For example, in passive backup, after a failure occurs the backup

node can ask the downstream nodes for the latest tuples they
received and trim the output queues accordingly to prevent the
duplicates.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 71 / 83

Brief History of IFP Systems

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 72 / 83

First Generation

I A stand-alone prototypes or as extensions of existing database en-
gines.

I They were developed with a specific use case in mind and are very
limited regarding the supported operator types as well as available
functionalities.

I Niagara, Telegraph, Aurora, ...

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 73 / 83

First Generation Example - Aurora

I A single site stream-processing engine (centralized).

I DAG based processing model for streams.

I Push-based strategy.

I The first Aurora did not support fault tolerance.

I Stream Query Algebra (SQuAl), i.e., SQL with additional features,
e.g., windowed queries.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 74 / 83

Second Generation

I Systems extended the ideas of data stream processing with advanced
features such as fault tolerance, adaptive query processing, as well
as an enhanced operator expressiveness.

I Borealis, CEDR, System S, CAPE, ...

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 75 / 83

Second Generation Example - Borealis

I Distributed version of Aurora.

I Advanced functionalities on top of Aurora:
• Dynamic revision of query results: correct errors in previously

reported data.
• Dynamic query modifications: change certain attributes of the

query at runtime.

I Pull-based strategy.

I Rollback recovery with active backup.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 76 / 83

Third Generation

I Driven by the trend towards cloud computing: highly scalable and
robust towards faults.

I Storm, Apache S4, D-Streams, SEEP, StreamCloud, ...

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 77 / 83

Third Generation Example - Storm (1/2)

I Stream processing is guaranteed: a message cannot be lost due to
node failures.

I DAG based processing:
• the DAG is called Topology
• the PEs are called Bolts
• the stream sources are called Spouts

I It does not have an explicit programming
paradigm.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 78 / 83

Third Generation Example - Storm (2/2)

I Pull-based strategy.

I Rollback recovery with upstream backup.

I Three sets of nodes:
• Nimbus: distributes the code among the worker nodes, and keeps

track of the progress of the worker nodes
• Supervisor: the set of worker nodes
• Zookeeper: coordination between supervisor nodes and the Nimbus

I Built by twitter

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 79 / 83

Third Generation Example - S4 (1/2)

I S4: Simple Scalable Streaming System.

I Constructing a DAG structure of PEs at runtime.
• A PE is instantiated for each value of the key attribute.

I The processing model is inspired by MapReduce.

I Events are dispatched to nodes according to their key.

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 80 / 83

Third Generation Example - S4 (2/2)

I Push-based strategy

I GAP recovery

I Communication layer: coordination between the processing nodes
and the messaging between nodes.

• Uses Zookeeper

I Built by yahoo

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 81 / 83

Summary

I IFP: DSMS and CEP

I IFP modeling: functional, processing, time, data, rule, language,
interaction, deployment

I Recovering models: GAP, Rollback, and Precise

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 82 / 83

Questions?

Acknowledgements

Some slides and pictures were derived from G. Cugola slides
(Politecnico di Milano).

Amir H. Payberah (Tehran Polytechnic) Information Flow Processing 1393/8/24 83 / 83

