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Large Graph
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Can we use platforms like MapReduce or Spark, which are based on data-parallel

model, for large-scale graph proceeding?
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Graph Algorithms Characteristics

I Difficult to extract parallelism based on partitioning of the data.

I Difficult to express parallelism based on partitioning of computation.
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Proposed Solution

Graph-Parallel Processing

I Computation typically depends on the neighbors.
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Graph-Parallel Processing

I Expose specialized APIs to simplify graph programming.

I Restricts the types of computation.

I New techniques to partition and distribute graphs.

I Exploit graph structure.
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Data-Parallel vs. Graph-Parallel Computation
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Pregel
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Pregel

I Large-scale graph-parallel processing platform developed at Google.

I Inspired by bulk synchronous parallel (BSP) model.
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Bulk Synchronous Parallel

All vertices update in parallel (at the same time).
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Programming Model

I Vertex-centric programming: Think as a vertex.

I Each vertex computes individually its value: in parallel

I Each vertex can see its local context and updates its value.

I Input data: a directed graph that stores the program state, e.g., the
current value.
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Execution Model (1/2)

I Applications run in sequence of iterations: supersteps
• Invoking method Compute() in parallel in all vertices

I A vertex in superstep S can:
• reads messages sent to it in superstep S-1.
• sends messages to other vertices: receiving at superstep S+1.
• modifies its state.

I Vertices communicate directly with one another by sending mes-
sages.
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Execution Model (2/2)

I Superstep 0: all vertices are in the active state.

I A vertex deactivates itself by voting to halt: no further work to do.

I A halted vertex can be active if it receives a message.

I The whole algorithm terminates when:
• All vertices are simultaneously inactive.
• There are no messages in transit.
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Example: Max Value (1/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)
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Example: Max Value (2/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)
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Example: Max Value (3/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)

Amir H. Payberah (KTH) Large Scale Graph Processing 2016/10/03 17 / 76



Example: Max Value (4/4)

i_val := val

for each message m

if m > val then val := m

if i_val == val then

vote_to_halt

else

for each neighbor v

send_message(v, val)
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Example: PageRank

I Update ranks in parallel.

I Iterate until convergence.

R[i] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j]
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Example: PageRank

Pregel_PageRank(i, messages):

// receive all the messages

total = 0

foreach(msg in messages):

total = total + msg

// update the rank of this vertex

R[i] = 0.15 + total

// send new messages to neighbors

foreach(j in out_neighbors[i]):

sendmsg(R[i] * wij) to vertex j

R[i] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j]
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Implementation
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System Model (1/2)

I Master-worker model.

I The master is responsible for
• Coordinating workers.
• Determining the number of partitions.

I Each worker is responsible for
• Executing the user’s Compute() method on its vertices.
• Maintaining the state of its partitions.
• Managing messages to and from other workers.
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System Model (2/2)

I The master assigns one or more partitions to each worker.

I The master assigns a portion of user input to each worker.

• Set of records containing a number of vertices and edges.

• If a worker loads a vertex that belongs to that worker’s partitions,
the appropriate data structures are immediately updated.

• Otherwise, the worker enqueues a message to the remote peer that
owns the vertex.

I After loading the graph, the master instructs each worker to perform
a superstep.
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Graph Partitioning

I The pregel library divides a graph into a number of partitions.

I Each consisting of a set of vertices and all of those vertices’ outgoing
edges.

I Vertices are assigned to partitions based on their vertex-ID (e.g.,
hash(ID)).
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Fault Tolerance (1/2)

I Fault tolerance is achieved through checkpointing.
• Saved to persistent storage

I At start of each superstep, master tells workers to save their state:
• Vertex values, edge values, incoming messages

I Master saves aggregator values (if any).

I This is not necessarily done at every superstep: costly
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Fault Tolerance (2/2)

I When master detects one or more worker failures:

• All workers revert to last checkpoint.

• Continue from there.

• That is a lot of repeated work.

• At least it is better than redoing the whole job.
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Pregel Limitations

I Inefficient if different regions of the graph converge at different
speed.

I Can suffer if one task is more expensive than the others.

I Runtime of each phase is determined by the slowest machine.
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GraphLab

Amir H. Payberah (KTH) Large Scale Graph Processing 2016/10/03 28 / 76



GraphLab

I GraphLab allows asynchronous iterative computation.

I Vertex scope of vertex v: the data stored in v, in all adjacent vertices
and edges.
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GraphLab

I GraphLab allows asynchronous iterative computation.

I Vertex scope of vertex v: the data stored in v, in all adjacent vertices
and edges.
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Programming Model

I Vertex-centric programming

I A vertex can read and modify any of the data in its scope.
• Calling the Update function, similar to Compute in Pregel.

I Input data: a directed graph that stores the program state.
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Execution Model

I Each task in the set of tasks T , is a tuple (f, v) consisting of an
update function f and a vertex v.

I After executing an update function (f, g, · · ·) the modified scope
data in Sv is written back to the data graph.
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Example: PageRank (Pregel)

Pregel_PageRank(i, messages):

// receive all the messages

total = 0

foreach(msg in messages):

total = total + msg

// update the rank of this vertex

R[i] = 0.15 + total

// send new messages to neighbors

foreach(j in out_neighbors[i]):

sendmsg(R[i] * wij) to vertex j

R[i] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j]
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Example: PageRank (GraphLab)

GraphLab_PageRank(i)

// compute sum over neighbors

total = 0

foreach(j in in_neighbors(i)):

total = total + R[j] * wji

// update the PageRank

R[i] = 0.15 + total

// trigger neighbors to run again

foreach(j in out_neighbors(i)):

signal vertex-program on j

R[i] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j]
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Consistency (1/4)

I Overlapped scopes: race-condition in simultaneous execution of two
update functions.

I Full consistency: during the execution f(v), no other function reads
or modifies data within the v scope.
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Consistency (2/4)

I Edge consistency: during the execution f(v), no other function
reads or modifies any of the data on v or any of the edges adja-
cent to v.
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Consistency (3/4)

I Vertex consistency: during the execution f(v), no other function
will be applied to v.
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Consistency (4/4)

Consistency vs. Parallelism

[Low, Y., GraphLab: A Distributed Abstraction for Large Scale Machine Learning (Doctoral dissertation, University of

California), 2013.]
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Implementation
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Consistency Implementation

I Distributed locking: associating a readers-writer lock with each ver-
tex.

I Vertex consistency
• Central vertex (write-lock)

I Edge consistency
• Central vertex (write-lock), Adjacent vertices (read-locks)

I Full consistency
• Central vertex (write-locks), Adjacent vertices (write-locks)

I Deadlocks are avoided by acquiring locks sequentially following a
canonical order.
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Graph Partitioning (1/3)

I Two-phase partitioning.

I Partitioning the data graph into k parts, called atom.

I Meta-graph: the graph of atoms (one vertex for each atom).

I Atom weight: the amount of data it stores.

I Edge weight: the number of edges crossing the atoms.
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Graph Partitioning (2/3)

I Meta-graph is very small.

I A fast balanced partition of the meta-graph over the physical ma-
chines.

I Assigning graph atoms to machines.
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Graph Partitioning (3/3)

I Each atom file stores interior and the ghosts of the partition.
• Ghost is set of vertices and edges adjacent to the partition boundary.

I Each atom is stored as a separate file on HDFS.
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Fault Tolerance (1/2)

I Synchronous fault tolerance.

I The systems periodically signals all computation activity to halt.

I Then synchronizes all caches (ghosts) and saves to disk all data
which has been modified since the last snapshot.

I Simple, but eliminates the systems advantage of asynchronous com-
putation.

Amir H. Payberah (KTH) Large Scale Graph Processing 2016/10/03 43 / 76



Fault Tolerance (1/2)

I Synchronous fault tolerance.

I The systems periodically signals all computation activity to halt.

I Then synchronizes all caches (ghosts) and saves to disk all data
which has been modified since the last snapshot.

I Simple, but eliminates the systems advantage of asynchronous com-
putation.

Amir H. Payberah (KTH) Large Scale Graph Processing 2016/10/03 43 / 76



Fault Tolerance (2/2)

I Asynchronous fault tolerance: based on the Chandy-Lamport algo-
rithm.

I The snapshot function is implemented as an update function in
vertices.

• It takes priority over all other update functions.
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PowerGraph (GraphLab2)
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PowerGraph

I Factorizes the update function into the Gather, Apply and Scatter
phases.

I Vertx-cut partitioning.
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Programming Model

I Gather-Apply-Scatter (GAS)

I Gather: accumulate information about neighborhood through a gen-
eralized sum.

I Apply: apply the accumulated value to center vertex.

I Scatter: update adjacent edges and vertices.
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Execution Model (1/2)

I Initially all vertices are active.

I It executes the vertex-program on the active vertices until none re-
main.

• Once a vertex-program completes the scatter phase it becomes
inactive until it is reactivated.

• Vertices can activate themselves and neighboring vertices.

I PowerGraph can execute both synchronously and asynchronously.
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Scheduling (2/2)

I Synchronous scheduling like Pregel.
• Executing the gather, apply, and scatter in order.
• Changes made to the vertex/edge data are committed at the end of

each step.

I Asynchronous scheduling like GraphLab.
• Changes made to the vertex/edge data during the apply and scatter

functions are immediately committed to the graph.
• Visible to subsequent computation on neighboring vertices.
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Example: PageRank (Pregel)

Pregel_PageRank(i, messages):

// receive all the messages

total = 0

foreach(msg in messages):

total = total + msg

// update the rank of this vertex

R[i] = 0.15 + total

// send new messages to neighbors

foreach(j in out_neighbors[i]):

sendmsg(R[i] * wij) to vertex j

R[i] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j]
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Example: PageRank (GraphLab)

GraphLab_PageRank(i)

// compute sum over neighbors

total = 0

foreach(j in in_neighbors(i)):

total = total + R[j] * wji

// update the PageRank

R[i] = 0.15 + total

// trigger neighbors to run again

foreach(j in out_neighbors(i)):

signal vertex-program on j

R[i] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j]
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Example: PageRank (PowerGraph)

PowerGraph_PageRank(i):

Gather(j -> i):

return wji * R[j]

sum(a, b):

return a + b

// total: Gather and sum

Apply(i, total):

R[i] = 0.15 + total

Scatter(i -> j):

if R[i] changed then activate(j)

R[i] = 0.15 +
∑

j∈Nbrs(i)

wjiR[j]
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Implementation
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Graph Partitioning (1/4)

I Natural graphs: skewed Power-Law degree distribution.

I Edge-cut algorithms perform poorly on Power-Law Graphs.
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Graph Partitioning (2/4)

Vertex-Cut partitioning
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Graph Partitioning (3/4)

I Random vertex-cuts

I Randomly assign edges to machines.

I Completely parallel and easy to distribute.

I High replication factor.
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Graph Partitioning (4/4)

I Greedy vertex-cuts

I A(v): set of machines that vertex v spans.

I Case 1: If A(u) ∩A(v) 6= ∅, then the edge should be assigned to a
machine in the intersection.

I Case 2: If A(u)∩A(v) = ∅, then the edge should be assigned to one
of the machines from the vertex with the most unassigned edges.

I Case 3: If only one of the two vertices has been assigned, then
choose a machine from the assigned vertex.

I Case 4: If A(u) = A(v) = ∅, then assign the edge to the least
loaded machine.
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GraphX
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Data-Parallel vs. Graph-Parallel Computation

I Graph-parallel computation: restricting the types of computation to
achieve performance.

I But, the same restrictions make it difficult and inefficient to express
many stages in a typical graph-analytics pipeline.
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GraphX

I Unifies data-parallel and graph-parallel systems.

I Tables and Graphs are composable views of the same physical data.

I Implemented on top of Spark.
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GraphX vs. Data-Parallel/Graph-Parallel Systems
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GraphX vs. Data-Parallel/Graph-Parallel Systems
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Programming Model

I Gather-Apply-Scatter (GAS)

I Input data (Property Graph): represented using two Spark RDDs:
• Edge collection: VertexRDD
• Vertex collection: EdgeRDD

// VD: the type of the vertex attribute

// ED: the type of the edge attribute

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

}
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Execution Model

I GAS decomposition

I Gather: the groupBy stage gathers messages destined to the same
vertex.

I Apply: an intervening map operation applies the message sum to
update the vertex property.

I Scatter: the join stage scatters the new vertex property to all
adjacent vertices.
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GraphX Operators

class Graph[V, E] {

// Constructor

def Graph(v: Collection[(Id, V)], e: Collection[(Id, Id, E)])

// Collection views

def vertices: Collection[(Id, V)]

def edges: Collection[(Id, Id, E)]

def triplets: Collection[Triplet]

// Graph-parallel computation

def mrTriplets(f: (Triplet) => M, sum: (M, M) => M): Collection[(Id, M)]

// Convenience functions

def mapV(f: (Id, V) => V): Graph[V, E]

def mapE(f: (Id, Id, E) => E): Graph[V, E]

def leftJoinV(v: Collection[(Id, V)], f: (Id, V, V) => V): Graph[V, E]

def leftJoinE(e: Collection[(Id, Id, E)], f: (Id, Id, E, E) => E):

Graph[V, E]

def subgraph(vPred: (Id, V) => Boolean, ePred: (Triplet) => Boolean):

Graph[V, E]

def reverse: Graph[V, E]

}
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Example (1/3)

Amir H. Payberah (KTH) Large Scale Graph Processing 2016/10/03 65 / 76



Example (2/3)

val sc: SparkContext

// Create an RDD for the vertices

val users: VertexRDD[(String, String)] = sc.parallelize(

Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),

(5L, ("franklin", "prof")), (2L, ("istoica", "prof"))))

// Create an RDD for edges

val relationships: EdgeRDD[String] = sc.parallelize(

Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"),

Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi")))

// Define a default user in case there are relationship with missing user

val defaultUser = ("John Doe", "Missing")

// Build the initial Graph

val userGraph: Graph[(String, String), String] =

Graph(users, relationships, defaultUser)
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Example (3/3)

// Constructed from above

val userGraph: Graph[(String, String), String]

// Count all users which are postdocs

userGraph.vertices.filter((id, (name, pos)) => pos == "postdoc").count

// Count all the edges where src > dst

userGraph.edges.filter(e => e.srcId > e.dstId).count

// Use the triplets view to create an RDD of facts

val facts: RDD[String] = graph.triplets.map(triplet =>

triplet.srcAttr._1 + " is the " +

triplet.attr + " of " + triplet.dstAttr._1)

// Remove missing vertices as well as the edges to connected to them

val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")

facts.collect.foreach(println(_))
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Implementation
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Implementation

I GraphX is implemented on top of Spark

I In-memory caching

I Lineage-based fault tolerance
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Graph Representation

I Vertex-cut partitioning

I Representing graphs using two RDDs: edge-collection and vertex-
collection

I Routing table: a logical map from a vertex id to the set of edge
partitions that contains adjacent edges.
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Summary
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Pregel Summary

I Bulk synchronous parallel model

I Vertex-centric

I Superstep: sequence of iterations
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GraphLab Summary

I Asynchronous model

I Vertex-centric

I Three consistency levels: full, edge-level, and vertex-level

I Partitioning: two-phase partitioning

I Consistency: chromatic engine (graph coloring), distributed lock
engine (reader-writer lock)

I Fault tolerance: synchronous, asynchronous (chandy-lamport)
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PowerGraph Summary

I Gather-Apply-Scatter programming model

I Synchronous and asynchronous models

I Vertex-cut graph partitioning
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GraphX Summary

I Unifies graph-parallel and data-prallel models

I Gather-Apply-Scatter programming model

I Vertex-cut graph partitioning

I On top of Spark
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Questions?
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