
Large Scale Graph Processing
X-Stream and Chaos

Amir H. Payberah
amir@sics.se

KTH Royal Institute of Technology
2016/10/05

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 1 / 58



Graphs

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 2 / 58



Big Graphs

I Large graphs are a subset of the big data problem.

I Billions of vertices and edges, hundreds of gigabytes.

I Normally tackled on large clusters.
• Pregel, Giraph, GraphLab, PowerGraph ...
• Complexity, power consumption ...

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 3 / 58



Could we compute Big Graphs on a single machine?

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 4 / 58



Challenges

I Disk-based processing
• Problem: graph traversal = random access
• Random access is inefficient for storage

Eiko Y., and Roy A., “Scale-up Graph Processing: A Storage-centric View”, 2013.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 5 / 58



Challenges

I Disk-based processing
• Problem: graph traversal = random access
• Random access is inefficient for storage

Eiko Y., and Roy A., “Scale-up Graph Processing: A Storage-centric View”, 2013.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 5 / 58



X-Stream

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 6 / 58



X-Stream

I X-Stream makes graph accesses sequential.

I Contribution:
• Edge-centric scatter-gather model
• Streaming partitions

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 7 / 58



Edge-Centric
Programming Model

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 8 / 58



Vertex-Centric Programming Model

I Vertex-centric Programming model
• Write a vertex program
• State stored in vertices.

I Vertex operations:
• Gather-Apply-Scatter (GAS)
• Gather updates from incoming edges
• Scatter updates along outgoing edges

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 9 / 58



A Vertex-Centric Program

I Iterates over vertices

Until convergence {

// the gather phase

for all vertices v

for all incoming edges to v: v.value = g(v.value, update)

// the scatter phase

for all vertices v

for all outgoing edges from v: update = f(v.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 10 / 58



Vertex-Centric Scatter-Gather (1/5)

Until convergence {

// the gather phase

for all vertices v

for all incoming edges to v: v.value = g(v.value, update)

// the scatter phase

for all vertices v

for all outgoing edges from v: update = f(v.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 11 / 58



Vertex-Centric Scatter-Gather (2/5)

Until convergence {

// the gather phase

for all vertices v

for all incoming edges to v: v.value = g(v.value, update)

// the scatter phase

for all vertices v

for all outgoing edges from v: update = f(v.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 12 / 58



Vertex-Centric Scatter-Gather (3/5)

Until convergence {

// the gather phase

for all vertices v

for all incoming edges to v: v.value = g(v.value, update)

// the scatter phase

for all vertices v

for all outgoing edges from v: update = f(v.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 13 / 58



Vertex-Centric Scatter-Gather (4/5)

Until convergence {

// the gather phase

for all vertices v

for all incoming edges to v: v.value = g(v.value, update)

// the scatter phase

for all vertices v

for all outgoing edges from v: update = f(v.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 14 / 58



Vertex-Centric Scatter-Gather (5/5)

Until convergence {

// the gather phase

for all vertices v

for all incoming edges to v: v.value = g(v.value, update)

// the scatter phase

for all vertices v

for all outgoing edges from v: update = f(v.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 15 / 58



Vertex-Centric vs. Edge-Centric Access

Vertex-centric Edge-centric

I Iterates over edges

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 16 / 58



Vertex-Centric to Edge-Centric Programming

Until convergence {

// the gather phase

for all vertices v

for all incoming edges to v: v.value = g(v.value, update)

// the scatter phase

for all vertices v

for all outgoing edges from v: update = f(v.value)

}

Until convergence {

// the gather phase

for all edges e

e.dst.value = g(e.dst.value, u.value)

// the scatter phase

for all edges e

u = new update

u.dst = e.dst

u.value = f(e.src.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 17 / 58



Edge-Centric Scatter-Gather (1/5)

Until convergence {

// the gather phase

for all edges e

e.dst.value = g(e.dst.value, u.value)

// the scatter phase

for all edges e

u = new update

u.dst = e.dst

u.value = f(e.src.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 18 / 58



Edge-Centric Scatter-Gather (2/5)

Until convergence {

// the gather phase

for all edges e

e.dst.value = g(e.dst.value, u.value)

// the scatter phase

for all edges e

u = new update

u.dst = e.dst

u.value = f(e.src.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 19 / 58



Edge-Centric Scatter-Gather (3/5)

Until convergence {

// the gather phase

for all edges e

e.dst.value = g(e.dst.value, u.value)

// the scatter phase

for all edges e

u = new update

u.dst = e.dst

u.value = f(e.src.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 20 / 58



Edge-Centric Scatter-Gather (4/5)

Until convergence {

// the gather phase

for all edges e

e.dst.value = g(e.dst.value, u.value)

// the scatter phase

for all edges e

u = new update

u.dst = e.dst

u.value = f(e.src.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 21 / 58



Edge-Centric Scatter-Gather (5/5)

Until convergence {

// the gather phase

for all edges e

e.dst.value = g(e.dst.value, u.value)

// the scatter phase

for all edges e

u = new update

u.dst = e.dst

u.value = f(e.src.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 22 / 58



Vertex-Centric vs. Edge-Centric Tradeoff

I Vertex-centric scatter-gather: EdgeData
RandomAccessBandwidth

I Edge-centric scatter-gather: Scatters×EdgeData
SequentialAccessBandwidth

I Sequential Access Bandwidth � Random Access Bandwidth.

I Few scatter gather iterations for real world graphs.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 23 / 58



Streaming Partitions

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 24 / 58



Problem

I Problem: still have random access to vertex set.

Solution

Partition the graph into streaming partitions.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 25 / 58



Problem

I Problem: still have random access to vertex set.

Solution

Partition the graph into streaming partitions.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 25 / 58



Partitioning the Graph (1/2)

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 26 / 58



Partitioning the Graph (2/2)

Random access for free.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 27 / 58



Streaming Partition

I A subset of the vertices that fits in RAM.

I All edges whose source vertex is in that subset.

I No requirement on quality of the partition, e.g., sorting edges.

I Consists of three sets: vertex set, edge list, and update list.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 28 / 58



Streaming Partition Scatter-Gather

// the scatter phase

for each streaming_partition p {

load Vertices(p)

for each unprocessed e in Edges(P)

u = new update

u.dst = e.dst

u.value = f(e.src.value)

add u to Update(partition(u.dst))

}

// the gather phase

for each streaming-partition p {

load Vertices(p)

for each unprocessed u in Update(p)

u.dst.value = g(u.dst.value, u.value)

delete Update(p)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 29 / 58



X-Stream Limitations

I Capacity: amount of storage on a single machine

I Bandwidth: storage bandwidth on a single machine

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 30 / 58



Chaos

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 31 / 58



Chaos

I Extend X-Stream to a cluster

I Goals:
• Capacity: aggregate storage on all machines
• Bandwidth: aggregate bandwidth on all machines

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 32 / 58



Contribtion

I X-Stream: iterates over partitions

I For all partitions:
• Load vertex-set from storage into memory
• Stream edge-set from storage

I Streaming partitions are independent

I Chaos: iterate in parallel over partitions

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 33 / 58



Contribtion

I X-Stream: iterates over partitions

I For all partitions:
• Load vertex-set from storage into memory
• Stream edge-set from storage

I Streaming partitions are independent

I Chaos: iterate in parallel over partitions

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 33 / 58



Contribtion

I X-Stream: iterates over partitions

I For all partitions:
• Load vertex-set from storage into memory
• Stream edge-set from storage

I Streaming partitions are independent

I Chaos: iterate in parallel over partitions

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 33 / 58



Vertex Distribution

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 34 / 58



Edge Distribution

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 35 / 58



Load Imbalance

I How to deal with load imbalance?

I I/O imbalance: flat storage (storage sub-system)

I Computational imbalance: work stealing (computation sub-system)

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 36 / 58



Load Imbalance

I How to deal with load imbalance?

I I/O imbalance: flat storage (storage sub-system)

I Computational imbalance: work stealing (computation sub-system)

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 36 / 58



Load Imbalance

I How to deal with load imbalance?

I I/O imbalance: flat storage (storage sub-system)

I Computational imbalance: work stealing (computation sub-system)

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 36 / 58



Chaos Components

I Storage sub-system

I Computation sub-system

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 37 / 58



Storage Sub-System

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 38 / 58



Storage Sub-System

I One storage engine on each machine.

I Supplies vertices, edges and updates of different partitions to the
computation sub-system.

I The vertices, edges and updates of a partition are uniformly ran-
domly spread over the different storage engines.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 39 / 58



Streaming Partitions

I A streaming partition consists of:
• Vertex lists: set of vertices that fits in memory
• Edge lists: all of their outgoing edges
• Update lists: all of their incoming updates

I This partitioning is the only pre-processing done in Chaos.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 40 / 58



Streaming Partitions

I A streaming partition consists of:
• Vertex lists: set of vertices that fits in memory
• Edge lists: all of their outgoing edges
• Update lists: all of their incoming updates

I This partitioning is the only pre-processing done in Chaos.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 40 / 58



Stored Data Structures

I For each partition, Chaos records three data structures on storage:
• Vertex set: initialized during pre-processing, read during scatter and

gather.
• Edge set: created during pre-processing, read during scatter.
• Update set: created and written to storage during scatter, read

during gather.

I The accumulators are temporary structures, and are never written
to storage.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 41 / 58



I/O Imbalance (1/2)

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 42 / 58



I/O Imbalance (2/2)

I Locality hardly matters

I There is no point in putting vertices and edges of a partition together

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 43 / 58



Chunks

I All data structures are accessed in units called chunks.

I Chaos spreads all data structures across the storage engines in an
uniform random manner.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 44 / 58



Reading Edge Chunks

I From where to read next edge chunk?

I It can read any random chunk (that has not been read).

I In fact, it reads several random chunks.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 45 / 58



Reading Edge Chunks

I From where to read next edge chunk?

I It can read any random chunk (that has not been read).

I In fact, it reads several random chunks.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 45 / 58



Reading Edge Chunks

I From where to read next edge chunk?

I It can read any random chunk (that has not been read).

I In fact, it reads several random chunks.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 45 / 58



Writing Update Chunks

I Where to write update stripe?

I Choose any device at random.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 46 / 58



Writing Update Chunks

I Where to write update stripe?

I Choose any device at random.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 46 / 58



Computation Sub-System

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 47 / 58



Computation Sub-System

I One engine on each machine.

I They collectively implement the GAS model.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 48 / 58



The Scatter Phase

// the scatter phase

for each streaming_partition p {

load Vertices(p)

exec_scatter(p)

}

def exec_scatter(partition p) {

for each unprocessed e in Edges(p) {

u = new update

u.dst = e.dst

u.value = f(e.src.value)

add u to Update(partition(u.dst))

}

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 49 / 58



The Gather Phase

// the gather phase

for each streaming-partition p {

load Vertices(p)

exec_gather(p)

// the apply phase

for all v in Vertices(p)

Apply(v.value, v.accum)

delete Update(p)

}

def exec_gather(partition p) {

for each unprocessed u in Update(p)

u.dst.accume = g(u.dst.accume, u.value)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 50 / 58



Work Stealing (1/2)

I Work stealing: copy vertex set

I One master for each replicated vertex.

I Work stealing issues:
• More than one machine work on a streaming partition.
• More than one access the same edge list.
• Need for synchronization?

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 51 / 58



Work Stealing (1/2)

I Work stealing: copy vertex set

I One master for each replicated vertex.

I Work stealing issues:
• More than one machine work on a streaming partition.
• More than one access the same edge list.
• Need for synchronization?

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 51 / 58



Work Stealing (2/2)

I When computation engine i completes the work for its assigned
partitions:

• It goes through every partition p (for which it is not the master).
• Sends a proposal to help out with p to its master j.
• The proposal may be accepted or rejected.

I Rejected proposal: it continues to iterate the partitons until it re-
ceives a positive response or until it has determined that no help is
needed for any of the partitions.

I Accepted proposal: it reads the vertex set of that partition from
storage into its memory, and starts working on it.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 52 / 58



Work Stealing (2/2)

I When computation engine i completes the work for its assigned
partitions:

• It goes through every partition p (for which it is not the master).
• Sends a proposal to help out with p to its master j.
• The proposal may be accepted or rejected.

I Rejected proposal: it continues to iterate the partitons until it re-
ceives a positive response or until it has determined that no help is
needed for any of the partitions.

I Accepted proposal: it reads the vertex set of that partition from
storage into its memory, and starts working on it.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 52 / 58



Work Stealing (2/2)

I When computation engine i completes the work for its assigned
partitions:

• It goes through every partition p (for which it is not the master).
• Sends a proposal to help out with p to its master j.
• The proposal may be accepted or rejected.

I Rejected proposal: it continues to iterate the partitons until it re-
ceives a positive response or until it has determined that no help is
needed for any of the partitions.

I Accepted proposal: it reads the vertex set of that partition from
storage into its memory, and starts working on it.

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 52 / 58



I Which edge chunk to read?

I It can read any chunk (that has not been read)

I Storage sub-system maintains what has and has not been read: no
synchronization

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 53 / 58



I Which edge chunk to read?

I It can read any chunk (that has not been read)

I Storage sub-system maintains what has and has not been read: no
synchronization

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 53 / 58



I Which edge chunk to read?

I It can read any chunk (that has not been read)

I Storage sub-system maintains what has and has not been read: no
synchronization

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 53 / 58



The Scatter Phase With Work Stealing

// the scatter phase

for each streaming_partition p {

load Vertices(p)

exec_scatter(p)

}

// when done with my partitions, steal from others

for every partition p_stolen not belonging to me {

if need_help(Master(p_stolen))

load Vertices(p_stolen)

exec_scatter(p_stolen)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 54 / 58



The Gather Phase With Work Stealing

// the gather phase

for each streaming-partition p {

load Vertices(p)

exec_gather(p)

// the apply phase

for all stealers s

accumulators = get_accums(s)

for all v in Vertices(p)

Apply(v.value, accumulators(v))

delete Update(p)

}

// when done with my partitions, steal from others

for every partition p_stolen not belonging to me

if need_help(Master(p_stolen))

load Vertices(p_stolen)

exec_gather(p_stolen)

wait for get_accums(p_stolen)

}

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 55 / 58



Summary

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 56 / 58



Summary

I X-Stream
• Single machine
• GAS model
• Edge-centric
• Streaming partitioning

I Chaos
• X-Stream on a cluster
• I/O imbalance: flat storage (storage sub-system)
• Computation imbalance: work strealing (computation sub-system)

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 57 / 58



Questions?

Acknowledgement

Some slides were derived from the slides of Amitabha Roy (EPFL)

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 58 / 58


