Large Scale Graph Processing
X-Stream and Chaos

Amir H. Payberah

amir@sics.se

KTH Royal Institute of Technology
2016,/10/05

Graphs

ulllllm".

SOUNDCLOUD

Amir H. Payberah (KTH) X-Stream and Chaos 2016/10/05 2 /58

BN
Big Graphs

» Large graphs are a subset of the big data problem.
» Billions of vertices and edges, hundreds of gigabytes.

» Normally tackled on large clusters.

* Pregel, Giraph, GraphLab, PowerGraph ...
e Complexity, power consumption ...

Could we compute Big Graphs on a single machine? J

[

|
Challenges

» Disk-based processing

e Problem: graph traversal = random access
e Random access is inefficient for storage

-
Challenges

» Disk-based processing

e Problem: graph traversal = random access
e Random access is inefficient for storage

. Read (MB/s Write (MB/s
Medium Random (Seq{le)ntial Random Seq(le)ntia]
RAM 567 2605 1057 2248
SSD 22.64 355 49.16 208
Disk 0.61 174 1.27 170

Note: 64 byte cachelines, 4K blocks (disk random), 16M chunks
(disk sequential)

Eiko Y., and Roy A., “Scale-up Graph Processing: A Storage-centric View", 2013.

 AmirH Pabersh (KTH) XSteamand Chaos TS

5/ 58

X-Stream

B
X-Stream

» X-Stream makes graph accesses sequential.

» Contribution:

o Edge-centric scatter-gather model
e Streaming partitions

Edge-Centric
Programming Model

Vertex-Centric Programming Model

» Vertex-centric Programming model

¢ Write a vertex program
o State stored in vertices.

» Vertex operations:
» Gather-Apply-Scatter (GAS)
o Gather updates from incoming edges
e Scatter updates along outgoing edges

A Vertex-Centric Program

» lterates over vertices

Vertex-Centric Scatter-Gather (1/5)

edges

vertices

olojo|luls|es|s|w|wlNn|N-] e
o|lulrloleo|v|w|eo|n]s]S|u]|w

Vertex-Centric Scatter-Gather (2/5)

vertices

edges

olo|lo|uls|Bls|wlwN|INIF] =
o|lu|r|o|e|v|w|e|Nv]s|lw]o]|w

Vertex-Centric Scatter-Gather (3/5)

o
[
)

olojo|uls|s|slwlwln|Nn]-]-
o|lul=|lo|eo|w|w]o|Nvls]w|u|lw

Vertex-Centric Scatter-Gather (4/5)

0§

[
[
n

olojo|ulsls|s|lw|lwlnNE] -
o|lu|l|lolo|v]|w|lo|Nv]s|N|u|lw

I
Vertex-Centric Scatter-Gather (5/5)

edges

vertices

olojlo|uls|s]s|lwlwNIN]IF] -
o|lulrlo|o|v|w|o|n]slw]uv]|w

Vertex-Centric vs. Edge-Centric Access

Random
,/
I

Sequential Vertices

Vertex-centric

» lterates over edges

Vertices

Random

VA

Edges

—

Edge-centric

Sequential

Vertex-Centric to Edge-Centric Programming

Edge-Centric Scatter-Gather (1/5)

o
@
@

oflo|o|uls|s]s|wlwlofn]=]=
o|ulrlofo|w|w|o|v]s[w|u]lw

Edge-Centric Scatter-Gather (2/5)

®
®
&

ofolo|ulsls|s|wlwlno]=] =
o|u|rlolo|v|w|olv]s[w|v]w

Edge-Centric Scatter-Gather (3/5)

Edge-Centric Scatter-Gather (4/5)

1“@

o
®
@

S I =Y [51 BN BN FS (] ' IN] 1N P
o|lul=|ofe|w|w|e|n]s]w|o]|w

Edge-Centric Scatter-Gather (5/5)

I3
o
4]

ololo|uls]|sls|w|wlnfofe] =
alul=|ofo|v|w|o|n]slw|v]w

BN
Vertex-Centric vs. Edge-Centric Tradeoff

EdgeData

» Vertex-centric scatter-gather: o =re """

» Edge-centric scatter-gather: Seqf;‘;’tt;ﬁ;f;ifﬁfﬁidth
» Sequential Access Bandwidth > Random Access Bandwidth.

v

Few scatter gather iterations for real world graphs.

Streaming Partitions

Problem

vertices

» Problem: still have random access to vertex set.

Problem

vertices

» Problem: still have random access to vertex set.

Partition the graph into streaming partitions. I

.
Partitioning the Graph (1/2)

edges

vertices

Nl R|lwlwlBRIN]| A=
AlujwloiNvjoo] N ~Nlw

|m|x||cn|u‘l. |b|w|~|H.

[o20 Hool o) RO]
=lulo|o

Partitioning the Graph (2/2)

edges

Subset of
vertices

NlR|s|wlw]sN] s -
Slujwlo|Nnjo| N N|w

Fast Slow
storage storage

Random access for free. J

NS
Streaming Partition

A subset of the vertices that fits in RAM.

v

v

All edges whose source vertex is in that subset.

» No requirement on quality of the partition, e.g., sorting edges.

v

Consists of three sets: vertex set, edge list, and update list.

Streaming Partition Scatter-Gather

X-Stream Limitations

» Capacity: amount of storage on a single machine

» Bandwidth: storage bandwidth on a single machine

Chaos

Chaos

» Extend X-Stream to a cluster

» Goals:

o Capacity: aggregate storage on all machines
¢ Bandwidth: aggregate bandwidth on all machines

NN
Contribtion

» X-Stream: iterates over partitions

» For all partitions:

e Load vertex-set from storage into memory
e Stream edge-set from storage

NN
Contribtion

» X-Stream: iterates over partitions

» For all partitions:

e Load vertex-set from storage into memory
e Stream edge-set from storage

» Streaming partitions are independent

NN
Contribtion

v

X-Stream: iterates over partitions

v

For all partitions:

e Load vertex-set from storage into memory
e Stream edge-set from storage

v

Streaming partitions are independent

v

Chaos: iterate in parallel over partitions

Vertex Distribution

Edge Distribution

Load Imbalance

» How to deal with load imbalance?

Load Imbalance

» How to deal with load imbalance?

» |/O imbalance: flat storage (storage sub-system)

Load Imbalance

» How to deal with load imbalance?
» |/O imbalance: flat storage (storage sub-system)

» Computational imbalance: work stealing (computation sub-system)

Chaos Components

» Storage sub-system

» Computation sub-system

Storage Sub-System

NS
Storage Sub-System

» One storage engine on each machine.

» Supplies vertices, edges and updates of different partitions to the
computation sub-system.

» The vertices, edges and updates of a partition are uniformly ran-
domly spread over the different storage engines.

Streaming Partitions

» A streaming partition consists of:
e Vertex lists: set of vertices that fits in memory
e Edge lists: all of their outgoing edges
e Update lists: all of their incoming updates

Streaming Partitions

» A streaming partition consists of:

e Vertex lists: set of vertices that fits in memory
e Edge lists: all of their outgoing edges
e Update lists: all of their incoming updates

» This partitioning is the only pre-processing done in Chaos.

NN
Stored Data Structures

» For each partition, Chaos records three data structures on storage:

* Vertex set: initialized during pre-processing, read during scatter and
gather.

e Edge set: created during pre-processing, read during scatter.

e Update set: created and written to storage during scatter, read
during gather.

» The accumulators are temporary structures, and are never written
to storage.

|/O Imbalance (1/2)

|/O Imbalance (2/2)

> Locality hardly matters

» Thereis no point in putting vertices and edges of a partition together

Chunks

» All data structures are accessed in units called chunks.

» Chaos spreads all data structures across the storage engines in an
uniform random manner.

Reading Edge Chunks

» From where to read next edge chunk?

Reading Edge Chunks

» From where to read next edge chunk?

» It can read any random chunk (that has not been read).

Reading Edge Chunks

» From where to read next edge chunk?
» It can read any random chunk (that has not been read).

» In fact, it reads several random chunks.

Writing Update Chunks

» Where to write update stripe?

Writing Update Chunks

» Where to write update stripe?

» Choose any device at random.

Computation Sub-System

BN
Computation Sub-System

» One engine on each machine.

» They collectively implement the GAS model.

B
The Scatter Phase

The Gather Phase

Work Stealing (1/2)

» Work stealing: copy vertex set

» One master for each replicated vertex.

Work Stealing (1/2)

» Work stealing: copy vertex set

» One master for each replicated vertex.

» Work stealing issues:

e More than one machine work on a streaming partition.
e More than one access the same edge list.
¢ Need for synchronization?

BN
Work Stealing (2/2)

» When computation engine i completes the work for its assigned
partitions:
« It goes through every partition p (for which it is not the master).
* Sends a proposal to help out with p to its master j.
e The proposal may be accepted or rejected.

BN
Work Stealing (2/2)

» When computation engine i completes the work for its assigned
partitions:

« It goes through every partition p (for which it is not the master).
* Sends a proposal to help out with p to its master j.
e The proposal may be accepted or rejected.

> Rejected proposal: it continues to iterate the partitons until it re-
ceives a positive response or until it has determined that no help is
needed for any of the partitions.

-
Work Stealing (2/2)

» When computation engine i completes the work for its assigned
partitions:

e It goes through every partition p (for which it is not the master).
¢ Sends a proposal to help out with p to its master j.
e The proposal may be accepted or rejected.

> Rejected proposal: it continues to iterate the partitons until it re-
ceives a positive response or until it has determined that no help is
needed for any of the partitions.

» Accepted proposal: it reads the vertex set of that partition from
storage into its memory, and starts working on it.

 AmirH Pabersh (KTH) XSteamand Chaos 2016/10/05 52 /58

» Which edge chunk to read?

» Which edge chunk to read?

» It can read any chunk (that has not been read)

» Which edge chunk to read?
» It can read any chunk (that has not been read)

» Storage sub-system maintains what has and has not been read: no
synchronization

BN
The Scatter Phase With Work Stealing

The Gather Phase With Work Stealing

// the gather phase

for each streaming-partition p {
load Vertices(p)
exec_gather (p)

// the apply phase
for all stealers s
accumulators = get_accums(s)
for all v in Vertices(p)
Apply(v.value, accumulators(v))

delete Update(p)
}

// when done with my partitions, steal from others
for every partition p_stolen not belonging to me
if need_help(Master(p_stolen))
load Vertices(p_stolen)
exec_gather (p_stolen)
wait for get_accums(p_stolen)

Amir H. Payberah (KTH) X-Stream and Chaos 2016,/10/05

55 / 58

Summary

Summary

> X-Stream
e Single machine
e GAS model
¢ Edge-centric
e Streaming partitioning

» Chaos

e X-Stream on a cluster
 1/0 imbalance: flat storage (storage sub-system)
e Computation imbalance: work strealing (computation sub-system)

Questions?

Some slides were derived from the slides of Amitabha Roy (EPFL) '

