Large Scale File Systems

Amir H. Payberah

amir@sics.se

KTH Royal Institute of Technology

What is the Problem?

What is the Problem?

» Crawl the whole web.
» Store it all on one big disk.

» Process users’ searches on one big CPU.

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 3/ 65

What is the Problem?

v

Crawl the whole web.

v

Store it all on one big disk.

v

Process users’ searches on one big CPU.

Does not scale.

v

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 3/ 65

Reminder

What is Filesystem?

4

Reminder

» Controls how data is stored in and retrieved from disk.

What is Filesystem?

4

Reminder

» Controls how data is stored in and retrieved from disk.

File Info

Indirect Blocks

Double Indirect

Triple Indirect

|
Distributed Filesystems

» When data outgrows the storage capacity of a single machine: par-
tition it across a number of separate machines.

> Distributed filesystems: manage the storage across a network of
machines.

 AmirH Pabersh (KTH) Large Scale File Systems soi6/os/or 6 /6

Google File System
(GFS)

|
Motivation and Assumptions (1/3)

» Lots of cheap PCs, each with disk and CPU.
e How to share data among PCs?

~ Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 8/ 65

Motivation and Assumptions (2/3)

» 100s to 1000s of PCs in cluster.

» Failure of each PC.
» Monitoring, fault tolerance,
auto-recovery essential.

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 9 / 65

BN
Motivation and Assumptions (3/3)

» Large files: > 100 MB in size.
» Large streaming reads and small random reads.

» Append to files rather than overwrite.

.
Files and Chunks (1/2)

» Files are split into chunks.

» Chunks

» Single unit of storage.
e Transparent to user.
e Default size: either 64MB or 128MB

I
Files and Chunks (2/2)

» Why is a chunk in GFS so large?

L
Files and Chunks (2/2)

» Why is a chunk in GFS so large?

e To minimize the cost of seeks.

» Time to read a chunk = seek time + transfer time

seek time

transfer time small.

» Keeping the ratio

GFS Architecture

Application

(file name, chunk index)

GFS client
* (chunk handle,
chunk locations)

(chunk handle, byte range)

GFS master = /foo/bar

File namespace chunk 2ef0

Instructions to chunkserver

Chunkserver state

GFS chunkserver GFS chunkserver

chunk data

‘ Data messages
Control messages
» Main components:
GFS master
GFS chunk server
GFS client

Linux file system Linux file system

el Ee-

Amir H. Payberah (KTH) Large Scale File Systems 2016,/09/01

13 / 65

B
GFS Master

» Manages file namespace operations.

GFS master - /foo/bar
~ | chunk 2ef0

File namespace

B
GFS Master

» Manages file namespace operations.

» Manages file metadata (holds all metadata in memory).
e Access control information
e Mapping from files to chunks
e Locations of chunks

GFS master - /foo/bar
~ | chunk 2ef0

File namespace

B
GFS Master

» Manages file namespace operations.

» Manages file metadata (holds all metadata in memory).
e Access control information
e Mapping from files to chunks
e Locations of chunks

» Manages chunks in chunk servers.
 Creation/deletion
e Placement
H GFS master » /foo/bar
‘ Loa.d b?lanCIng . File namespace ,'//I chunk 2ef0
¢ Maintains replication /

e Garbage collection /Q

B
GFS Chunk Server

v

Manage chunks.

Tells master what chunks it has.

v

Store chunks as files.

v

GFS chunkserver

Maintain data consistency of chunks. Linux file system

9 -

v

-
GFS Client

» Issues control (metadata) requests to master server.
» Issues data requests directly to chunk servers.
» Caches metadata.

» Does not cache data.

Application g ome, chunk index) _| GFS master » /foofbar

GFS client File ,mmcgpacg / chunk 2ef0
1+ (chunk handle,
chunk locations)

Instructions to chunkserver

(chunk handle, byte range) Chunkserver state

| GFS ver | GFs ver |

‘ Linux file system ‘ Linux file system ‘

chunk data

mmmm) Data messages
8 o i — Control messages

2016/09/01 16 / 65

The Master Operations

NN
The Master Operations

v

Namespace management and locking

v

Replica placement

v

Creating, re-replicating and re-balancing replicas

v

Garbage collection

v

Stale replica detection

Namespace Management and Locking

» Represents its namespace as a lookup table mapping full pathnames
to metadata.

Namespace Management and Locking

» Represents its namespace as a lookup table mapping full pathnames
to metadata.

» Each master operation acquires a set of locks before it runs.

» Read lock on internal nodes, and read/write lock on the leaf.

Namespace Management and Locking

v

Represents its namespace as a lookup table mapping full pathnames
to metadata.

v

Each master operation acquires a set of locks before it runs.

v

Read lock on internal nodes, and read/write lock on the leaf.

v

Read lock on directory prevents its deletion, renaming or snapshot

v

Allowed concurrent mutations in the same directory

Replica Placement

» Maximize data reliability, availability and bandwidth utilization.

» Replicas spread across machines and racks, for example:

¢ 1st replica on the local rack.
e 2nd replica on the local rack but different machine.
e 3rd replica on the different rack.

» The master determines replica placement.

Test.txt file = chunk #1 (c1) + chunk #2 (c2)

Master

ar |[zn BERIEL

Chunkserver| | Chunkserver| | Chunkserver Chunkserver | | Chunkserver
Rack 1 Rack n

Creation, Re-replication and Re-balancing

» Creation

e Place new replicas on chunk servers with below-average disk usage.
e Limit number of recent creations on each chunk servers.

Creation, Re-replication and Re-balancing

» Creation

e Place new replicas on chunk servers with below-average disk usage.
e Limit number of recent creations on each chunk servers.

» Re-replication
* When number of available replicas falls below a user-specified goal.

Creation, Re-replication and Re-balancing

» Creation

e Place new replicas on chunk servers with below-average disk usage.
e Limit number of recent creations on each chunk servers.

» Re-replication
e When number of available replicas falls below a user-specified goal.

» Rebalancing

e Periodically, for better disk utilization and load balancing.
e Distribution of replicas is analyzed.

[
Garbage Collection

» File deletion logged by master.

» File renamed to a hidden name with deletion timestamp.

[
Garbage Collection

\{

File deletion logged by master.

v

File renamed to a hidden name with deletion timestamp.

v

Master regularly deletes files older than 3 days (configurable).

v

Until then, hidden file can be read and undeleted.

[
Garbage Collection

v

File deletion logged by master.

v

File renamed to a hidden name with deletion timestamp.

v

Master regularly deletes files older than 3 days (configurable).

v

Until then, hidden file can be read and undeleted.

v

When a hidden file is removed, its in-memory metadata is erased.

I
Stale Replica Detection

» Chunk replicas may become stale: if a chunk server fails and misses
mutations to the chunk while it is down.

I
Stale Replica Detection

» Chunk replicas may become stale: if a chunk server fails and misses
mutations to the chunk while it is down.

» Need to distinguish between up-to-date and stale replicas.

I
Stale Replica Detection

» Chunk replicas may become stale: if a chunk server fails and misses
mutations to the chunk while it is down.

» Need to distinguish between up-to-date and stale replicas.

» Chunk version number:

e Increased when master grants new lease on the chunk.
¢ Not increased if replica is unavailable.

I
Stale Replica Detection

v

Chunk replicas may become stale: if a chunk server fails and misses
mutations to the chunk while it is down.

v

Need to distinguish between up-to-date and stale replicas.

v

Chunk version number:

e Increased when master grants new lease on the chunk.
¢ Not increased if replica is unavailable.

v

Stale replicas deleted by master in regular garbage collection.

System Interactions

.
Read Operation (1/2)

» 1. Application originates the read request.
» 2. GFS client translates request and sends it to the master.

» 3. The master responds with chunk handle and replica locations.

Application

@

(file name, byte range) (file name,
chunk index)

Master
GFS Client

(chunk handle,
replica locations)

.
Read Operation (2/2)

» 4. The client picks a location and sends the request.
» 5. The chunk server sends requested data to the client.

» 6. The client forwards the data to the application.

Chunk Server

Application @
(chunk handle,
byte range) _+—"

6)| (data from file) Chunk Server

GFS Client " (data from file)
@ Chunk Server

.
Update Order (1/2)

» Update (mutation): an operation that changes the content or meta-
data of a chunk.

.
Update Order (1/2)

» Update (mutation): an operation that changes the content or meta-
data of a chunk.

» For consistency, updates to each chunk must be ordered in the same
way at the different chunk replicas.

» Consistency means that replicas will end up with the same version
of the data and not diverge.

.
Update Order (2/2)

v

For this reason, for each chunk, one replica is designated as the
primary.

v

The other replicas are designated as secondaries

v

Primary defines the update order.

All secondaries follows this order.

\{

.
Primary Leases (1/2)

» For correctness there needs to be one single primary for each chunk.

.
Primary Leases (1/2)

» For correctness there needs to be one single primary for each chunk.
» At any time, at most one server is primary for each chunk.

» Master selects a chunk-server and grants it lease for a chunk.

.
Primary Leases (2/2)

» The chunk-server holds the lease for a period 1" after it gets it, and
behaves as primary during this period.

» The chunk-server can refresh the lease endlessly, but if the chunk-
server can not successfully refresh lease from master, he stops being
a primary.

» If master does not hear from primary chunk-server for a period, he
gives the lease to someone else.

I
Write Operation (1/3)

» 1. Application originates the request.
» 2. The GFS client translates request and sends it to the master.

» 3. The master responds with chunk handle and replica locations.

Application
(file name, data) (file name,
chunk index)
) Master
GFS Client
(chunk handle,
secondary replic

locations)

I
Write Operation (2/3)

» 4. The client pushes write data to all locations. Data is stored in
chunk-server's internal buffers.

Primary i
unl

Application

(Data)

Secondary
Chunk
-

(Data)

GFS Client a Secondary
St |

-
Write Operation (3/3)

» 5. The client sends write command to the primary.

» 6. The primary determines serial order for data instances in its buffer
and writes the instances in that order to the chunk.

» 7. The primary sends the serial order to the secondaries and tells
them to perform the write.

(write command,
serial order)

Primary 5 7
(Write ——— G
" D1 | D2| D3| D4

Application @
Secondary hunk
_ unl

GFS Client Secondary

D1 | D2 D3| D4

 AmirH Pabersh (KTH) Large Scale File Systems TR

Write Consistency

» Primary enforces one update order across all replicas for concurrent
writes.

» It also waits until a write finishes at the other replicas before it
replies.

Write Consistency

» Primary enforces one update order across all replicas for concurrent
writes.

» It also waits until a write finishes at the other replicas before it
replies.

» Therefore:

¢ We will have identical replicas.

¢ But, file region may end up containing mingled fragments from
different clients: e.g., writes to different chunks may be ordered
differently by their different primary chunk-servers

e Thus, writes are consistent but undefined state in GFS.

|
Append Operation (1/2)

v

1. Application originates record append request.

v

2. The client translates request and sends it to the master.

v

3. The master responds with chunk handle and replica locations.

v

4. The client pushes write data to all locations.

.
Append Operation (2/2)

» 5. The primary checks if record fits in specified chunk.

» 6. If record does not fit, then the primary:

e Pads the chunk,

e Tells secondaries to do the same,

¢ And informs the client.

e The client then retries the append with the next chunk.

» 7. If record fits, then the primary:
e Appends the record,
o Tells secondaries to do the same,
¢ Receives responses from secondaries,
* And sends final response to the client

BN
Delete Operation

v

Meta data operation.

v

Renames file to special name.

v

After certain time, deletes the actual chunks.

v

Supports undelete for limited time.

v

Actual lazy garbage collection.

Fault Tolerance

Fault Tolerance for Chunks

» Chunks replication (re-replication and re-balancing)

» Data integrity
e Checksum for each chunk divided into 64KB blocks.
e Checksum is checked every time an application reads the data.

Fault Tolerance for Chunk Server

» All chunks are versioned.
» Version number updated when a new lease is granted.

» Chunks with old versions are not served and are deleted.

Fault Tolerance for Master

» Master state replicated for reliability on multiple machines.

» When master fails:

e It can restart almost instantly.
¢ A new master process is started elsewhere.

» Shadow (not mirror) master provides only read-only access to file
system when primary master is down.

NSNS
High Availability

» Fast recovery

» Master and chunk-servers have to restore their state and start in
seconds no matter how they terminated.

» Heartbeat messages:
e Checking liveness of chunk-servers
e Piggybacking garbage collection commands
e Lease renewal

Flat Datacenter Storage
(FDS)

-
Motivation and Assumptions (1/5)

Move the
Computation to
the Data!

» Why move computation close to data?
» Because remote access is slow due to oversubscription.

 AmirH Pabersh (KTH) Large Scale File Systems Y

BN
Motivation and Assumptions (2/5)

» Locality adds complexity.

» Need to be aware of where the data is.

e Non-trivial scheduling algorithm.
¢ Moving computations around is not easy.

» Need a data-parallel programming model.

-
Motivation and Assumptions (3/5)

» Datacenter networks are getting faster.

» Consequences
e The networks are not oversubscribed.
e Support full bisection bandwidth: no local vs. remote disk distinction.
 Simpler work schedulers and programming models.

Computing Computing Computing
node node node

Computing Computing Computing

2016/09/01 46 / 65

BN
Motivation and Assumptions (4/5)

» File systems like GFS manage metadata centrally.

» On every read or write, clients contact the master to get information
about the location of blocks in the system.

BN
Motivation and Assumptions (4/5)

» File systems like GFS manage metadata centrally.

» On every read or write, clients contact the master to get information
about the location of blocks in the system.
» Good visibility and control.
» Bottleneck: use large block size
e This makes it harder to do fine-grained load balancing like our ideal
little-data computer does.

Motivation and Assumptions (5/5)

» Let's make a digital socialism

» Flat Datacenter Storage

Amir H. Payberah (KTH) Large Scale File Systems 2016,/09/01 48 / 65

B
Blobs and Tracts

][eJo} Tract 0 Tract1 Tract2 NS
—
8MB

» Data is stored in logical blobs.
 Byte sequences with a 128-bit Global Unique Identifiers (GUID).

» Blobs are divided into constant sized units called tracts.

e Tracts are sized, so random and sequential accesses have same
throughput.

» Both tracts and blobs are mutable.

.
FDS API (1/2)

I
FDS API (2/2)

» Reads and writes are atomic.

» Reads and writes not guaranteed to appear in the order they are
issued.

» APl is non-blocking.

* Helps the performance: many requests can be issued in parallel, and
FDS can pipeline disk reads with network transfers.

N
FDS Architecture

Computing Computing Computing
node node node

Metadata
server

Tracserver Tracserver @l Tracserver

~ AmirH. Payberah (KTH) Large Scale File Systems 2016/09/01

52 /65

Trackserver

» Every disk is managed by a process called a tractserver.

» Trackservers accept commands from the network, e.g., ReadTrack
and WriteTrack.

» They do not use file systems.
e They lay out tracts directly to disk by using the raw disk interface.

N
Metadata Server

» Metadata server coordinates the cluster and helps clients rendezvous
with tractservers.

» It collects a list of active tractservers and distribute it to clients.

» This list is called the tract locator table (TLT).

» Clients can retrieve the TLT from the metadata server once, then
never contact the metadata server again.

2016/09/01 54 / 65

BN
Track Locator Table (1/2)

» TLT contains the address of the tractserver(s) responsible for tracts.

» Clients use the blob’s GUID (g) and the tract number (i) to select
an entry in the TLT: tract locator

TractLocator = (Hash(g) + i) mod TLT Length

e okt | o2 | s |
oo e e
1 A D F

I I R
3 D E G
IEN I N
1,526 m TH JE

Track Locator Table (2/2)

» The only time the TLT changes is when a disk fails or is added.

» Reads and writes do not change the TLT.

» In a system with more than one replica, reads go to one replica at
random, and writes go to all of them.

B
Per-Blob Metadata

v

Per-blob metadata: blob's length and permission bits.

» Stored in tract -1 of each blob.

» The trackserver is responsible for the blob metadata tract.

v

Newly created blobs have a length of zero, and applications must
extend a blob before writing. The extend operation is atomic.

Fault Tolerance

Replication

» Replicate data to improve durability and availability.

» When a disk fails, redundant copies of the lost data are used to
restore the data to full replication.

Replication

v

Replicate data to improve durability and availability.

v

When a disk fails, redundant copies of the lost data are used to
restore the data to full replication.

Writes a tract: the client sends the write to every tractserver it
contains.
e Applications are notified that their writes have completed only after
the client library receives write ack from all replicas.

v

v

Reads a tract: the client selects a single tractserver at random.

Failure Recovery (1/2)

» Step 1: Tractservers send heartbeat messages to the metadata
server. When the metadata server detects a tractserver timeout,
it declares the tractserver dead.

» Step 2: invalidates the current TLT by incrementing the version
number of each row in which the failed tractserver appears.

» Step 3: picks random tractservers to fill in the empty spaces in the
TLT where the dead tractserver appeared.

Row | Version | Replical | Replica2 | Replica3 Row | Version | Replical | Replica2 | Replica3
1 s A 3 1 9 A 3 [©)
2 17 c L 2 18 [©) c L

3 324 3 [) 3 3 324 3 [} G

4 3 T A W 4 3 T A W

5 456 F 3 s 457 F © 3

6 723 G 3 6 724 G 3 [©)
7 235) v 3 7 235) v 3

8 312 H £ F s 312 H 3 F

Amir H. Payberah (KTH) Large Scale File Systems 2016,/09/01 60 / 65

Failure Recovery (2/2)

» Step 4: sends updated TLT assignments to every server affected by
the changes.

» Step 5: waits for each tractserver to ack the new TLT assignments,
and then begins to give out the new TLT to clients when queried

for it.
Row | Version | Replical | Replica | Replica3 Row | Version | Replical | Replica | Replica3
1 8 A F 1 9 A F [©)
2 17 3 L 2 18 [©) 3 L
3 321 € [G 3 324 € [G
4 3 i A H 4 3 T A H
5 456 3 G B 457 3 © G
6 723 G 3 6 724 G 3 [©)
7 235 [v 3 7 235 [) v 3
s 312 H £ F s 312 W £

Amir H. Payberah (KTH) Large Scale File Systems 2016,/09/01 61 / 65

Summary

Summary

v

Google File System (GFS)

v

Files and chunks

v

GFS architecture: master, chunk servers, client

v

GFS interactions: read and update (write and update record)

v

Master operations: metadata management, replica placement and
garbage collection

Summary

v

Flat Datacenter Storage (FDS)

Blobs and tracks

v

v

FDS architecture: Metadata server, trackservers, TLT

v

FDS interactions: using GUID and track number

v

Replication and failure recovery

Questions?

