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What is the Problem?

I Crawl the whole web.

I Store it all on one big disk.

I Process users’ searches on one big CPU.

I Does not scale.
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Reminder
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What is Filesystem?

I Controls how data is stored in and retrieved from disk.
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Distributed Filesystems

I When data outgrows the storage capacity of a single machine: par-
tition it across a number of separate machines.

I Distributed filesystems: manage the storage across a network of
machines.
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Google File System
(GFS)
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Motivation and Assumptions (1/3)

I Lots of cheap PCs, each with disk and CPU.
• How to share data among PCs?
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Motivation and Assumptions (2/3)

I 100s to 1000s of PCs in cluster.
• Failure of each PC.
• Monitoring, fault tolerance,

auto-recovery essential.
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Motivation and Assumptions (3/3)

I Large files: ≥ 100 MB in size.

I Large streaming reads and small random reads.

I Append to files rather than overwrite.
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Files and Chunks (1/2)

I Files are split into chunks.

I Chunks
• Single unit of storage.
• Transparent to user.
• Default size: either 64MB or 128MB

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 11 / 65



Files and Chunks (2/2)

I Why is a chunk in GFS so large?

• To minimize the cost of seeks.

I Time to read a chunk = seek time + transfer time

I Keeping the ratio seek time
transfer time small.
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GFS Architecture

I Main components:
• GFS master
• GFS chunk server
• GFS client
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GFS Master

I Manages file namespace operations.

I Manages file metadata (holds all metadata in memory).
• Access control information
• Mapping from files to chunks
• Locations of chunks

I Manages chunks in chunk servers.
• Creation/deletion
• Placement
• Load balancing
• Maintains replication
• Garbage collection
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GFS Chunk Server

I Manage chunks.

I Tells master what chunks it has.

I Store chunks as files.

I Maintain data consistency of chunks.
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GFS Client

I Issues control (metadata) requests to master server.

I Issues data requests directly to chunk servers.

I Caches metadata.

I Does not cache data.
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The Master Operations
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The Master Operations

I Namespace management and locking

I Replica placement

I Creating, re-replicating and re-balancing replicas

I Garbage collection

I Stale replica detection
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Namespace Management and Locking

I Represents its namespace as a lookup table mapping full pathnames
to metadata.

I Each master operation acquires a set of locks before it runs.

I Read lock on internal nodes, and read/write lock on the leaf.

I Read lock on directory prevents its deletion, renaming or snapshot

I Allowed concurrent mutations in the same directory
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Replica Placement

I Maximize data reliability, availability and bandwidth utilization.

I Replicas spread across machines and racks, for example:
• 1st replica on the local rack.
• 2nd replica on the local rack but different machine.
• 3rd replica on the different rack.

I The master determines replica placement.
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Creation, Re-replication and Re-balancing

I Creation
• Place new replicas on chunk servers with below-average disk usage.
• Limit number of recent creations on each chunk servers.

I Re-replication
• When number of available replicas falls below a user-specified goal.

I Rebalancing
• Periodically, for better disk utilization and load balancing.
• Distribution of replicas is analyzed.
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Garbage Collection

I File deletion logged by master.

I File renamed to a hidden name with deletion timestamp.

I Master regularly deletes files older than 3 days (configurable).

I Until then, hidden file can be read and undeleted.

I When a hidden file is removed, its in-memory metadata is erased.
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Stale Replica Detection

I Chunk replicas may become stale: if a chunk server fails and misses
mutations to the chunk while it is down.

I Need to distinguish between up-to-date and stale replicas.

I Chunk version number:
• Increased when master grants new lease on the chunk.
• Not increased if replica is unavailable.

I Stale replicas deleted by master in regular garbage collection.
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System Interactions

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 24 / 65



Read Operation (1/2)

I 1. Application originates the read request.

I 2. GFS client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.
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Read Operation (2/2)

I 4. The client picks a location and sends the request.

I 5. The chunk server sends requested data to the client.

I 6. The client forwards the data to the application.

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 26 / 65



Update Order (1/2)

I Update (mutation): an operation that changes the content or meta-
data of a chunk.

I For consistency, updates to each chunk must be ordered in the same
way at the different chunk replicas.

I Consistency means that replicas will end up with the same version
of the data and not diverge.
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Update Order (2/2)

I For this reason, for each chunk, one replica is designated as the
primary.

I The other replicas are designated as secondaries

I Primary defines the update order.

I All secondaries follows this order.

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 28 / 65



Primary Leases (1/2)

I For correctness there needs to be one single primary for each chunk.

I At any time, at most one server is primary for each chunk.

I Master selects a chunk-server and grants it lease for a chunk.

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 29 / 65



Primary Leases (1/2)

I For correctness there needs to be one single primary for each chunk.

I At any time, at most one server is primary for each chunk.

I Master selects a chunk-server and grants it lease for a chunk.

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 29 / 65



Primary Leases (2/2)

I The chunk-server holds the lease for a period T after it gets it, and
behaves as primary during this period.

I The chunk-server can refresh the lease endlessly, but if the chunk-
server can not successfully refresh lease from master, he stops being
a primary.

I If master does not hear from primary chunk-server for a period, he
gives the lease to someone else.
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Write Operation (1/3)

I 1. Application originates the request.

I 2. The GFS client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.
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Write Operation (2/3)

I 4. The client pushes write data to all locations. Data is stored in
chunk-server’s internal buffers.
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Write Operation (3/3)

I 5. The client sends write command to the primary.

I 6. The primary determines serial order for data instances in its buffer
and writes the instances in that order to the chunk.

I 7. The primary sends the serial order to the secondaries and tells
them to perform the write.
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Write Consistency

I Primary enforces one update order across all replicas for concurrent
writes.

I It also waits until a write finishes at the other replicas before it
replies.

I Therefore:
• We will have identical replicas.
• But, file region may end up containing mingled fragments from

different clients: e.g., writes to different chunks may be ordered
differently by their different primary chunk-servers

• Thus, writes are consistent but undefined state in GFS.
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Append Operation (1/2)

I 1. Application originates record append request.

I 2. The client translates request and sends it to the master.

I 3. The master responds with chunk handle and replica locations.

I 4. The client pushes write data to all locations.
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Append Operation (2/2)

I 5. The primary checks if record fits in specified chunk.

I 6. If record does not fit, then the primary:
• Pads the chunk,
• Tells secondaries to do the same,
• And informs the client.
• The client then retries the append with the next chunk.

I 7. If record fits, then the primary:
• Appends the record,
• Tells secondaries to do the same,
• Receives responses from secondaries,
• And sends final response to the client
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Delete Operation

I Meta data operation.

I Renames file to special name.

I After certain time, deletes the actual chunks.

I Supports undelete for limited time.

I Actual lazy garbage collection.
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Fault Tolerance
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Fault Tolerance for Chunks

I Chunks replication (re-replication and re-balancing)

I Data integrity
• Checksum for each chunk divided into 64KB blocks.
• Checksum is checked every time an application reads the data.
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Fault Tolerance for Chunk Server

I All chunks are versioned.

I Version number updated when a new lease is granted.

I Chunks with old versions are not served and are deleted.
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Fault Tolerance for Master

I Master state replicated for reliability on multiple machines.

I When master fails:
• It can restart almost instantly.
• A new master process is started elsewhere.

I Shadow (not mirror) master provides only read-only access to file
system when primary master is down.
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High Availability

I Fast recovery
• Master and chunk-servers have to restore their state and start in

seconds no matter how they terminated.

I Heartbeat messages:
• Checking liveness of chunk-servers
• Piggybacking garbage collection commands
• Lease renewal
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Flat Datacenter Storage
(FDS)
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Motivation and Assumptions (1/5)

I Why move computation close to data?
• Because remote access is slow due to oversubscription.
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Motivation and Assumptions (2/5)

I Locality adds complexity.

I Need to be aware of where the data is.
• Non-trivial scheduling algorithm.
• Moving computations around is not easy.

I Need a data-parallel programming model.
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Motivation and Assumptions (3/5)

I Datacenter networks are getting faster.

I Consequences
• The networks are not oversubscribed.
• Support full bisection bandwidth: no local vs. remote disk distinction.
• Simpler work schedulers and programming models.
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Motivation and Assumptions (4/5)

I File systems like GFS manage metadata centrally.

I On every read or write, clients contact the master to get information
about the location of blocks in the system.

• Good visibility and control.
• Bottleneck: use large block size
• This makes it harder to do fine-grained load balancing like our ideal

little-data computer does.
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Motivation and Assumptions (5/5)

I Let’s make a digital socialism

I Flat Datacenter Storage

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 48 / 65



Blobs and Tracts

I Data is stored in logical blobs.
• Byte sequences with a 128-bit Global Unique Identifiers (GUID).

I Blobs are divided into constant sized units called tracts.
• Tracts are sized, so random and sequential accesses have same

throughput.

I Both tracts and blobs are mutable.
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FDS API (1/2)

// create a blob with the specified GUID

CreateBlob(GUID, &blobHandle, doneCallbackFunction);

// write 8MB from buf to track 0 of the blob

blobHandle->WriteTrack(0, buf, doneCallbackFunction);

// read track 2 of blob into buf

blobHandle->ReadTrack(2, buf, doneCallbackFunction);
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FDS API (2/2)

I Reads and writes are atomic.

I Reads and writes not guaranteed to appear in the order they are
issued.

I API is non-blocking.
• Helps the performance: many requests can be issued in parallel, and

FDS can pipeline disk reads with network transfers.
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FDS Architecture
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Trackserver

I Every disk is managed by a process called a tractserver.

I Trackservers accept commands from the network, e.g., ReadTrack
and WriteTrack.

I They do not use file systems.
• They lay out tracts directly to disk by using the raw disk interface.
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Metadata Server

I Metadata server coordinates the cluster and helps clients rendezvous
with tractservers.

I It collects a list of active tractservers and distribute it to clients.

I This list is called the tract locator table (TLT).

I Clients can retrieve the TLT from the metadata server once, then
never contact the metadata server again.
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Track Locator Table (1/2)

I TLT contains the address of the tractserver(s) responsible for tracts.

I Clients use the blob’s GUID (g) and the tract number (i) to select
an entry in the TLT: tract locator

TractLocator = (Hash(g) + i) mod TLT Length
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Track Locator Table (2/2)

I The only time the TLT changes is when a disk fails or is added.

I Reads and writes do not change the TLT.

I In a system with more than one replica, reads go to one replica at
random, and writes go to all of them.
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Per-Blob Metadata

I Per-blob metadata: blob’s length and permission bits.

I Stored in tract -1 of each blob.

I The trackserver is responsible for the blob metadata tract.

I Newly created blobs have a length of zero, and applications must
extend a blob before writing. The extend operation is atomic.
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Fault Tolerance
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Replication

I Replicate data to improve durability and availability.

I When a disk fails, redundant copies of the lost data are used to
restore the data to full replication.

I Writes a tract: the client sends the write to every tractserver it
contains.

• Applications are notified that their writes have completed only after
the client library receives write ack from all replicas.

I Reads a tract: the client selects a single tractserver at random.
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Failure Recovery (1/2)

I Step 1: Tractservers send heartbeat messages to the metadata
server. When the metadata server detects a tractserver timeout,
it declares the tractserver dead.

I Step 2: invalidates the current TLT by incrementing the version
number of each row in which the failed tractserver appears.

I Step 3: picks random tractservers to fill in the empty spaces in the
TLT where the dead tractserver appeared.
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Failure Recovery (2/2)

I Step 4: sends updated TLT assignments to every server affected by
the changes.

I Step 5: waits for each tractserver to ack the new TLT assignments,
and then begins to give out the new TLT to clients when queried
for it.
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Summary
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Summary

I Google File System (GFS)

I Files and chunks

I GFS architecture: master, chunk servers, client

I GFS interactions: read and update (write and update record)

I Master operations: metadata management, replica placement and
garbage collection

Amir H. Payberah (KTH) Large Scale File Systems 2016/09/01 63 / 65



Summary

I Flat Datacenter Storage (FDS)

I Blobs and tracks

I FDS architecture: Metadata server, trackservers, TLT

I FDS interactions: using GUID and track number

I Replication and failure recovery
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Questions?
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