
Resource Management
Mesos and YARN

Amir H. Payberah
amir@sics.se

KTH Royal Institute of Technology

Amir H. Payberah (KTH) Resource Management 2016/10/14 1 / 49



Motivation

I Rapid innovation in cloud computing.

I No single framework optimal for all applications.

Amir H. Payberah (KTH) Resource Management 2016/10/14 2 / 49



Motivation

I Rapid innovation in cloud computing.

I No single framework optimal for all applications.

I Running each framework on its dedicated cluster:
• Expensive
• Hard to share data

Amir H. Payberah (KTH) Resource Management 2016/10/14 2 / 49



Proposed Solution

I Running multiple frameworks on a single cluster.

I Maximize utilization and share data between frameworks.

I Two resource management systems:
• Mesos
• YARN

Amir H. Payberah (KTH) Resource Management 2016/10/14 3 / 49



Mesos

Amir H. Payberah (KTH) Resource Management 2016/10/14 4 / 49



Mesos

Mesos

A common resource sharing layer, over which diverse
frameworks can run

Amir H. Payberah (KTH) Resource Management 2016/10/14 5 / 49



Mesos

Mesos

A common resource sharing layer, over which diverse
frameworks can run

Amir H. Payberah (KTH) Resource Management 2016/10/14 5 / 49



Mesos Goals

I High utilization of resources

I Support diverse frameworks (current and future)

I Scalability to 10,000’s of nodes

I Reliability in face of failures

Amir H. Payberah (KTH) Resource Management 2016/10/14 6 / 49



Computation Model

I A framework (e.g., Hadoop, Spark) manages and runs one or more
jobs.

I A job consists of one or more tasks.

I A task (e.g., map, reduce) consists of one or more processes running
on same machine.

Amir H. Payberah (KTH) Resource Management 2016/10/14 7 / 49



Computation Model

I A framework (e.g., Hadoop, Spark) manages and runs one or more
jobs.

I A job consists of one or more tasks.

I A task (e.g., map, reduce) consists of one or more processes running
on same machine.

Amir H. Payberah (KTH) Resource Management 2016/10/14 7 / 49



Computation Model

I A framework (e.g., Hadoop, Spark) manages and runs one or more
jobs.

I A job consists of one or more tasks.

I A task (e.g., map, reduce) consists of one or more processes running
on same machine.

Amir H. Payberah (KTH) Resource Management 2016/10/14 7 / 49



Computation Model

I A framework (e.g., Hadoop, Spark) manages and runs one or more
jobs.

I A job consists of one or more tasks.

I A task (e.g., map, reduce) consists of one or more processes running
on same machine.

Amir H. Payberah (KTH) Resource Management 2016/10/14 7 / 49



Mesos Design Elements

I Fine-grained sharing

I Resource offers

Amir H. Payberah (KTH) Resource Management 2016/10/14 8 / 49



Fine-Grained Sharing

I Allocation at the level of tasks within a job.

I Improves utilization, latency, and data locality.

Coarse-grained sharing Fine-grained sharing

Amir H. Payberah (KTH) Resource Management 2016/10/14 9 / 49



Resource Offer

I Offer available resources to frameworks, let them pick which re-
sources to use and which tasks to launch.

I Keeps Mesos simple, lets it support future frameworks.

Amir H. Payberah (KTH) Resource Management 2016/10/14 10 / 49



Question?

How to schedule resource offering among frameworks?

Amir H. Payberah (KTH) Resource Management 2016/10/14 11 / 49



Schedule Frameworks

I Global scheduler

I Distributed scheduler

Amir H. Payberah (KTH) Resource Management 2016/10/14 12 / 49



Global Scheduler (1/2)

I Job requirements
• Response time
• Throughput
• Availability

I Job execution plan
• Task DAG
• Inputs/outputs

I Estimates
• Task duration
• Input sizes
• Transfer sizes

Amir H. Payberah (KTH) Resource Management 2016/10/14 13 / 49



Global Scheduler (2/2)

I Advantages
• Can achieve optimal schedule.

I Disadvantages
• Complexity: hard to scale and ensure resilience.
• Hard to anticipate future frameworks requirements.
• Need to refactor existing frameworks.

Amir H. Payberah (KTH) Resource Management 2016/10/14 14 / 49



Distributed Scheduler (1/3)

Amir H. Payberah (KTH) Resource Management 2016/10/14 15 / 49



Distributed Scheduler (2/3)

I Unit of allocation: resource offer
• Vector of available resources on a node
• For example, node1: 〈1CPU, 1GB〉, node2: 〈4CPU, 16GB〉

I Master sends resource offers to frameworks.

I Frameworks select which offers to accept and which tasks to run.

Amir H. Payberah (KTH) Resource Management 2016/10/14 16 / 49



Distributed Scheduler (3/3)

I Advantages
• Simple: easier to scale and make resilient.
• Easy to port existing frameworks, support new ones.

I Disadvantages
• Distributed scheduling decision: not optimal.

Amir H. Payberah (KTH) Resource Management 2016/10/14 17 / 49



Mesos Architecture (1/4)

I Slaves continuously send status updates about resources to the Master.

Amir H. Payberah (KTH) Resource Management 2016/10/14 18 / 49



Mesos Architecture (2/4)

I Pluggable scheduler picks framework to send an offer to.

Amir H. Payberah (KTH) Resource Management 2016/10/14 19 / 49



Mesos Architecture (3/4)

I Framework scheduler selects resources and provides tasks.

Amir H. Payberah (KTH) Resource Management 2016/10/14 20 / 49



Mesos Architecture (4/4)

I Framework executors launch tasks.

Amir H. Payberah (KTH) Resource Management 2016/10/14 21 / 49



Question?

How to allocate resources of different types?

Amir H. Payberah (KTH) Resource Management 2016/10/14 22 / 49



Single Resource: Fair Sharing

I n users want to share a resource, e.g., CPU.
• Solution: allocate each 1

n of the shared resource.

CPU

I Generalized by max-min fairness.
• Handles if a user wants less than its fair share.
• E.g., user 1 wants no more than 20%.

I Generalized by weighted max-min fairness.
• Give weights to users according to importance.
• E.g., user 1 gets weight 1, user 2 weight 2.

Amir H. Payberah (KTH) Resource Management 2016/10/14 23 / 49



Single Resource: Fair Sharing

I n users want to share a resource, e.g., CPU.
• Solution: allocate each 1

n of the shared resource.

CPU

I Generalized by max-min fairness.
• Handles if a user wants less than its fair share.
• E.g., user 1 wants no more than 20%.

I Generalized by weighted max-min fairness.
• Give weights to users according to importance.
• E.g., user 1 gets weight 1, user 2 weight 2.

Amir H. Payberah (KTH) Resource Management 2016/10/14 23 / 49



Single Resource: Fair Sharing

I n users want to share a resource, e.g., CPU.
• Solution: allocate each 1

n of the shared resource.

CPU

I Generalized by max-min fairness.
• Handles if a user wants less than its fair share.
• E.g., user 1 wants no more than 20%.

I Generalized by weighted max-min fairness.
• Give weights to users according to importance.
• E.g., user 1 gets weight 1, user 2 weight 2.

Amir H. Payberah (KTH) Resource Management 2016/10/14 23 / 49



Max-Min Fairness

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)
subject to
x+ 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

Amir H. Payberah (KTH) Resource Management 2016/10/14 24 / 49



Max-Min Fairness

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)

subject to
x+ 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

Amir H. Payberah (KTH) Resource Management 2016/10/14 24 / 49



Max-Min Fairness

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)
subject to
x+ 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

Amir H. Payberah (KTH) Resource Management 2016/10/14 24 / 49



Max-Min Fairness

I 1 resource: CPU

I Total resources: 20 CPU

I User 1 has x tasks and wants 〈1CPU〉 per task

I User 2 has y tasks and wants 〈2CPU〉 per task

max(x, y) (maximize allocation)
subject to
x+ 2y ≤ 20 (CPU constraint)
x = 2y

so
x = 10

y = 5

Amir H. Payberah (KTH) Resource Management 2016/10/14 24 / 49



Why is Fair Sharing Useful?

I Proportional allocation: user 1 gets weight 2, user 2 weight 1.

I Priorities: give user 1 weight 1000, user 2 weight 1.

I Reservations: ensure user 1 gets 10% of a resource, so give user 1
weight 10, sum weights ≤ 100.

I Isolation policy: users cannot affect others beyond their fair share.

Amir H. Payberah (KTH) Resource Management 2016/10/14 25 / 49



Properties of Max-Min Fairness

I Share guarantee
• Each user can get at least 1

n of the resource.
• But will get less if her demand is less.

I Strategy proof
• Users are not better off by asking for more than they need.
• Users have no reason to lie.

I Max-Min fairness is the only reasonable mechanism with these two
properties.

I Widely used: OS, networking, datacenters, ...

Amir H. Payberah (KTH) Resource Management 2016/10/14 26 / 49



Properties of Max-Min Fairness

I Share guarantee
• Each user can get at least 1

n of the resource.
• But will get less if her demand is less.

I Strategy proof
• Users are not better off by asking for more than they need.
• Users have no reason to lie.

I Max-Min fairness is the only reasonable mechanism with these two
properties.

I Widely used: OS, networking, datacenters, ...

Amir H. Payberah (KTH) Resource Management 2016/10/14 26 / 49



Question?

When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,
CPU, memory, etc.

Amir H. Payberah (KTH) Resource Management 2016/10/14 27 / 49



Question?

When is Max-Min Fairness NOT Enough?

Need to schedule multiple, heterogeneous resources, e.g.,
CPU, memory, etc.

Amir H. Payberah (KTH) Resource Management 2016/10/14 27 / 49



Problem

I Single resource example
• 1 resource: CPU
• User 1 wants 〈1CPU〉 per task
• User 2 wants 〈2CPU〉 per task

I Multi-resource example
• 2 resources: CPUs and mem
• User 1 wants 〈1CPU, 4GB〉 per task
• User 2 wants 〈2CPU, 1GB〉 per task

• What is a fair allocation?

Amir H. Payberah (KTH) Resource Management 2016/10/14 28 / 49



Problem

I Single resource example
• 1 resource: CPU
• User 1 wants 〈1CPU〉 per task
• User 2 wants 〈2CPU〉 per task

I Multi-resource example
• 2 resources: CPUs and mem
• User 1 wants 〈1CPU, 4GB〉 per task
• User 2 wants 〈2CPU, 1GB〉 per task

• What is a fair allocation?

Amir H. Payberah (KTH) Resource Management 2016/10/14 28 / 49



Problem

I Single resource example
• 1 resource: CPU
• User 1 wants 〈1CPU〉 per task
• User 2 wants 〈2CPU〉 per task

I Multi-resource example
• 2 resources: CPUs and mem
• User 1 wants 〈1CPU, 4GB〉 per task
• User 2 wants 〈2CPU, 1GB〉 per task

• What is a fair allocation?

Amir H. Payberah (KTH) Resource Management 2016/10/14 28 / 49



A Natural Policy (1/2)

I Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and
equalize total value given to each user.

I Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
• User 1 has x tasks and wants 〈1CPU, 2GB〉 per task
• User 2 has y tasks and wants 〈1CPU, 4GB〉 per task

I Asset fairness yields:

max(x, y)
x+ y ≤ 28

2x+ 4y ≤ 56

4x = 6y

User 1: x = 12: 〈43%CPU, 43%GB〉 (
∑

= 86%)
User 2: y = 8: 〈28%CPU, 57%GB〉 (

∑
= 86%)

Amir H. Payberah (KTH) Resource Management 2016/10/14 29 / 49



A Natural Policy (1/2)

I Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and
equalize total value given to each user.

I Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
• User 1 has x tasks and wants 〈1CPU, 2GB〉 per task
• User 2 has y tasks and wants 〈1CPU, 4GB〉 per task

I Asset fairness yields:

max(x, y)
x+ y ≤ 28

2x+ 4y ≤ 56

4x = 6y

User 1: x = 12: 〈43%CPU, 43%GB〉 (
∑

= 86%)
User 2: y = 8: 〈28%CPU, 57%GB〉 (

∑
= 86%)

Amir H. Payberah (KTH) Resource Management 2016/10/14 29 / 49



A Natural Policy (1/2)

I Asset fairness: give weights to resources (e.g., 1 CPU = 1 GB) and
equalize total value given to each user.

I Total resources: 28 CPU and 56GB RAM (e.g., 1 CPU = 2 GB)
• User 1 has x tasks and wants 〈1CPU, 2GB〉 per task
• User 2 has y tasks and wants 〈1CPU, 4GB〉 per task

I Asset fairness yields:

max(x, y)
x+ y ≤ 28

2x+ 4y ≤ 56

4x = 6y

User 1: x = 12: 〈43%CPU, 43%GB〉 (
∑

= 86%)
User 2: y = 8: 〈28%CPU, 57%GB〉 (

∑
= 86%)

Amir H. Payberah (KTH) Resource Management 2016/10/14 29 / 49



A Natural Policy (2/2)

I Problem: violates share grantee.

I User 1 gets less than 50% of both CPU and RAM.

I Better off in a separate cluster with half the resources.

Amir H. Payberah (KTH) Resource Management 2016/10/14 30 / 49



Challenge

I Can we find a fair sharing policy that provides:
• Share guarantee
• Strategy-proofness

I Can we generalize max-min fairness to multiple resources?

Amir H. Payberah (KTH) Resource Management 2016/10/14 31 / 49



Proposed Solution

Dominant Resource Fairness (DRF)

Amir H. Payberah (KTH) Resource Management 2016/10/14 32 / 49



Dominant Resource Fairness (DRF) (1/2)

I Dominant resource of a user: the resource that user has the biggest
share of.

• Total resources: 〈8CPU, 5GB〉
• User 1 allocation: 〈2CPU, 1GB〉

2
8
= 25%CPU and 1

5
= 20%RAM

• Dominant resource of User 1 is CPU (25% > 20%)

I Dominant share of a user: the fraction of the dominant resource she
is allocated.

• User 1 dominant share is 25%.

Amir H. Payberah (KTH) Resource Management 2016/10/14 33 / 49



Dominant Resource Fairness (DRF) (1/2)

I Dominant resource of a user: the resource that user has the biggest
share of.

• Total resources: 〈8CPU, 5GB〉
• User 1 allocation: 〈2CPU, 1GB〉

2
8
= 25%CPU and 1

5
= 20%RAM

• Dominant resource of User 1 is CPU (25% > 20%)

I Dominant share of a user: the fraction of the dominant resource she
is allocated.

• User 1 dominant share is 25%.

Amir H. Payberah (KTH) Resource Management 2016/10/14 33 / 49



Dominant Resource Fairness (DRF) (2/2)

I Apply max-min fairness to dominant shares: give every user an equal
share of her dominant resource.

I Equalize the dominant share of the users.
• Total resources: 〈9CPU, 18GB〉
• User 1 wants 〈1CPU, 4GB〉; Dominant resource: RAM 1

9
< 4

18
• User 2 wants 〈3CPU, 1GB〉; Dominant resource: CPU 3

9
> 1

18

I max(x, y)
x+ 3y ≤ 9

4x+ y ≤ 18
4x
18

= 3y
9

User 1: x = 3: 〈33%CPU, 66%GB〉
User 2: y = 2: 〈66%CPU, 16%GB〉

Amir H. Payberah (KTH) Resource Management 2016/10/14 34 / 49



Dominant Resource Fairness (DRF) (2/2)

I Apply max-min fairness to dominant shares: give every user an equal
share of her dominant resource.

I Equalize the dominant share of the users.
• Total resources: 〈9CPU, 18GB〉
• User 1 wants 〈1CPU, 4GB〉; Dominant resource: RAM 1

9
< 4

18
• User 2 wants 〈3CPU, 1GB〉; Dominant resource: CPU 3

9
> 1

18

I max(x, y)
x+ 3y ≤ 9

4x+ y ≤ 18
4x
18

= 3y
9

User 1: x = 3: 〈33%CPU, 66%GB〉
User 2: y = 2: 〈66%CPU, 16%GB〉

Amir H. Payberah (KTH) Resource Management 2016/10/14 34 / 49



Dominant Resource Fairness (DRF) (2/2)

I Apply max-min fairness to dominant shares: give every user an equal
share of her dominant resource.

I Equalize the dominant share of the users.
• Total resources: 〈9CPU, 18GB〉
• User 1 wants 〈1CPU, 4GB〉; Dominant resource: RAM 1

9
< 4

18
• User 2 wants 〈3CPU, 1GB〉; Dominant resource: CPU 3

9
> 1

18

I max(x, y)
x+ 3y ≤ 9

4x+ y ≤ 18
4x
18

= 3y
9

User 1: x = 3: 〈33%CPU, 66%GB〉
User 2: y = 2: 〈66%CPU, 16%GB〉

Amir H. Payberah (KTH) Resource Management 2016/10/14 34 / 49



Online DRF Scheduler

I Whenever there are available resources and tasks to run:
Schedule a task to the user with the smallest dominant share.

Amir H. Payberah (KTH) Resource Management 2016/10/14 35 / 49



YARN

Amir H. Payberah (KTH) Resource Management 2016/10/14 36 / 49



YARN

YARN

Yet Another Resource Negotiator

Amir H. Payberah (KTH) Resource Management 2016/10/14 37 / 49



YARN Architecture

I Resource Manager (RM)

I Application Master (AM)

I Node Manager (NM)

Amir H. Payberah (KTH) Resource Management 2016/10/14 38 / 49



YARN Architecture - Resource Manager (1/2)

I One per cluster
• Central: global view
• Enable global properties
• Fairness, capacity, locality

I Job requests are submitted to RM.
• To start a job (application), RM finds a container to spawn AM.

I Container
• Logical bundle of resources (CPU/memory).

I No static resource partitioning.

Amir H. Payberah (KTH) Resource Management 2016/10/14 39 / 49



YARN Architecture - Resource Manager (2/2)

I Only handles an overall resource profile for each application.
• Local optimization is up to the application.

I Preemption
• Request resources back from an application.
• Checkpoint snapshot instead of explicitly killing jobs / migrate

computation to other containers.

Amir H. Payberah (KTH) Resource Management 2016/10/14 40 / 49



YARN Architecture - Application Manager (1/2)

I The head of a job.

I Runs as a container.

I Request resources from RM.
• # of containers/resource per container/locality ...

I Dynamically changing resource consumption,
based on the containers it receives from the RM.

Amir H. Payberah (KTH) Resource Management 2016/10/14 41 / 49



YARN Architecture - Application Manager (2/2)

I Requests are late-binding.
• The process spawned is not bound to the request, but to the lease.
• The conditions that caused the AM to issue the request may not

remain true when it receives its resources.

I Can run any user code, e.g., MapReduce, Spark, etc.

I AM determines the semantics of the success or failure of the con-
tainer.

Amir H. Payberah (KTH) Resource Management 2016/10/14 42 / 49



YARN Architecture - Node Manager (1/2)

I The worker daemon.

I Registers with RM.

I One per node.

I Report resources to RM: memory, CPU, ...

I Containers are described by a Container Launch Context (CLC).
• The command necessary to create the process
• Environment variables
• Security tokens
• ...

Amir H. Payberah (KTH) Resource Management 2016/10/14 43 / 49



YARN Architecture - Node Manager (2/2)

I Configure the environment for task execution.

I Garbage collection.

I Auxiliary services.
• A process may produce data that persist beyond the life of the

container.
• Output intermediate data between map and reduce tasks.

Amir H. Payberah (KTH) Resource Management 2016/10/14 44 / 49



YARN Framework (1/2)

I Submitting the application: passing a CLC for the AM to the RM.

I When RM starts the AM, it should register with the RM.
• Periodically advertise its liveness and requirements over the

heartbeat protocol.

Amir H. Payberah (KTH) Resource Management 2016/10/14 45 / 49



YARN Framework (2/2)

I Once the RM allocates a container, AM can construct a CLC to
launch the container on the corresponding NM.

• It monitors the status of the running container and stop it when the
resource should be reclaimed.

I Once the AM is done with its work, it should unregister from the
RM and exit cleanly.

Amir H. Payberah (KTH) Resource Management 2016/10/14 46 / 49



Summary

Amir H. Payberah (KTH) Resource Management 2016/10/14 47 / 49



Summary

I Mesos
• Offered-based
• Max-Min fairness: DRF

I YARN
• Request-based
• RM, AM, NM

Amir H. Payberah (KTH) Resource Management 2016/10/14 48 / 49



Questions?

Acknowledgements

Some slides were derived from Ion Stoica and Ali Ghodsi slides
(Berkeley University), and Wei-Chiu Chuang slides (Purdue University).

Amir H. Payberah (KTH) Resource Management 2016/10/14 49 / 49


