NoSQL Databases

Amir H. Payberah

amir@sics.se

KTH Royal Institute of Technology

Database and Database Management System

» Database: an organized collection of data.

» Database Management System (DBMS): a software that interacts
with users, other applications, and the database itself to capture
and analyze data.

Amir H. Payberah (KTH) NoSQL Databases 2016/09/05 2 /96

Relational Databases Management Systems (RDMBSs)

» RDMBSs: the dominant technology for storing structured data in

web and business applications.

» SQL is good
e Rich language and toolset
e Easy to use and integrate
* Many vendors

» They promise: ACID

Amir H. Payberah (KTH) NoSQL Databases 2016/09/05 3 /96

I
ACID Properties

» Atomicity
o All included statements in a transaction are either executed or the
whole transaction is aborted without affecting the database.

I
ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the
whole transaction is aborted without affecting the database.

» Consistency
* A database is in a consistent state before and after a transaction.

I
ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the
whole transaction is aborted without affecting the database.

» Consistency
* A database is in a consistent state before and after a transaction.

» Isolation
e Transactions can not see uncommitted changes in the database.

I
ACID Properties

» Atomicity
e All included statements in a transaction are either executed or the
whole transaction is aborted without affecting the database.
» Consistency
e A database is in a consistent state before and after a transaction.
» Isolation
e Transactions can not see uncommitted changes in the database.
» Durability

e Changes are written to a disk before a database commits a transaction
so that committed data cannot be lost through a power failure.

RDBMS Challenges

» Web-based applications caused spikes.
* Internet-scale data size

* High read-write rates i
e Frequent schema changes 8

8

facebook

Amir H. Payberah (KTH) NoSQL Databases 2016/09/05 5/ 96

B
Let's Scale RDBMSs

» RDBMS were not designed to be distributed.

» Possible solutions:

¢ Replication
e Sharding

Let's Scale RDBMSs - Replication

» Master/Slave architecture
Master Server

» Scales read operations '@

1]
il

Slave Server1 Slave Server2

BN
Let's Scale RDBMSs - Sharding

» Dividing the database across many machines.
» |t scales read and write operations.
» Cannot execute transactions across shards (partitions).
(
9\%;\
\\/
F R

P
8/8

-
Scaling RDBMSs is Expensive and Inefficient

/

o

System Cost

Users

Won't §
scale :
beyond 1
this |
point !

1

Application Response Time

[http://www.couchbase.com /sites/default/files /uploads/all /whitepapers/NoSQLWhitepaper.pdf]

2016/09/05

9/96

onSQL

Amir H. Payberah (KTH) NoSQL Databases 2016,/09/05 10 / 96

NoSQL

>

Avoidance of unneeded complexity

v

High throughput

v

Horizontal scalability and running on commodity hardware

v

Compromising reliability for better performance

I
NoSQL Cost and Performance

Application Response Time

System Cost

Users

[http://www.couchbase.com /sites/default/files /uploads/all /whitepapers/NoSQLWhitepaper.pdf]

RDBMS vs. NoSQL

Database Scale.i. Out
Just add more commodity databaseé servers |

2

/

System Cost

Users

[http://www.couchbase.com/sites/default/files /uploads/all /whitepapers/NoSQLWhitepaper.pdf]

Application Response Time

NoSQL Data Models

R
NoSQL Data Models

{ §

»

Key-Value Ordered Key-Value Column oriented :ﬁ“r’;‘;"é“mh Graph saL
o [m—a]
= | [w-a]
— [m-a]
] [m-a]

number and may p

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]

 AmirH.Paybersh (KTH) NoSQL Databases 2016/00/05 15 /96

BN
Key-Value Data Model

» Collection of key/value pairs.
» Ordered Key-Value: processing over key ranges.

» Dynamo, Scalaris, Voldemort, Riak, ...

N
Column-Oriented Data Model

v

Similar to a key/value store, but the value can have multiple at-
tributes (Columns).

v

Column: a set of data values of a particular type.

v

Store and process data by column instead of row.

v

BigTable, Hbase, Cassandra, ...

row-store column-store

R [£ e e e

— TRETT

 AmirH Pabersh (KTH) " NoSQLDatabases 2016/09/05 17/ 66

Document Data Model

» Similar to a column-oriented store, but values can have complex
documents, instead of fixed format.

» Flexible schema.
» XML, YAML, JSON, and BSON.
» CouchDB, MongoDB, ...

I
Graph Data Model

» Uses graph structures with nodes, edges, and properties to represent
and store data.

» Neo4J, InfoGrid, ...

[http://en.wikipedia.org/wiki/Graph_database]

Consistency

Consistency

» Strong consistency

o After an update completes, any subsequent access will return the
updated value.

readixi=xl writelxx2) read(xi=x2

A\

read(x)=x1 read(x)=x2

\

read(x)=x1 read(x)=x2

C

A\

Consistency

» Strong consistency

o After an update completes, any subsequent access will return the
updated value.

readix)=xl wrtefx.x2) _ readix)=x2

Yy

read(x)=x1 read(x)=x2

reag(x)=x1 read(x)=x2

C

A\

» Eventual consistency

¢ Does not guarantee that subsequent accesses will return the
updated value.

¢ Inconsistency window.

e If no new updates are made to the object, eventually all accesses
will return the last updated value.

read(=xl write(xx2) _readix)=x1 resd(xi=x2

A

Yy

read(x)=xL read(x)=x1 readix)=x2

read(x1=x1 read(x)=x2 read(x=x2

Inconsistency Window

Quorum Model

N: the number of nodes to which a data item is replicated.

R: the number of nodes a value has to be read from to be accepted.

v

v

W: the number of nodes a new value has to be written to before
the write operation is finished.

v

To enforce strong consistency: R+ W > N

v

Amir H. Payberah (KTH) NoSQL Databases 2016,/09/05 22 /96

N
Quorum Model

N: the number of nodes to which a data item is replicated.

R: the number of nodes a value has to be read from to be accepted.

v

v

W: the number of nodes a new value has to be written to before
the write operation is finished.

v

To enforce strong consistency: R+ W > N

v

 AmirH.Paybersh (KTH) s e 2016/09/05 23/ 36

NSNS
Consistency vs. Availability

» The large-scale applications have to be reliable: availability + re-
dundancy

» These properties are difficult to achieve with ACID properties.

» The BASE approach forfeits the ACID properties of consistency and
isolation in favor of availability, graceful degradation, and perfor-
mance.

I
BASE Properties

» Basic Availability
¢ Possibilities of faults but not a fault of the whole system.

» Soft-state
» Copies of a data item may be inconsistent

» Eventually consistent

» Copies becomes consistent at some later time if there are no more
updates to that data item

B
CAP Theorem

» Consistency
» Consistent state of data after the execution of an operation.
» Availability
e Clients can always read and write data.
» Partition Tolerance
* Continue the operation in the presence of network partitions.
%&J‘S"ﬂm gigTaNe
» You can choose only two!

Dynam
Voldemort
Cassandra
CouchDB

Visual Guide to NoSQL Systems

Availability:
Data Models | Key-Va 1t
Column-Qrientec abular

Document-Oriented

C andra
SimpleDB

CouchDB

Riak

Pick Two

P

Consistency: CcP Partition Tolerance:
I - . E t W
E MongoDB erkeley DB ! pite pt !l
Terrastore MemcacheDB ! partitiol
Scalaris e

Amir H. Payberah (KTH) NoSQL Databases 2016,/09/05 26

Dyanmo

Dynamo

» Distributed key/value storage system

» Scalable and Highly available

» CAP: it sacrifices strong consistency for availability: always writable

Data Model

N
Data Model

{ §

Key-Value Ordered Key-Value Column oriented Document, Graph saL
Full-Text Search

»

number and may p

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]

 AmirH.Paybersh (KTH) NoSQL Databases 2016/00/05 30 /96

-
Partitioning

» Key/value, where values are stored as objects.

> If size of data exceeds the capacity of a single machine: partitioning

 AmirH Pabersh (KTH) " NoSQLDatabases 2016/09/05 3196

-
Partitioning

» Key/value, where values are stored as objects.
> If size of data exceeds the capacity of a single machine: partitioning

» Consistent hashing is one form of sharding (partitioning).

2016,/09/05 31/96

BN
Consistent Hashing

» Hash both data and nodes using the same hash function in a same
id space.

» partition = hash(d) mod n, d: data, n: number of nodes

Consistent Hashing

» Hash both data and nodes using the same hash function in a same
id space.

» partition = hash(d) mod n, d: data, n: number of nodes

hash("Fatemeh") = 12
hash("Ahmad") = 2
hash("Seif") = 9
hash("Jim") = 14
hash("Sverker") = 4

I
Load Imbalance (1/4)

» Consistent hashing may lead to imbalance.

» Node identifiers may not be balanced.

I
Load Imbalance (2/4)

» Consistent hashing may lead to imbalance.

» Data identifiers may not be balanced.

® - node
m - data

I
Load Imbalance (3/4)

» Consistent hashing may lead to imbalance.

» Hot spots. jim.mp3

fatemeh.mp3

tallat.mp3

adele.mp3

@ - node
H - data

I
Load Imbalance (4/4)

» Consistent hashing may lead to imbalance.

» Heterogeneous nodes.

® - node
um - data

Load Balancing via Virtual Nodes

» Each physical node picks multiple random identifiers.
» Each identifier represents a virtual node.

» Each node runs multiple virtual nodes.

—

Replication

» To achieve high availability and durability, data should be replicates
on multiple nodes.

2016/09/05 38 / 96

Data Consistency

Data Consistency

» Eventual consistency: updates are propagated asynchronously.

» Each update/modification of an item results in a new and immutable
version of the data.

e Multiple versions of an object may exist.

» Replicas eventually become consistent.

.
Data Versioning (1/2)

» Use vector clocks for capturing causality, in the form of (node,
counter)
o |If causal: older version can be forgotten
e |If concurrent: conflict exists, requiring reconciliation

.
Data Versioning (1/2)

» Use vector clocks for capturing causality, in the form of (node,
counter)
o |If causal: older version can be forgotten
e |If concurrent: conflict exists, requiring reconciliation

» Version branching can happen due to node/network failures.

e ————————————
Data Versioning (2/2)

» Client C1 writes new object via Sx.
l =
handled by Sx

D1 ([Sx,1])
J write
handled by Sx
D2 ([Sx,2])

write write
handied by Sy handled by Sz

D3 ([Sx.2].[Sy.1]) D4 ([Sx.2].[Sz.1])

reconciled
and written by
Sx

D5 ([Sx,31,[Sy.1][Sz,1])

.
Data Versioning (2/2)

» Client C1 writes new object via Sx.

write
handled by Sx

» C1 updates the object via Sx.
D1 ([Sx,1])

J write
handled by Sx
D2 ([Sx,2])

write write
handied by Sy handled by Sz

D3 ([Sx,2].[Sy.1]) D4 ([Sx.2].[Sz.1])

reconciled
and written by
Sx

D5 ([Sx,31,[Sy.1][Sz,1])

.
Data Versioning (2/2)

» Client C1 writes new object via Sx.

write
» C1 updates the object via Sx. J"a"d'edbysx
D1 ([Sx.1])

» C1 updates the object via Sy. J o wite
an y Sx
D2 ([Sx.2])

write write
handied by Sy handled by Sz

D3 ([Sx,2].[Sy.1]) D4 ([Sx.2].[Sz.1])

reconciled
and written by
Sx

D5 ([Sx,31,[Sy.1][Sz,1])

.
Data Versioning (2/2)

v

Client C1 writes new object via Sx.

write
handled by Sx

» C1 updates the object via Sx.
D1 ([Sx,1])
» C1 updates the object via Sy. J write
handled by Sx
» (2 reads D2 and updates the D2 ([Sx.2])
object via Sz. write write
handied by Sy / \:randlsd by Sz

D3 ([Sx,2].[Sy.1]) D4 ([Sx.2].[Sz.1])

reconciled
and written by
Sx

D5 ([Sx,31,[Sy.1][Sz,1])

-
Data Versioning (2/2)

v

Client C1 writes new object via Sx.

write
handled by Sx

» C1 updates the object via Sx.
D1 ([Sx,1])
» C1 updates the object via Sy. l write
handled by Sx
» C2 reads D2 and updates the D2 (1Sx.2])
object via Sz. i wrils
handled by Sy / \randled by Sz
» C3 reads D3 and D4 via Sx. D3 (ISx2LiSyAl) D4 (Sx.211Sz.1])
e The read context is a S
summary of the clocks of D3 \ /andwntten by

and D4: [(Sx, 2), (Sy, 1), (Sz, 1)]. P

 AmirH Pabersh (KTH) " NoSQLDatabases s016/09/05 42 /96

-
Data Versioning (2/2)

» Client C1 writes new object via Sx.

write
handled by Sx

» C1 updates the object via Sx.

D1 ([Sx,1])
» C1 updates the object via Sy. l write
handled by Sx
» C2 reads D2 and updates the D2 (1Sx.2])
object via Sz. write write
handled by Sy / \randled by Sz
» C3 reads D3 and D4 via Sx. D3 (Sx211SyA]) D4 (Sx.21.[52.1])
e The read context is a roconciod
summary of the clocks of D3 \ /andwntten by

and D4: [(Sx, 2), (Sy, 1), (Sz, 1)]. P

» Reconciliation

 AmirH Pabersh (KTH) " NoSQLDatabases s016/09/05 42 /96

Dynamo API

BN
Dynamo API

> get(key)
e Return single object or list of objects with conflicting version and
context.

» put(key, context, object)
e Store object and context under key.
e Context encodes system metadata, e.g., version number.

put Operation

» Coordinator generates new vector clock and writes the new version
locally.

» Send to N nodes.

» Wait for response from W nodes.

NN
get Operation

v

Coordinator requests existing versions from N.
¢ Wait for response from R nodes.

v

If multiple versions, return all versions that are causally unrelated.

v

Divergent versions are then reconciled.

v

Reconciled version written back.

Sloppy Quorum

» Due to partitions, quorums might not exist.
Sloppy quorum.

Create transient replicas: N healthy
nodes from the preference list.

¢ Reconcile after partition heals.

Sloppy Quorum

» Due to partitions, quorums might not exist.
* Sloppy quorum.
o Create transient replicas: N healthy
nodes from the preference list.
¢ Reconcile after partition heals.

» Say A is unreachable.

» put will use D.

» Later, D detects A is alive.

e Sends the replica to A
¢ Removes the replica. TR

Membership Management

Membership Management

» Administrator explicitly adds and removes nodes.

» Gossiping to propagate membership changes.

¢ Eventually consistent view.
» O(1) hop overlay.

Adding and Removing Nodes

» A new node X added to system.

e X is assigned key ranges w.r.t. its virtual servers.
e For each key range, it transfers the data items.

X=Data\(X,B)
Data=Data\(A,X)
Drop G

X=B\(X,B)
B=B\(AX)
Drop A

-
Adding and Removing Nodes

» A new node X added to system.

e X is assigned key ranges w.r.t. its virtual servers.
e For each key range, it transfers the data items.

X=Data\(X,B)
Data=Data\(A,X)
Drop G

X=B\(X,B)
B=B\(AX)
Drop A

» Removing a node: reallocation of keys is a reverse process of adding
nodes.

 AmirH Pabersh (KTH) " NoSQLDatabases TR

L
Failure Detection (1/2)

» Passive failure detection.
» Use pings only for detection from failed to alive.

» In the absence of client requests, node A doesn't need to know if
node B is alive.

-
Failure Detection (2/2)

» Anti-entropy for replica synchronization.

» Use Merkle trees for fast inconsistency detection and minimum
transfer of data.

Data items: D2, D3, D4, D5

 AmirH Pabersh (KTH) " NoSQLDatabases 2016/09/05 52/ 96

-
Failure Detection (2/2)

» Anti-entropy for replica synchronization.

» Use Merkle trees for fast inconsistency detection and minimum
transfer of data.
e Nodes maintain Merkle tree of each key range.
e Exchange root of Merkle tree to check if the key ranges are updated.

Data items: D2, D3, D4, D5

 AmirH Pabersh (KTH) " NoSQLDatabases 2016/09/05 52/ 96

BigTable

Motivation

» Lots of (semi-)structured data at Google.
e URLs, TextGreenper-user data, geographical locations, ...

» Big data
¢ Billions of URLs, hundreds of millions of users, 100+TB of satellite
image data, ...

BN
BigTable

v

Distributed multi-level map

Fault-tolerant

v

v

Scalable and self-managing

v

CAP: strong consistency and partition tolerance

e

g..;w.'rn ® v

Data Model

N
Data Model

{ §

Key-Value Ordered Key-Value Column oriented Document, Graph saL
Full-Text Search

»

number and may p

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]

 AmirH.Paybersh (KTH) NoSQL Databases 2016/00/05 57 /96

- |
Column-Oriented Data Model (1/2)

» Similar to a key/value store, but the value can have multiple at-
tributes (Columns).

» Column: a set of data values of a particular type.

» Store and process data by column instead of row.

row-store column-store

(50 S [I e Y sl o cusomee v

— ek

2016/09/05 58 / 96

Columns-Oriented Data Model (2/2)

» In many analytical databases queries, few attributes are needed.

» Column values are stored contiguously on disk: reduces |/0.

&

-4

3 [fowt [[p/mbse spachears 3664 o home JGreatioat_T <hink> <heae><irk>Haai e <
g_lwd big:/hrsgewge.om 1337 linclard__| <NULL> <hiral><body Newest Psts.

3 [Row3 [T e fooarcamidectnd_J ot | N> [Fead bautt_] 40 Fage ot fund

us
wid Jul el _short_d] ttle desciption [content
g [vocuson GnRE) e
£ [1 [mpsmbaeamcieny | 360 HBaseome[Grattool <t <head><ilesHiase Home<ti..
E heplasgeagecon | 1337 Undand [<UL [<html> <bedy-NwesPst..
3 W [<Nuti> | Redabautit. 104 Pae rotfourd.
4 00001 [Sporthews | Sccer Hews_[<im><bedy>esuts Reviews, .

How o e ——
] s o o w————
2 |oistue o e I R TS B
£ [[Q> | fedworie. | Socatn__]-
3 [ot] T ot Pagrotfond.] <htmi> <oy Rty]

[.|

[Lars George, “Hbase: The Definitive Guide”, O'Reilly, 2011]

Amir H. Payberah (KTH) NoSQL Databases 2016,/09/05 59 / 96

BN
BigTable Data Model (1/5)

» Table

» Distributed multi-dimensional sparse map

BN
BigTable Data Model (2/5)

» Rows
» Every read or write in a row is atomic.

» Rows sorted in lexicographical order.

“com.cnn.www” 3

BN
BigTable Data Model (3/5)

Column

v

The basic unit of data access.

v

v

Column families: group of (the same type) column keys.

v

Column key naming: family:qualifier

Column family Column family
F_J;\ﬁ —- ~
“content:.” “anchor:cnnsi.com” “anchor:my.look.ca

. f

, ! '

“com.cnn.www’ L g

BN
BigTable Data Model (4/5)

» Timestamp

» Each column value may contain multiple versions.

“content:” “anchor:cnnsi.com” “anchor:my.look.ca
i L L

“com.cnn.www’ g w.__“%s
125

BN
BigTable Data Model (5/5)

v

Tablet: contiguous ranges of rows stored together.

v

Tables are split by the system when they become too large.

v

Auto-Sharding

v

Each tablet is served by exactly one tablet server.

“content.” “anchor:cnnsi.com” “anchor:my.look.ca

“com.aaa”

“com.cnn.www”

“com.cnn.www/tech”

“content.” “anchor:cnnsi.com” “anchor:my.look.ca

“com.weather”

“com.wikipedia”

“com.zoom”

Bigtable API

BEESSNNNN——
The Bigtable API

» Metadata operations
» Create/delete tables, column families, change metadata

BEESSNNNN——
The Bigtable API

» Metadata operations
» Create/delete tables, column families, change metadata

» Writes: single-row, atomic
 write/delete cells in a row, delete all cells in a row

BEESSNNNN——
The Bigtable API

» Metadata operations
¢ Create/delete tables, column families, change metadata

» Writes: single-row, atomic
 write/delete cells in a row, delete all cells in a row

» Reads: read arbitrary cells in a Bigtable table

* Each row read is atomic.
e One row, all or specific columns, certain timestamps, and ...

|
Writing Example

NS
Reading Example

BigTable Architecture

BigTable Cell

BigTable Cell
BigTable Client
. BigTable Client
BigTable Master Library
Performs metadata ops
and load balancing
BigTable Tablet Server BigTable Tablet Server
| |
Serves data Serves data
Cluster scheduling system GFS Chubby
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election

Amir H. Payberah (KTH) NoSQL Databases 2016,/09/05 70 / 96

Main Components

» Master server
» Tablet server

» Client library

BigTable Cell
BigTable Client
. BigTable Client
BigTable Master Library
Performs ops.
and load i
r d
BigTable Tablet Server ' BigTable Tablet Server
| I— |
Serves data Serves data
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election

Master Server

One master server.

v

v

Assigns tablets to tablet server.

v

Balances tablet server load.

v

v

Garbage collection of unneeded files in GFS.

Handles schema changes, e.g., table and column family creations

BigTable Cell
BigTable Client
. BigTable Client
BigTable Master Library
Performs ops
and load
BigTable Tablet Server ' BigTable Tablet Server
| — |
Serves data Serves data
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election

2016/09/05

72 / 96

N
Tablet Server

» Many tablet servers.

» Can be added or removed dynamically.
» Each manages a set of tablets (typically 10-1000 tablets/server).
» Handles read/write requests to tablets.
» Splits tablets when too large. |Bs™ec! BigTable Glient
Performs ops
and load
i BigTable Tablet Server ; ' BigTable Tablet Server
Serves data Serves data
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election

 AmirH Pabersh (KTH) " NoSQLDatabases 2016/09/05 73/ 96

-
Client Library

» Library that is linked into every client.
» Client data does not move though the master.

» Clients communicate directly with tablet servers for reads/writes.

BigTable Cell
BigTable Client
- BigTable Client
BigTable Master Library
Performs ops
and load
r d
BigTable Tablet Server ' BigTable Tablet Server
| E— |
Serves data Serves data
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election

 AmirH Pabersh (KTH) " NoSQLDatabases s016/08/05 74 /96

Building Blocks

» The building blocks for the BigTable are:

Google File System (GFS): raw storage
Chubby: distributed lock manager
e Scheduler: schedules jobs onto machines

BigTable Cell
BigTable Client
q BigTable Client
BigTable Master Library
Performs ops
and load i
BigTable Tablet Server [BigTable Tablet Server
| — |
Serves data Serves data
Handles failover, Holds tablet Holds metadata,
monitoring data, logs handles master election

 AmirH Pabersh (KTH) NoSQLDatabases 2016/00/05 75/ 96

.
Google File System (GFS)

» Large-scale distributed file system.

» Store log and data files.

BN
Chubby Lock Service

v

Ensure there is only one active master.

\{

Store bootstrap location of BigTable data.

Discover tablet servers.

v

v

Store BigTable schema information.

Store access control lists.

\{

BN
Master Startup

» The master executes the following steps at startup:

Grabs a unique master lock in Chubby, which prevents concurrent
master instantiations.

Scans the servers directory in Chubby to find the live servers.

e Communicates with every live tablet server to discover what tablets
are already assigned to each server.

Scans the METADATA table to learn the set of tablets.

BN
Tablet Assignment

» 1 tablet — 1 tablet server.

BN
Tablet Assignment

» 1 tablet — 1 tablet server.

» Master uses Chubby to keep tracks of set of live tablet serves and
unassigned tablets.

¢ When a tablet server starts, it creates and acquires an exclusive lock
in Chubby.

BN
Tablet Assignment

» 1 tablet — 1 tablet server.

» Master uses Chubby to keep tracks of set of live tablet serves and
unassigned tablets.

¢ When a tablet server starts, it creates and acquires an exclusive lock
in Chubby.

» Master detects the status of the lock of each tablet server by check-
ing periodically.

BN
Tablet Assignment

1 tablet — 1 tablet server.

v

» Master uses Chubby to keep tracks of set of live tablet serves and
unassigned tablets.

¢ When a tablet server starts, it creates and acquires an exclusive lock
in Chubby.

» Master detects the status of the lock of each tablet server by check-
ing periodically.

» Master is responsible for finding when tablet server is no longer
serving its tablets and reassigning those tablets as soon as possible.

Table Serving

NS
Finding a Tablet

> Three-level hierarchy.

UserTable

Other ==
METADATA
tablets

Root tablet
Chubby file (1st METADATA tablet)

Finding a Tablet

> Three-level hierarchy.
» Root tablet contains location of all tablets in a special METADATA

table.

UserTable

Other F==
METADATA =
tablets

Root tablet
(1st METADATA tablet)

Chubby file

.

UserTableN

NS
Finding a Tablet

> Three-level hierarchy.

» Root tablet contains location of all tablets in a special METADATA
table.

» METADATA table contains location of each tablet under a row.

UserTable
Other Froommmoo=- —

METADATA = —
tablets /:: o

- \ UserTableN

Root tablet
Chubby flle (1st METADATA tablet)

NS
Finding a Tablet

v

Three-level hierarchy.

v

Root tablet contains location of all tablets in a special METADATA
table.

v

METADATA table contains location of each tablet under a row.

v

The client library caches tablet locations.

UserTable
Other Frooo—o —

METADATA = —
tablets /:: o

- \ UserTableN

Root tablet
Chubby flle (1st METADATA tablet)

I
SSTable (1/2)

» SSTable file format used internally to store Bigtable data.

» Immutable, sorted file of key-value pairs.

» Each SSTable is stored in a GFS file.

} Tablet 1

Table <

> Tablet 2

I
SSTable (2/2)

» Chunks of data plus a block index.

e A block index is used to locate blocks.
e The index is loaded into memory when the SSTable is opened.

SSTable

Index

B4K ||B4K || B4K
block || block || block

Tablet Serving (1/2)

» Updates committed to a commit log.

Recent updates kept sorted
in memory Memtable and sstables are merged to

serve a read request

memtable

Memeory

tablet / \

log

~(m)—

Write operations are logged

GFS

P, sstable | | sstable

Tablet Serving (1/2)

» Updates committed to a commit log.

» Recently committed updates are stored in memory - memtable

Recent updates kept sorted
in memory Memtable and sstables are merged to

serve a read request

memtable

Memeory

GFS

tablet / \

log

~(m)—

Write operations are logged

P, sstable | | sstable

-
Tablet Serving (1/2)

» Updates committed to a commit log.
» Recently committed updates are stored in memory - memtable

» Older updates are stored in a sequence of SSTables.

Recent updates kept sorted
in memory Memtable and sstables are merged to

serve a read request

memtable

Memeory

GFS

tablet / \

log

()

Write operations are logged

P, sstable | | sstable

~ AmirH. Payberah (KTH) NoSQL Databases 2016/09/05

84 / 96

BN
Tablet Serving (2/2)

» Strong consistency

* Only one tablet server is responsible for a given piece of data.
e Replication is handled on the GFS layer.

BN
Tablet Serving (2/2)

» Strong consistency

e Only one tablet server is responsible for a given piece of data.
e Replication is handled on the GFS layer.

» Tradeoff with availability

e |If a tablet server fails, its portion of data is temporarily unavailable
until a new server is assigned.

|
Loading Tablets

v

To load a tablet, a tablet server does the following:

v

Finds locaton of tablet through its METADATA.

o Metadata for a tablet includes list of SSTables and set of redo
points.

v

Read SSTables index blocks into memory.

v

Read the commit log since the redo point and reconstructs the
memtable.

Compaction

» Minor compaction
¢ Convert the memtable into an SSTable.

Compaction

» Minor compaction
¢ Convert the memtable into an SSTable.

» Merging compaction
* Reads the contents of a few SSTables and the memtable, and writes
out a new SSTable.

Compaction

» Minor compaction
¢ Convert the memtable into an SSTable.

» Merging compaction
* Reads the contents of a few SSTables and the memtable, and writes
out a new SSTable.

» Major compaction

e Merging compaction that results in only one SSTable.
e No deleted records, only sensitive live data.

Cassandra

Cassandra

amazoncom

-

 AmirH.Paybersh (KTH) NoSQL Databases 2016/00/05 80 /96

BN
From Dynamo

» Symmetric P2P architecture

v

Gossip based discovery and error detection

v

Distributed key-value store: partitioning and topology discovery

v

Eventual consistency

BN
From BigTable

» Sparse Column oriented sparse array

» SSTable disk storage

¢ Append-only commit log

» Memtable (buffering and sorting)
e Immutable sstable files

» Compaction

Summary

Summary

NoSQL data models: key-value, column-oriented, document-
oriented, graph-based

v

v

Sharding and consistent hashing

v

ACID vs. BASE

» CAP (Consistency vs. Availability)

Summary

» Dynamo: key/value storage: put and get
» Data partitioning: consistent hashing

» Load balancing: virtual server

» Replication: several nodes, preference list

» Data versioning: vector clock, resolve conflict at read time by the
application

» Membership management: join/leave by admin, gossip-based to up-
date the nodes’ views, ping to detect failure

» Handling transient failure: sloppy quorum

» Handling permanent failure: Merkle tree

 AmirH Pabersh (KTH) " NoSQLDatabases 2016/09/05 94 /96

Summary

v

BigTable

Column-oriented

v

» Main components: master, tablet server, client library

v

Basic components: GFS, chubby, SSTable

Questions?

