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Database and Database Management System

I Database: an organized collection of data.

I Database Management System (DBMS): a software that interacts
with users, other applications, and the database itself to capture
and analyze data.
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Relational Databases Management Systems (RDMBSs)

I RDMBSs: the dominant technology for storing structured data in
web and business applications.

I SQL is good
• Rich language and toolset
• Easy to use and integrate
• Many vendors

I They promise: ACID
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ACID Properties

I Atomicity
• All included statements in a transaction are either executed or the

whole transaction is aborted without affecting the database.

I Consistency
• A database is in a consistent state before and after a transaction.

I Isolation
• Transactions can not see uncommitted changes in the database.

I Durability
• Changes are written to a disk before a database commits a transaction

so that committed data cannot be lost through a power failure.
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RDBMS Challenges

I Web-based applications caused spikes.
• Internet-scale data size
• High read-write rates
• Frequent schema changes
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Let’s Scale RDBMSs

I RDBMS were not designed to be distributed.

I Possible solutions:
• Replication
• Sharding
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Let’s Scale RDBMSs - Replication

I Master/Slave architecture

I Scales read operations
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Let’s Scale RDBMSs - Sharding

I Dividing the database across many machines.

I It scales read and write operations.

I Cannot execute transactions across shards (partitions).
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Scaling RDBMSs is Expensive and Inefficient

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]
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NoSQL

I Avoidance of unneeded complexity

I High throughput

I Horizontal scalability and running on commodity hardware

I Compromising reliability for better performance
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NoSQL Cost and Performance

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]

Amir H. Payberah (KTH) NoSQL Databases 2016/09/05 12 / 96



RDBMS vs. NoSQL

[http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQLWhitepaper.pdf]
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NoSQL Data Models
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NoSQL Data Models

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]
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Key-Value Data Model

I Collection of key/value pairs.

I Ordered Key-Value: processing over key ranges.

I Dynamo, Scalaris, Voldemort, Riak, ...
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Column-Oriented Data Model

I Similar to a key/value store, but the value can have multiple at-
tributes (Columns).

I Column: a set of data values of a particular type.

I Store and process data by column instead of row.

I BigTable, Hbase, Cassandra, ...
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Document Data Model

I Similar to a column-oriented store, but values can have complex
documents, instead of fixed format.

I Flexible schema.

I XML, YAML, JSON, and BSON.

I CouchDB, MongoDB, ...

{

FirstName: "Bob",

Address: "5 Oak St.",

Hobby: "sailing"

}

{

FirstName: "Jonathan",

Address: "15 Wanamassa Point Road",

Children: [

{Name: "Michael", Age: 10},

{Name: "Jennifer", Age: 8},

]

}
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Graph Data Model

I Uses graph structures with nodes, edges, and properties to represent
and store data.

I Neo4J, InfoGrid, ...

[http://en.wikipedia.org/wiki/Graph database]
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Consistency
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Consistency

I Strong consistency
• After an update completes, any subsequent access will return the

updated value.

I Eventual consistency
• Does not guarantee that subsequent accesses will return the

updated value.
• Inconsistency window.
• If no new updates are made to the object, eventually all accesses

will return the last updated value.
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Quorum Model

I N: the number of nodes to which a data item is replicated.

I R: the number of nodes a value has to be read from to be accepted.

I W: the number of nodes a new value has to be written to before
the write operation is finished.

I To enforce strong consistency: R+W > N
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Consistency vs. Availability

I The large-scale applications have to be reliable: availability + re-
dundancy

I These properties are difficult to achieve with ACID properties.

I The BASE approach forfeits the ACID properties of consistency and
isolation in favor of availability, graceful degradation, and perfor-
mance.
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BASE Properties

I Basic Availability
• Possibilities of faults but not a fault of the whole system.

I Soft-state
• Copies of a data item may be inconsistent

I Eventually consistent
• Copies becomes consistent at some later time if there are no more

updates to that data item
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CAP Theorem

I Consistency
• Consistent state of data after the execution of an operation.

I Availability
• Clients can always read and write data.

I Partition Tolerance
• Continue the operation in the presence of network partitions.

I You can choose only two!
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Dyanmo
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Dynamo

I Distributed key/value storage system

I Scalable and Highly available

I CAP: it sacrifices strong consistency for availability: always writable
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Data Model
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Data Model

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]
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Partitioning

I Key/value, where values are stored as objects.

I If size of data exceeds the capacity of a single machine: partitioning

I Consistent hashing is one form of sharding (partitioning).
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Consistent Hashing

I Hash both data and nodes using the same hash function in a same
id space.

I partition = hash(d) mod n, d: data, n: number of nodes

hash("Fatemeh") = 12

hash("Ahmad") = 2

hash("Seif") = 9

hash("Jim") = 14

hash("Sverker") = 4
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Load Imbalance (1/4)

I Consistent hashing may lead to imbalance.

I Node identifiers may not be balanced.
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Load Imbalance (2/4)
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Load Imbalance (3/4)

I Consistent hashing may lead to imbalance.

I Hot spots.
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Load Imbalance (4/4)

I Consistent hashing may lead to imbalance.

I Heterogeneous nodes.
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Load Balancing via Virtual Nodes

I Each physical node picks multiple random identifiers.

I Each identifier represents a virtual node.

I Each node runs multiple virtual nodes.
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Replication

I To achieve high availability and durability, data should be replicates
on multiple nodes.
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Data Consistency
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Data Consistency

I Eventual consistency: updates are propagated asynchronously.

I Each update/modification of an item results in a new and immutable
version of the data.

• Multiple versions of an object may exist.

I Replicas eventually become consistent.
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Data Versioning (1/2)

I Use vector clocks for capturing causality, in the form of (node,
counter)

• If causal: older version can be forgotten
• If concurrent: conflict exists, requiring reconciliation

I Version branching can happen due to node/network failures.
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Data Versioning (2/2)

I Client C1 writes new object via Sx.

I C1 updates the object via Sx.

I C1 updates the object via Sy.

I C2 reads D2 and updates the
object via Sz.

I C3 reads D3 and D4 via Sx.
• The read context is a

summary of the clocks of D3
and D4: [(Sx, 2), (Sy, 1), (Sz, 1)].

I Reconciliation
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Dynamo API
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Dynamo API

I get(key)
• Return single object or list of objects with conflicting version and

context.

I put(key, context, object)
• Store object and context under key.
• Context encodes system metadata, e.g., version number.
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put Operation

I Coordinator generates new vector clock and writes the new version
locally.

I Send to N nodes.

I Wait for response from W nodes.
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get Operation

I Coordinator requests existing versions from N.
• Wait for response from R nodes.

I If multiple versions, return all versions that are causally unrelated.

I Divergent versions are then reconciled.

I Reconciled version written back.
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Sloppy Quorum

I Due to partitions, quorums might not exist.
• Sloppy quorum.
• Create transient replicas: N healthy

nodes from the preference list.
• Reconcile after partition heals.

I Say A is unreachable.

I put will use D.

I Later, D detects A is alive.
• Sends the replica to A
• Removes the replica.
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Membership Management
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Membership Management

I Administrator explicitly adds and removes nodes.

I Gossiping to propagate membership changes.
• Eventually consistent view.
• O(1) hop overlay.
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Adding and Removing Nodes

I A new node X added to system.
• X is assigned key ranges w.r.t. its virtual servers.
• For each key range, it transfers the data items.

I Removing a node: reallocation of keys is a reverse process of adding
nodes.
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Failure Detection (1/2)

I Passive failure detection.
• Use pings only for detection from failed to alive.

I In the absence of client requests, node A doesn’t need to know if
node B is alive.
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Failure Detection (2/2)

I Anti-entropy for replica synchronization.

I Use Merkle trees for fast inconsistency detection and minimum
transfer of data.

• Nodes maintain Merkle tree of each key range.
• Exchange root of Merkle tree to check if the key ranges are updated.
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BigTable
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Motivation

I Lots of (semi-)structured data at Google.
• URLs, TextGreenper-user data, geographical locations, ...

I Big data
• Billions of URLs, hundreds of millions of users, 100+TB of satellite

image data, ...
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BigTable

I Distributed multi-level map

I Fault-tolerant

I Scalable and self-managing

I CAP: strong consistency and partition tolerance
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Data Model
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Data Model

[http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques]
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Column-Oriented Data Model (1/2)

I Similar to a key/value store, but the value can have multiple at-
tributes (Columns).

I Column: a set of data values of a particular type.

I Store and process data by column instead of row.
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Columns-Oriented Data Model (2/2)

I In many analytical databases queries, few attributes are needed.

I Column values are stored contiguously on disk: reduces I/O.

[Lars George, “Hbase: The Definitive Guide”, O’Reilly, 2011]
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BigTable Data Model (1/5)

I Table

I Distributed multi-dimensional sparse map
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BigTable Data Model (2/5)

I Rows

I Every read or write in a row is atomic.

I Rows sorted in lexicographical order.

Amir H. Payberah (KTH) NoSQL Databases 2016/09/05 61 / 96



BigTable Data Model (3/5)

I Column

I The basic unit of data access.

I Column families: group of (the same type) column keys.

I Column key naming: family:qualifier
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BigTable Data Model (4/5)

I Timestamp

I Each column value may contain multiple versions.
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BigTable Data Model (5/5)

I Tablet: contiguous ranges of rows stored together.

I Tables are split by the system when they become too large.

I Auto-Sharding

I Each tablet is served by exactly one tablet server.
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Bigtable API
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The Bigtable API

I Metadata operations
• Create/delete tables, column families, change metadata

I Writes: single-row, atomic
• write/delete cells in a row, delete all cells in a row

I Reads: read arbitrary cells in a Bigtable table
• Each row read is atomic.
• One row, all or specific columns, certain timestamps, and ...
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Writing Example

// Open the table

Table *T = OpenOrDie("/bigtable/web/webtable");

// Write a new anchor and delete an old anchor

RowMutation r1(T, "com.cnn.www");

r1.Set("anchor:www.c-span.org", "CNN");

r1.Delete("anchor:www.abc.com");

Operation op;

Apply(&op, &r1);
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Reading Example

Scanner scanner(T);

scanner.Lookup("com.cnn.www");

ScanStream *stream;

stream = scanner.FetchColumnFamily("anchor");

stream->SetReturnAllVersions();

for (; !stream->Done(); stream->Next()) {

printf("%s %s %lld %s\n",

scanner.RowName(),

stream->ColumnName(),

stream->MicroTimestamp(),

stream->Value());

}
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BigTable Architecture
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BigTable Cell
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Main Components

I Master server

I Tablet server

I Client library
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Master Server

I One master server.

I Assigns tablets to tablet server.

I Balances tablet server load.

I Garbage collection of unneeded files in GFS.

I Handles schema changes, e.g., table and column family creations
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Tablet Server

I Many tablet servers.

I Can be added or removed dynamically.

I Each manages a set of tablets (typically 10-1000 tablets/server).

I Handles read/write requests to tablets.

I Splits tablets when too large.
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Client Library

I Library that is linked into every client.

I Client data does not move though the master.

I Clients communicate directly with tablet servers for reads/writes.
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Building Blocks

I The building blocks for the BigTable are:
• Google File System (GFS): raw storage
• Chubby: distributed lock manager
• Scheduler: schedules jobs onto machines
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Google File System (GFS)

I Large-scale distributed file system.

I Store log and data files.
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Chubby Lock Service

I Ensure there is only one active master.

I Store bootstrap location of BigTable data.

I Discover tablet servers.

I Store BigTable schema information.

I Store access control lists.
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Master Startup

I The master executes the following steps at startup:

• Grabs a unique master lock in Chubby, which prevents concurrent
master instantiations.

• Scans the servers directory in Chubby to find the live servers.

• Communicates with every live tablet server to discover what tablets
are already assigned to each server.

• Scans the METADATA table to learn the set of tablets.
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Tablet Assignment

I 1 tablet → 1 tablet server.

I Master uses Chubby to keep tracks of set of live tablet serves and
unassigned tablets.

• When a tablet server starts, it creates and acquires an exclusive lock
in Chubby.

I Master detects the status of the lock of each tablet server by check-
ing periodically.

I Master is responsible for finding when tablet server is no longer
serving its tablets and reassigning those tablets as soon as possible.
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Table Serving
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Finding a Tablet

I Three-level hierarchy.

I Root tablet contains location of all tablets in a special METADATA
table.

I METADATA table contains location of each tablet under a row.

I The client library caches tablet locations.
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SSTable (1/2)

I SSTable file format used internally to store Bigtable data.

I Immutable, sorted file of key-value pairs.

I Each SSTable is stored in a GFS file.
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SSTable (2/2)

I Chunks of data plus a block index.
• A block index is used to locate blocks.
• The index is loaded into memory when the SSTable is opened.
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Tablet Serving (1/2)

I Updates committed to a commit log.

I Recently committed updates are stored in memory - memtable

I Older updates are stored in a sequence of SSTables.
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Tablet Serving (2/2)

I Strong consistency
• Only one tablet server is responsible for a given piece of data.
• Replication is handled on the GFS layer.

I Tradeoff with availability
• If a tablet server fails, its portion of data is temporarily unavailable

until a new server is assigned.
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Loading Tablets

I To load a tablet, a tablet server does the following:

I Finds locaton of tablet through its METADATA.
• Metadata for a tablet includes list of SSTables and set of redo

points.

I Read SSTables index blocks into memory.

I Read the commit log since the redo point and reconstructs the
memtable.
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Compaction

I Minor compaction
• Convert the memtable into an SSTable.

I Merging compaction
• Reads the contents of a few SSTables and the memtable, and writes

out a new SSTable.

I Major compaction
• Merging compaction that results in only one SSTable.
• No deleted records, only sensitive live data.
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Cassandra
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Cassandra
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From Dynamo

I Symmetric P2P architecture

I Gossip based discovery and error detection

I Distributed key-value store: partitioning and topology discovery

I Eventual consistency
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From BigTable

I Sparse Column oriented sparse array

I SSTable disk storage
• Append-only commit log
• Memtable (buffering and sorting)
• Immutable sstable files
• Compaction
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Summary

Amir H. Payberah (KTH) NoSQL Databases 2016/09/05 92 / 96



Summary

I NoSQL data models: key-value, column-oriented, document-
oriented, graph-based

I Sharding and consistent hashing

I ACID vs. BASE

I CAP (Consistency vs. Availability)
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Summary

I Dynamo: key/value storage: put and get

I Data partitioning: consistent hashing

I Load balancing: virtual server

I Replication: several nodes, preference list

I Data versioning: vector clock, resolve conflict at read time by the
application

I Membership management: join/leave by admin, gossip-based to up-
date the nodes’ views, ping to detect failure

I Handling transient failure: sloppy quorum

I Handling permanent failure: Merkle tree
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Summary

I BigTable

I Column-oriented

I Main components: master, tablet server, client library

I Basic components: GFS, chubby, SSTable
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Questions?
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