
Introduction to Data Stream Processing

Amir H. Payberah
amir@sics.se

KTH Royal Institute of Technology

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 1 / 82



Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

• Wireless sensor networks

• Traffic management applications

• Stock marketing

• Environmental monitoring applications

• Fraud detection tools

• ...

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 2 / 82



Stream Processing Systems

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 3 / 82



Stream Processing Systems

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 3 / 82



DBMS vs. SPS

I DBMS
• Persistent data where updates are relatively infrequent.
• Runs queries just once to return a complete answer.

I SPS
• Transient data that is continuously updated.
• Executes standing queries, which run continuously and provide

updated answers as new data arrives.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 4 / 82



SPS Data Model

I Data stream is unbound and broken into a sequence of individual
data items, called tuples.

I A data tuple is the atomic data item in a data stream.
• Similar to a database row.

I Three classes:
• Structured: known schema
• Semi-structured: self-describing tags, e.g., HTML or XML
• Unstructured: custom or proprietary formats, e.g., video, audio

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 5 / 82



SPS Data Model

I Data stream is unbound and broken into a sequence of individual
data items, called tuples.

I A data tuple is the atomic data item in a data stream.
• Similar to a database row.

I Three classes:
• Structured: known schema
• Semi-structured: self-describing tags, e.g., HTML or XML
• Unstructured: custom or proprietary formats, e.g., video, audio

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 5 / 82



SPS Processing Model

I The tuples are processed by the application’s operators or processing
element (PE).

I A PE is the basic functional unit in an application.
• A PE processes input tuples, applies a function, and outputs tuples.
• A set of PEs and stream connections, organized into a data flow

graph.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 6 / 82



SPS Programming Model

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 7 / 82



SPS Programming Model

I SPS data flow programming

I Flow composition: techniques for creating the topology associated
with the flow graph for an application.

I Flow manipulation: the use of PEs to perform transformations on
data flows.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 8 / 82



Data Flow Composition

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 9 / 82



Data Flow Composition

I Flow composition patterns:

• Static composition

• Dynamic composition

• Nested composition

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 10 / 82



Data Flow Composition

I Flow composition patterns:

• Static composition

• Dynamic composition

• Nested composition

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 10 / 82



Static Flow Composition

I Creating the parts of the application topology that are known at
development time.

I Example:

• The input stream from Twitter feed.

• The analysis PE probes the messages for positive or negative tone.

• The connection between the source and the analysis PE is known at
development time.

• Explicitly connecte the output port of the source PE to the input port
of the analysis PE.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 11 / 82



Static Flow Composition

I Creating the parts of the application topology that are known at
development time.

I Example:

• The input stream from Twitter feed.

• The analysis PE probes the messages for positive or negative tone.

• The connection between the source and the analysis PE is known at
development time.

• Explicitly connecte the output port of the source PE to the input port
of the analysis PE.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 11 / 82



Dynamic Flow Composition

I Creating the segments of an application topology that are not fully
known at development time.

I Example:

• An application with an analysis PE that can consume multiple input
streams.

• The input sources are dynamic (appear and disappear).

• The connection between the analysis PE and sources can be specified
implicitly at development time.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 12 / 82



Dynamic Flow Composition

I Creating the segments of an application topology that are not fully
known at development time.

I Example:

• An application with an analysis PE that can consume multiple input
streams.

• The input sources are dynamic (appear and disappear).

• The connection between the analysis PE and sources can be specified
implicitly at development time.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 12 / 82



Nested Flow Composition

I Addresses the modularity problem in large scale flow graphs.

I Group a subset of the flow graph as a regular PE.

I Producing smaller and more manageable views of the overall data
flow graph.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 13 / 82



Data Flow Manipulation

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 14 / 82



Data FLow Manipulation

I How the streaming data is manipulated by the different PE instances
in the flow graph?

I PEs properties:
• PEs tasks
• PEs states
• Windowing
• Selectivity and arity

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 15 / 82



PEs Tasks (1/2)

I Edge adaptation: converting data from external sources into tuples
that can be consumed by downstream PEs.

I Aggregation: collecting and summarizing a subset of tuples from
one or more streams.

I Splitting: partitioning a stream into multiple streams.

I Merging: combining multiple input streams.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 16 / 82



PEs Tasks (1/2)

I Edge adaptation: converting data from external sources into tuples
that can be consumed by downstream PEs.

I Aggregation: collecting and summarizing a subset of tuples from
one or more streams.

I Splitting: partitioning a stream into multiple streams.

I Merging: combining multiple input streams.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 16 / 82



PEs Tasks (1/2)

I Edge adaptation: converting data from external sources into tuples
that can be consumed by downstream PEs.

I Aggregation: collecting and summarizing a subset of tuples from
one or more streams.

I Splitting: partitioning a stream into multiple streams.

I Merging: combining multiple input streams.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 16 / 82



PEs Tasks (1/2)

I Edge adaptation: converting data from external sources into tuples
that can be consumed by downstream PEs.

I Aggregation: collecting and summarizing a subset of tuples from
one or more streams.

I Splitting: partitioning a stream into multiple streams.

I Merging: combining multiple input streams.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 16 / 82



PEs Tasks (2/2)

I Logical and mathematical operations: applying different logical pro-
cessing, relational processing, and mathematical functions to tuple
attributes.

I Sequence manipulation: reordering, delaying, or altering the tempo-
ral properties of a stream.

I Custom data manipulations: applying data mining, machine learn-
ing, ...

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 17 / 82



PEs Tasks (2/2)

I Logical and mathematical operations: applying different logical pro-
cessing, relational processing, and mathematical functions to tuple
attributes.

I Sequence manipulation: reordering, delaying, or altering the tempo-
ral properties of a stream.

I Custom data manipulations: applying data mining, machine learn-
ing, ...

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 17 / 82



PEs Tasks (2/2)

I Logical and mathematical operations: applying different logical pro-
cessing, relational processing, and mathematical functions to tuple
attributes.

I Sequence manipulation: reordering, delaying, or altering the tempo-
ral properties of a stream.

I Custom data manipulations: applying data mining, machine learn-
ing, ...

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 17 / 82



PEs States (1/3)

I A PE can either maintain internal state across tuples while process-
ing them, or process tuples independently of each other.

I Stateful vs. stateless tasks

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 18 / 82



PEs States (2/3)

I Stateless tasks: do not maintain state and process each tuple in-
dependently of prior history, or even from the order of arrival of
tuples.

I Easily parallelized.

I No synchronization in a multi-threaded context.

I Restart upon failures without the need of any recovery procedure.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 19 / 82



PEs States (2/3)

I Stateless tasks: do not maintain state and process each tuple in-
dependently of prior history, or even from the order of arrival of
tuples.

I Easily parallelized.

I No synchronization in a multi-threaded context.

I Restart upon failures without the need of any recovery procedure.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 19 / 82



PEs States (3/3)

I Stateful tasks: involves maintaining information across different tu-
ples to detect complex patterns.

I A PE is usually a synopsis of the tuples received so far.

I A subset of recent tuples kept in a window buffer.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 20 / 82



PEs States (3/3)

I Stateful tasks: involves maintaining information across different tu-
ples to detect complex patterns.

I A PE is usually a synopsis of the tuples received so far.

I A subset of recent tuples kept in a window buffer.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 20 / 82



Windowing (1/3)

I Window: a buffer associated with an input port to retain previously
received tuples.

I Window policies define the operational semantics of a window: evic-
tion policy and trigger policy.

I Eviction policy: determines the properties of the tuples that can be
held in the buffer.

• For example by a property of the window, e.g., buffer’s capacity.

I Trigger policy: determines how often the data buffered in the win-
dow gets processed by the operator internal logic.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 21 / 82



Windowing (1/3)

I Window: a buffer associated with an input port to retain previously
received tuples.

I Window policies define the operational semantics of a window: evic-
tion policy and trigger policy.

I Eviction policy: determines the properties of the tuples that can be
held in the buffer.

• For example by a property of the window, e.g., buffer’s capacity.

I Trigger policy: determines how often the data buffered in the win-
dow gets processed by the operator internal logic.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 21 / 82



Windowing (1/3)

I Window: a buffer associated with an input port to retain previously
received tuples.

I Window policies define the operational semantics of a window: evic-
tion policy and trigger policy.

I Eviction policy: determines the properties of the tuples that can be
held in the buffer.

• For example by a property of the window, e.g., buffer’s capacity.

I Trigger policy: determines how often the data buffered in the win-
dow gets processed by the operator internal logic.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 21 / 82



Windowing (1/3)

I Window: a buffer associated with an input port to retain previously
received tuples.

I Window policies define the operational semantics of a window: evic-
tion policy and trigger policy.

I Eviction policy: determines the properties of the tuples that can be
held in the buffer.

• For example by a property of the window, e.g., buffer’s capacity.

I Trigger policy: determines how often the data buffered in the win-
dow gets processed by the operator internal logic.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 21 / 82



Windowing (2/3)

I Four different windowing management policies.

I Count-based policy: characterized by the maximum number of tu-
ples a window buffer can hold

I Delta-based policy: specified using a delta threshold value and a
tuple attribute.

I Time-based policy: specified using a wall-clock time period.

I Punctuation-based policy: a window buffer becomes ready for pro-
cessing every time a punctuation is received.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 22 / 82



Windowing (3/3)

I Two types of windows: tumbling and sliding
• Both store tuples in the order they arrive.
• They differ in the eviction and trigger policies.

I Tumbling window: supports batch operations.
• When the buffer fills up, all the tuples are evicted.

I Sliding window: supports incremental operations.
• When the buffer fills up, older tuples are evicted.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 23 / 82



Selectivity and Arity

I Selectivity: the relationship between the number of tuples produced
and the number of tuples it ingested.

• Fixed and variable

I Arity: the number of ports an operator has.
• One-to-one (1:1)
• One-to-at-most-one (1:[0, 1])
• One-to-many (1:N)
• Many-to-one (M:1)
• Many-to-many (M:N)

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 24 / 82



Selectivity and Arity

I Selectivity: the relationship between the number of tuples produced
and the number of tuples it ingested.

• Fixed and variable

I Arity: the number of ports an operator has.
• One-to-one (1:1)
• One-to-at-most-one (1:[0, 1])
• One-to-many (1:N)
• Many-to-one (M:1)
• Many-to-many (M:N)

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 24 / 82



SPS Runtime System

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 25 / 82



Job and Job Management

I At runtime, an application is represented by one or more jobs.

I Jobs are deployed as a collection of PEs.

I Job management component must identify and track individual PEs,
the jobs they belong to, and associate them with the user that
instantiated them.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 26 / 82



Logical Plan vs. Physical Plan (1/3)

I Logical plan: a data flow graph, where the vertices correspond to
PEs, and the edges to stream connections.

I Physical plan: a data flow graph, where the vertices correspond to
OS processes, and the edges to transport connections.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 27 / 82



Logical Plan vs. Physical Plan (2/3)

Logical plan

Different physical plans

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 28 / 82



Logical Plan vs. Physical Plan (3/3)

I How to map a network of PEs onto the physical network of nodes?

• Parallelization

• Fault tolerance

• Optimization

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 29 / 82



Parallelization

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 30 / 82



Parallelization

I How to scale with increasing the number queries and the rate of
incoming events?

I Three forms of parallelisms.
• Pipelined parallelism
• Task parallelism
• Data parallelism

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 31 / 82



Pipelined Parallelism

I Sequential stages of a computation execute concurrently for different
data items.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 32 / 82



Task Parallelism

I Independent processing stages of a larger computation are executed
concurrently on the same or distinct data items.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 33 / 82



Data Parallelism (1/2)

I The same computation takes place concurrently on different data
items.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 34 / 82



Data Parallelism (2/2)

I How to allocate data items to each computation instance?

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 35 / 82



Fault Tolerance

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 36 / 82



Recovery Methods (1/2)

I The recovery methods of streaming frameworks must take:

• Correctness, e.g., data loss and duplicates

• Performance, e.g., low latency

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 37 / 82



Recovery Methods (2/2)

I GAP recovery

I Rollback recovery

I Precise recovery

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 38 / 82



GAP Recovery (Cold Restart)

I The weakest recovery guarantee

I A new task takes over the operations of the failed task.

I The new task starts from an empty state.

I Tuples can be lost during the recovery phase.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 39 / 82



Rollback Recovery

I The information loss is avoided, but the output may contain dupli-
cate tuples.

I Three types of rollback recovery:
• Active backup
• Passive backup
• Upstream backup

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 40 / 82



Rollback Recovery - Active Backup

I Each processing node has an associated backup node.

I Both primary and backup nodes are given the same input.

I The output tuples of the backup node are logged at the output
queues and they are not sent downstream.

I If the primary fails, the backup takes over by sending the logged tu-
ples to all downstream neighbors and then continuing its processing.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 41 / 82



Rollback Recovery - Passive Backup

I Periodically check-points processing state to a shared storage.

I The backup node takes over from the latest checkpoint when the
primary fails.

I The backup node is always equal or behind the primary.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 42 / 82



Rollback Recovery - Upstream Backup

I Upstream nodes store the tuples until the downstream nodes ac-
knowledge them.

I If a node fails, an empty node rebuilds the latest state of the failed
primary from the logs kept at the upstream server.

I There is no backup node in this model.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 43 / 82



Precise Recovery

I Post-failure output is exactly the same as the output without failure.

I Can be achieved by modifying the algorithms for rollback recovery.
• For example, in passive backup, after a failure occurs the backup

node can ask the downstream nodes for the latest tuples they
received and trim the output queues accordingly to prevent the
duplicates.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 44 / 82



Optimization

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 45 / 82



Performance Optimization

I Data sources continuously producing the data.

I Applications must keep up with the rate of the input data they
process.

I Optimization techniques:
• Early data volume reduction
• Redundancy elimination
• Operator fusion
• Tuple batching
• Load balancing
• Load shedding

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 46 / 82



Early Data Volume Reduction

I Reducing the data volume as early as possible.
• Sampling, filtering, quantization, projection, and aggregation.

I Operator reordering
• Executing the computationally cheaper operator and/or the more

selective operator earlier reduces the overall cost.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 47 / 82



Redundancy Elimination

I Removing the redundant segments from a data flow graph.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 48 / 82



Operator Fusion

I It changes only the physical layout.

I If two operators of the two ends of a stream connection are placed
on different hosts: non-negligible network cost

I But, if these two operators are fused inside a single PE in the same
host: the direct call is used

I Operator fusion can be effective if the per-tuple processing cost of
the operators being fused is low compared to the cost of transferring
the tuples across the stream connection.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 49 / 82



Tuple Batching

I Processing a group of tuples in every iteration of an operator’s in-
ternal algorithm.

I Can increase the throughput at the expense of higher latency.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 50 / 82



Load Balancing

I Flow partitioning to distribute the workload, e.g., data or task par-
allelism.

I Distributing the load evenly across the different subflows.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 51 / 82



Load Shedding

I Used by an operator to reduce the amount of computational re-
sources it uses.

• Sidesteping sustained increases in memory utilization.
• Limiting the amount of work an operator performs per unit of time:

decrease the operator latency, and improve the throughput.

I Different techniques: dropping incoming tuples, data reduction
techniques (e.g., sampling), ...

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 52 / 82



Distributed Messaging System

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 53 / 82



What is Messaging? (1/2)

I Suppose you have a website, and every time someone loads a page,
you send a user viewed page event to a messaging system.

I The consumers may do any of the following:
• Store the message in HDFS for future analysis
• Count page views and update a dashboard
• Trigger an alert if a page view fails
• Send an email notification to another user

I A messaging system lets you decouple all of this work from the
actual web page serving.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 54 / 82



What is Messaging? (1/2)

I Suppose you have a website, and every time someone loads a page,
you send a user viewed page event to a messaging system.

I The consumers may do any of the following:
• Store the message in HDFS for future analysis
• Count page views and update a dashboard
• Trigger an alert if a page view fails
• Send an email notification to another user

I A messaging system lets you decouple all of this work from the
actual web page serving.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 54 / 82



What is Messaging? (1/2)

I Suppose you have a website, and every time someone loads a page,
you send a user viewed page event to a messaging system.

I The consumers may do any of the following:
• Store the message in HDFS for future analysis
• Count page views and update a dashboard
• Trigger an alert if a page view fails
• Send an email notification to another user

I A messaging system lets you decouple all of this work from the
actual web page serving.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 54 / 82



What is Messaging? (2/2)

I Messaging system is a way of implementing near-realtime asyn-
chronous computation.

I Messages can be added to the messaging systems when something
happens.

I Consumers read messages from these systems, and process them or
take actions based on the message contents.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 55 / 82



What is Messaging? (2/2)

I Messaging system is a way of implementing near-realtime asyn-
chronous computation.

I Messages can be added to the messaging systems when something
happens.

I Consumers read messages from these systems, and process them or
take actions based on the message contents.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 55 / 82



Existing Messaging Systems

I Message queues: ActiveMQ and RabbitMQ

I Pub/Sub systems: Kafka and Kestrel

I Log aggregation systems: Flume and Scribe

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 56 / 82



Kafka

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 57 / 82



Kafka (1/6)

I Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 58 / 82



Kafka (2/6)

I Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 59 / 82



Kafka (3/6)

I Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 60 / 82



Kafka (4/6)

I Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 61 / 82



Kafka (5/6)

I Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 62 / 82



Kafka (6/6)

I Kafka is also a pub-sub messaging system.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 63 / 82



Kafka Basic Messaging Terminology

I Kafka maintains feeds of messages in categories called topics.

I Processes that publish messages to a Kafka topic called producers.

I Processes that subscribe to topics and process the feed of published
messages called consumers.

I Kafka is run as a cluster comprised of one or more servers each of
which is called a broker.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 64 / 82



Kafka Basic Messaging Terminology

I Kafka maintains feeds of messages in categories called topics.

I Processes that publish messages to a Kafka topic called producers.

I Processes that subscribe to topics and process the feed of published
messages called consumers.

I Kafka is run as a cluster comprised of one or more servers each of
which is called a broker.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 64 / 82



Kafka Basic Messaging Terminology

I Kafka maintains feeds of messages in categories called topics.

I Processes that publish messages to a Kafka topic called producers.

I Processes that subscribe to topics and process the feed of published
messages called consumers.

I Kafka is run as a cluster comprised of one or more servers each of
which is called a broker.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 64 / 82



Kafka Basic Messaging Terminology

I Kafka maintains feeds of messages in categories called topics.

I Processes that publish messages to a Kafka topic called producers.

I Processes that subscribe to topics and process the feed of published
messages called consumers.

I Kafka is run as a cluster comprised of one or more servers each of
which is called a broker.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 64 / 82



Logs, Topics and Partition (1/5)

I Kafka is about logs.

I Topics are queues: a stream of messages of a particular type

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 65 / 82



Logs, Topics and Partition (2/5)

I Each message is assigned a sequential id called an offset.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 66 / 82



Logs, Topics and Partition (3/5)

I Topics are logical collections of partitions (the physical files).
• Ordered
• Append only
• Immutable

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 67 / 82



Logs, Topics and Partition (4/5)

I Ordering is only guaranteed within a partition for a topic.

I Messages sent by a producer to a particular topic partition will be
appended in the order they are sent.

I A consumer instance sees messages in the order they are stored in
the log.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 68 / 82



Logs, Topics and Partition (5/5)

I Partitions of a topic are replicated: fault-tolerance

I A broker contains some of the partitions for a topic.

I One broker is the leader of a partition: all writes and reads must go
to the leader.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 69 / 82



Kafka Architecture

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 70 / 82



Producers

I Producers publish data to the topics of their choice.

I Producers are responsible for choosing which message to assign to
which partition within the topic.

• Round-robin
• Key-based

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 71 / 82



Consumers and Consumer Groups (1/3)

I Consumers pull a range of messages from brokers.

I Multiple consumers can read from same topic on their own pace.

I Consumers maintain the message offset.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 72 / 82



Consumers and Consumer Groups (2/3)

I Consumers can be organized into consumer groups.

I Each message is delivered to only one of the consumers within the
group.

I All messages from one partition are consumed only by a single con-
sumer within each consumer group.

• A partition is in a topic the smallest unit of parallelism.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 73 / 82



Consumers and Consumer Groups (3/3)

I If all consumers instances are in one group: a traditional queue with
load balancing

I If all consumers instances are in different groups: all messages are
broadcast to all consumer instances

I If many consumers are instances in a group: each consumer instance
reads from one or more partitions for a topic

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 74 / 82



Brokers

I The published messages are stored at a set of servers called brokers.

I Brokers are sateless.

I Messages are kept on log for predefined period of time.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 75 / 82



Coordination

I Kafka uses Zookeeper for the following tasks:

I Detecting the addition and the removal of brokers and consumers.

I Triggering a rebalance process in each consumer when the above
events happen.

I Maintaining the consumption relationship and keeping track of the
consumed offset of each partition.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 76 / 82



Delivery Guarantees

I Kafka guarantees that messages from a single partition are delivered
to a consumer in order.

I There is no guarantee on the ordering of messages coming from
different partitions.

I Kafka only guarantees at-least-once delivery.

I No exactly-once delivery: two-phase commits

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 77 / 82



Summary

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 78 / 82



Summary

I SPS vs. DBMS

I Data stream, unbounded data, tuples

I PEs and dataflow

I SPS programming languages: declarative, imperative, pattern-
based, visualized

I SPS data flow: composiation and manipulation

I SPS runtime: parallelization, fault-tolerance, optimization

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 79 / 82



Summary

I Messaging system: decoupling

I Kafka: distributed, topic oriented, partitioned, replicated log service

I Logs, topcs, partition

I Kafka architecture: producer, consumer (groups), broker, coordina-
tor

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 80 / 82



Questions?

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 81 / 82



References

I H. Andrade et al., Fundametal of Stream Processing
• Sections 1, 2, 3, 4, 5, 7, and 9

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 82 / 82


