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Motivation

I Many applications must process large streams of live data and pro-
vide results in real-time.

• Wireless sensor networks

• Traffic management applications

• Stock marketing

• Environmental monitoring applications

• Fraud detection tools

• ...
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Stream Processing Systems

I Database Management Systems (DBMS): data-at-rest analytics
• Store and index data before processing it.
• Process data only when explicitly asked by the users.

I Stream Processing Systems (SPS): data-in-motion analytics
• Processing information as it flows, without storing them persistently.
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DBMS vs. SPS

I DBMS
• Persistent data where updates are relatively infrequent.
• Runs queries just once to return a complete answer.

I SPS
• Transient data that is continuously updated.
• Executes standing queries, which run continuously and provide

updated answers as new data arrives.
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SPS Data Model

I Data stream is unbound and broken into a sequence of individual
data items, called tuples.

I A data tuple is the atomic data item in a data stream.
• Similar to a database row.

I Three classes:
• Structured: known schema
• Semi-structured: self-describing tags, e.g., HTML or XML
• Unstructured: custom or proprietary formats, e.g., video, audio
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SPS Processing Model

I The tuples are processed by the application’s operators or processing
element (PE).

I A PE is the basic functional unit in an application.
• A PE processes input tuples, applies a function, and outputs tuples.
• A set of PEs and stream connections, organized into a data flow

graph.
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SPS Programming Model
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SPS Programming Model

I SPS data flow programming

I Flow composition: techniques for creating the topology associated
with the flow graph for an application.

I Flow manipulation: the use of PEs to perform transformations on
data flows.
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Data Flow Composition

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 9 / 82



Data Flow Composition

I Flow composition patterns:

• Static composition

• Dynamic composition

• Nested composition
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Static Flow Composition

I Creating the parts of the application topology that are known at
development time.

I Example:

• The input stream from Twitter feed.

• The analysis PE probes the messages for positive or negative tone.

• The connection between the source and the analysis PE is known at
development time.

• Explicitly connecte the output port of the source PE to the input port
of the analysis PE.
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Dynamic Flow Composition

I Creating the segments of an application topology that are not fully
known at development time.

I Example:

• An application with an analysis PE that can consume multiple input
streams.

• The input sources are dynamic (appear and disappear).

• The connection between the analysis PE and sources can be specified
implicitly at development time.
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Nested Flow Composition

I Addresses the modularity problem in large scale flow graphs.

I Group a subset of the flow graph as a regular PE.

I Producing smaller and more manageable views of the overall data
flow graph.
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Data Flow Manipulation
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Data FLow Manipulation

I How the streaming data is manipulated by the different PE instances
in the flow graph?

I PEs properties:
• PEs tasks
• PEs states
• Windowing
• Selectivity and arity
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PEs Tasks (1/2)

I Edge adaptation: converting data from external sources into tuples
that can be consumed by downstream PEs.

I Aggregation: collecting and summarizing a subset of tuples from
one or more streams.

I Splitting: partitioning a stream into multiple streams.

I Merging: combining multiple input streams.
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PEs Tasks (2/2)

I Logical and mathematical operations: applying different logical pro-
cessing, relational processing, and mathematical functions to tuple
attributes.

I Sequence manipulation: reordering, delaying, or altering the tempo-
ral properties of a stream.

I Custom data manipulations: applying data mining, machine learn-
ing, ...
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PEs States (1/3)

I A PE can either maintain internal state across tuples while process-
ing them, or process tuples independently of each other.

I Stateful vs. stateless tasks
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PEs States (2/3)

I Stateless tasks: do not maintain state and process each tuple in-
dependently of prior history, or even from the order of arrival of
tuples.

I Easily parallelized.

I No synchronization in a multi-threaded context.

I Restart upon failures without the need of any recovery procedure.
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PEs States (3/3)

I Stateful tasks: involves maintaining information across different tu-
ples to detect complex patterns.

I A PE is usually a synopsis of the tuples received so far.

I A subset of recent tuples kept in a window buffer.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 20 / 82



PEs States (3/3)

I Stateful tasks: involves maintaining information across different tu-
ples to detect complex patterns.

I A PE is usually a synopsis of the tuples received so far.

I A subset of recent tuples kept in a window buffer.

Amir H. Payberah (KTH) Introduction to Data Stream Processing 2016/09/19 20 / 82



Windowing (1/3)

I Window: a buffer associated with an input port to retain previously
received tuples.

I Window policies define the operational semantics of a window: evic-
tion policy and trigger policy.

I Eviction policy: determines the properties of the tuples that can be
held in the buffer.

• For example by a property of the window, e.g., buffer’s capacity.

I Trigger policy: determines how often the data buffered in the win-
dow gets processed by the operator internal logic.
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Windowing (2/3)

I Four different windowing management policies.

I Count-based policy: characterized by the maximum number of tu-
ples a window buffer can hold

I Delta-based policy: specified using a delta threshold value and a
tuple attribute.

I Time-based policy: specified using a wall-clock time period.

I Punctuation-based policy: a window buffer becomes ready for pro-
cessing every time a punctuation is received.
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Windowing (3/3)

I Two types of windows: tumbling and sliding
• Both store tuples in the order they arrive.
• They differ in the eviction and trigger policies.

I Tumbling window: supports batch operations.
• When the buffer fills up, all the tuples are evicted.

I Sliding window: supports incremental operations.
• When the buffer fills up, older tuples are evicted.
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Selectivity and Arity

I Selectivity: the relationship between the number of tuples produced
and the number of tuples it ingested.

• Fixed and variable

I Arity: the number of ports an operator has.
• One-to-one (1:1)
• One-to-at-most-one (1:[0, 1])
• One-to-many (1:N)
• Many-to-one (M:1)
• Many-to-many (M:N)
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SPS Runtime System
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Job and Job Management

I At runtime, an application is represented by one or more jobs.

I Jobs are deployed as a collection of PEs.

I Job management component must identify and track individual PEs,
the jobs they belong to, and associate them with the user that
instantiated them.
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Logical Plan vs. Physical Plan (1/3)

I Logical plan: a data flow graph, where the vertices correspond to
PEs, and the edges to stream connections.

I Physical plan: a data flow graph, where the vertices correspond to
OS processes, and the edges to transport connections.
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Logical Plan vs. Physical Plan (2/3)

Logical plan

Different physical plans
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Logical Plan vs. Physical Plan (3/3)

I How to map a network of PEs onto the physical network of nodes?

• Parallelization

• Fault tolerance

• Optimization
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Parallelization
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Parallelization

I How to scale with increasing the number queries and the rate of
incoming events?

I Three forms of parallelisms.
• Pipelined parallelism
• Task parallelism
• Data parallelism
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Pipelined Parallelism

I Sequential stages of a computation execute concurrently for different
data items.
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Task Parallelism

I Independent processing stages of a larger computation are executed
concurrently on the same or distinct data items.
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Data Parallelism (1/2)

I The same computation takes place concurrently on different data
items.
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Data Parallelism (2/2)

I How to allocate data items to each computation instance?
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Fault Tolerance
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Recovery Methods (1/2)

I The recovery methods of streaming frameworks must take:

• Correctness, e.g., data loss and duplicates

• Performance, e.g., low latency
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Recovery Methods (2/2)

I GAP recovery

I Rollback recovery

I Precise recovery
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GAP Recovery (Cold Restart)

I The weakest recovery guarantee

I A new task takes over the operations of the failed task.

I The new task starts from an empty state.

I Tuples can be lost during the recovery phase.
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Rollback Recovery

I The information loss is avoided, but the output may contain dupli-
cate tuples.

I Three types of rollback recovery:
• Active backup
• Passive backup
• Upstream backup
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Rollback Recovery - Active Backup

I Each processing node has an associated backup node.

I Both primary and backup nodes are given the same input.

I The output tuples of the backup node are logged at the output
queues and they are not sent downstream.

I If the primary fails, the backup takes over by sending the logged tu-
ples to all downstream neighbors and then continuing its processing.
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Rollback Recovery - Passive Backup

I Periodically check-points processing state to a shared storage.

I The backup node takes over from the latest checkpoint when the
primary fails.

I The backup node is always equal or behind the primary.
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Rollback Recovery - Upstream Backup

I Upstream nodes store the tuples until the downstream nodes ac-
knowledge them.

I If a node fails, an empty node rebuilds the latest state of the failed
primary from the logs kept at the upstream server.

I There is no backup node in this model.
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Precise Recovery

I Post-failure output is exactly the same as the output without failure.

I Can be achieved by modifying the algorithms for rollback recovery.
• For example, in passive backup, after a failure occurs the backup

node can ask the downstream nodes for the latest tuples they
received and trim the output queues accordingly to prevent the
duplicates.
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Optimization
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Performance Optimization

I Data sources continuously producing the data.

I Applications must keep up with the rate of the input data they
process.

I Optimization techniques:
• Early data volume reduction
• Redundancy elimination
• Operator fusion
• Tuple batching
• Load balancing
• Load shedding
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Early Data Volume Reduction

I Reducing the data volume as early as possible.
• Sampling, filtering, quantization, projection, and aggregation.

I Operator reordering
• Executing the computationally cheaper operator and/or the more

selective operator earlier reduces the overall cost.
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Redundancy Elimination

I Removing the redundant segments from a data flow graph.
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Operator Fusion

I It changes only the physical layout.

I If two operators of the two ends of a stream connection are placed
on different hosts: non-negligible network cost

I But, if these two operators are fused inside a single PE in the same
host: the direct call is used

I Operator fusion can be effective if the per-tuple processing cost of
the operators being fused is low compared to the cost of transferring
the tuples across the stream connection.
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Tuple Batching

I Processing a group of tuples in every iteration of an operator’s in-
ternal algorithm.

I Can increase the throughput at the expense of higher latency.
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Load Balancing

I Flow partitioning to distribute the workload, e.g., data or task par-
allelism.

I Distributing the load evenly across the different subflows.
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Load Shedding

I Used by an operator to reduce the amount of computational re-
sources it uses.

• Sidesteping sustained increases in memory utilization.
• Limiting the amount of work an operator performs per unit of time:

decrease the operator latency, and improve the throughput.

I Different techniques: dropping incoming tuples, data reduction
techniques (e.g., sampling), ...
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Distributed Messaging System
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What is Messaging? (1/2)

I Suppose you have a website, and every time someone loads a page,
you send a user viewed page event to a messaging system.

I The consumers may do any of the following:
• Store the message in HDFS for future analysis
• Count page views and update a dashboard
• Trigger an alert if a page view fails
• Send an email notification to another user

I A messaging system lets you decouple all of this work from the
actual web page serving.
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What is Messaging? (2/2)

I Messaging system is a way of implementing near-realtime asyn-
chronous computation.

I Messages can be added to the messaging systems when something
happens.

I Consumers read messages from these systems, and process them or
take actions based on the message contents.
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Existing Messaging Systems

I Message queues: ActiveMQ and RabbitMQ

I Pub/Sub systems: Kafka and Kestrel

I Log aggregation systems: Flume and Scribe
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Kafka
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Kafka (1/6)

I Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.
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Kafka (2/6)

I Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.
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Kafka (3/6)

I Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.
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Kafka (4/6)

I Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.
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Kafka (5/6)

I Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.
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Kafka (6/6)

I Kafka is also a pub-sub messaging system.
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Kafka Basic Messaging Terminology

I Kafka maintains feeds of messages in categories called topics.

I Processes that publish messages to a Kafka topic called producers.

I Processes that subscribe to topics and process the feed of published
messages called consumers.

I Kafka is run as a cluster comprised of one or more servers each of
which is called a broker.
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Logs, Topics and Partition (1/5)

I Kafka is about logs.

I Topics are queues: a stream of messages of a particular type
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Logs, Topics and Partition (2/5)

I Each message is assigned a sequential id called an offset.
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Logs, Topics and Partition (3/5)

I Topics are logical collections of partitions (the physical files).
• Ordered
• Append only
• Immutable
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Logs, Topics and Partition (4/5)

I Ordering is only guaranteed within a partition for a topic.

I Messages sent by a producer to a particular topic partition will be
appended in the order they are sent.

I A consumer instance sees messages in the order they are stored in
the log.
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Logs, Topics and Partition (5/5)

I Partitions of a topic are replicated: fault-tolerance

I A broker contains some of the partitions for a topic.

I One broker is the leader of a partition: all writes and reads must go
to the leader.
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Kafka Architecture
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Producers

I Producers publish data to the topics of their choice.

I Producers are responsible for choosing which message to assign to
which partition within the topic.

• Round-robin
• Key-based
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Consumers and Consumer Groups (1/3)

I Consumers pull a range of messages from brokers.

I Multiple consumers can read from same topic on their own pace.

I Consumers maintain the message offset.
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Consumers and Consumer Groups (2/3)

I Consumers can be organized into consumer groups.

I Each message is delivered to only one of the consumers within the
group.

I All messages from one partition are consumed only by a single con-
sumer within each consumer group.

• A partition is in a topic the smallest unit of parallelism.
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Consumers and Consumer Groups (3/3)

I If all consumers instances are in one group: a traditional queue with
load balancing

I If all consumers instances are in different groups: all messages are
broadcast to all consumer instances

I If many consumers are instances in a group: each consumer instance
reads from one or more partitions for a topic
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Brokers

I The published messages are stored at a set of servers called brokers.

I Brokers are sateless.

I Messages are kept on log for predefined period of time.
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Coordination

I Kafka uses Zookeeper for the following tasks:

I Detecting the addition and the removal of brokers and consumers.

I Triggering a rebalance process in each consumer when the above
events happen.

I Maintaining the consumption relationship and keeping track of the
consumed offset of each partition.
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Delivery Guarantees

I Kafka guarantees that messages from a single partition are delivered
to a consumer in order.

I There is no guarantee on the ordering of messages coming from
different partitions.

I Kafka only guarantees at-least-once delivery.

I No exactly-once delivery: two-phase commits
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Summary
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Summary

I SPS vs. DBMS

I Data stream, unbounded data, tuples

I PEs and dataflow

I SPS programming languages: declarative, imperative, pattern-
based, visualized

I SPS data flow: composiation and manipulation

I SPS runtime: parallelization, fault-tolerance, optimization
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Summary

I Messaging system: decoupling

I Kafka: distributed, topic oriented, partitioned, replicated log service

I Logs, topcs, partition

I Kafka architecture: producer, consumer (groups), broker, coordina-
tor
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Questions?
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