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Motivation

» Many applications must process large streams of live data and pro-
vide results in real-time.

e Wireless sensor networks

e Traffic management applications

e Stock marketing

¢ Environmental monitoring applications

* Fraud detection tools



Stream Processing Systems

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.



Stream Processing Systems

» Database Management Systems (DBMS): data-at-rest analytics

e Store and index data before processing it.
e Process data only when explicitly asked by the users.

» Stream Processing Systems (SPS): data-in-motion analytics
e Processing information as it flows, without storing them persistently.
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DBMS vs. SPS

» DBMS

e Persistent data where updates are relatively infrequent.
¢ Runs queries just once to return a complete answer.

» SPS

e Transient data that is continuously updated.
e Executes standing queries, which run continuously and provide
updated answers as new data arrives.
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B
SPS Data Model

» Data stream is unbound and broken into a sequence of individual
data items, called tuples.

» A data tuple is the atomic data item in a data stream.
e Similar to a database row.
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B
SPS Data Model

» Data stream is unbound and broken into a sequence of individual
data items, called tuples.

» A data tuple is the atomic data item in a data stream.
e Similar to a database row.

» Three classes:
e Structured: known schema
e Semi-structured: self-describing tags, e.g., HTML or XML
e Unstructured: custom or proprietary formats, e.g., video, audio
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SPS Processing Model

» The tuples are processed by the application’s operators or processing
element (PE).

» A PE is the basic functional unit in an application.
e A PE processes input tuples, applies a function, and outputs tuples.
e A set of PEs and stream connections, organized into a data flow
graph.
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SPS Programming Model



BN
SPS Programming Model

» SPS data flow programming

» Flow composition: techniques for creating the topology associated
with the flow graph for an application.

» Flow manipulation: the use of PEs to perform transformations on
data flows.



Data Flow Composition
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Data Flow Composition
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» Flow composition patterns:
e Static composition
¢ Dynamic composition

e Nested composition




Static Flow Composition

» Creating the parts of the application topology that are known at
development time.



Static Flow Composition

» Creating the parts of the application topology that are known at
development time.

» Example:

e The input stream from Twitter feed.
e The analysis PE probes the messages for positive or negative tone.

e The connection between the source and the analysis PE is known at
development time.

* Explicitly connecte the output port of the source PE to the input port
of the analysis PE.



Dynamic Flow Composition

» Creating the segments of an application topology that are not fully
known at development time.



Dynamic Flow Composition

» Creating the segments of an application topology that are not fully
known at development time.

» Example:

e An application with an analysis PE that can consume multiple input
streams.

» The input sources are dynamic (appear and disappear).

e The connection between the analysis PE and sources can be specified
implicitly at development time.
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Nested Flow Composition

» Addresses the modularity problem in large scale flow graphs.

» Group a subset of the flow graph as a regular PE.

» Producing smaller and more manageable views of the overall data
flow graph.




Data Flow Manipulation



Data FLow Manipulation

» How the streaming data is manipulated by the different PE instances
in the flow graph?

» PEs properties:
e PEs tasks
e PEs states
¢ Windowing
o Selectivity and arity



.
PEs Tasks (1/2)

» Edge adaptation: converting data from external sources into tuples
that can be consumed by downstream PEs.
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PEs Tasks (1/2)

v

Edge adaptation: converting data from external sources into tuples
that can be consumed by downstream PEs.

v

Aggregation: collecting and summarizing a subset of tuples from
one or more streams.

v

Splitting: partitioning a stream into multiple streams.

v

Merging: combining multiple input streams.
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PEs Tasks (2/2)

» Logical and mathematical operations: applying different logical pro-
cessing, relational processing, and mathematical functions to tuple
attributes.
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L
PEs Tasks (2/2)

» Logical and mathematical operations: applying different logical pro-
cessing, relational processing, and mathematical functions to tuple
attributes.

» Sequence manipulation: reordering, delaying, or altering the tempo-
ral properties of a stream.

» Custom data manipulations: applying data mining, machine learn-
ing, ...



I
PEs States (1/3)

» A PE can either maintain internal state across tuples while process-
ing them, or process tuples independently of each other.

» Stateful vs. stateless tasks



I
PEs States (2/3)

» Stateless tasks: do not maintain state and process each tuple in-
dependently of prior history, or even from the order of arrival of
tuples.



I
PEs States (2/3)

v

Stateless tasks: do not maintain state and process each tuple in-
dependently of prior history, or even from the order of arrival of
tuples.

v

Easily parallelized.

v

No synchronization in a multi-threaded context.

v

Restart upon failures without the need of any recovery procedure.
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PEs States (3/3)

» Stateful tasks: involves maintaining information across different tu-
ples to detect complex patterns.



I
PEs States (3/3)

» Stateful tasks: involves maintaining information across different tu-
ples to detect complex patterns.

» A PE is usually a synopsis of the tuples received so far.

» A subset of recent tuples kept in a window buffer.
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Windowing (1/3)

» Window: a buffer associated with an input port to retain previously
received tuples.
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Windowing (1/3)

» Window: a buffer associated with an input port to retain previously
received tuples.

» Window policies define the operational semantics of a window: evic-
tion policy and trigger policy.

» Eviction policy: determines the properties of the tuples that can be
held in the buffer.

e For example by a property of the window, e.g., buffer's capacity.

» Trigger policy: determines how often the data buffered in the win-
dow gets processed by the operator internal logic.

 AmirH.Paybersh (KTH) Introduction o Data Stream Processing D 26
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Windowing (2/3)
» Four different windowing management policies.

» Count-based policy: characterized by the maximum number of tu-
ples a window buffer can hold

» Delta-based policy: specified using a delta threshold value and a
tuple attribute.

» Time-based policy: specified using a wall-clock time period.

» Punctuation-based policy: a window buffer becomes ready for pro-
cessing every time a punctuation is received.

 AmirH.Paybersh (KTH)  Introduction o Data Stream Processing D 26
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Windowing (3/3)

» Two types of windows: tumbling and sliding

¢ Both store tuples in the order they arrive.
e They differ in the eviction and trigger policies.

» Tumbling window: supports batch operations.
¢ When the buffer fills up, all the tuples are evicted.
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» Sliding window: supports incremental operations.
e When the buffer fills up, older tuples are evicted.
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BN
Selectivity and Arity

» Selectivity: the relationship between the number of tuples produced
and the number of tuples it ingested.

e Fixed and variable



BN
Selectivity and Arity

» Selectivity: the relationship between the number of tuples produced
and the number of tuples it ingested.

e Fixed and variable

» Arity: the number of ports an operator has.
One-to-one (1:1)

» One-to-at-most-one (1:[0, 1])

e One-to-many (1:N)

» Many-to-one (M:1)

e Many-to-many (M:N)



SPS Runtime System



BN
Job and Job Management

» At runtime, an application is represented by one or more jobs.
» Jobs are deployed as a collection of PEs.

» Job management component must identify and track individual PEs,
the jobs they belong to, and associate them with the user that
instantiated them.
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Logical Plan vs. Physical Plan (1/3)

» Logical plan: a data flow graph, where the vertices correspond to
PEs, and the edges to stream connections.

» Physical plan: a data flow graph, where the vertices correspond to
OS processes, and the edges to transport connections.
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Logical Plan vs. Physical Plan (2/3)

Logical plan
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Logical Plan vs. Physical Plan (3/3)

» How to map a network of PEs onto the physical network of nodes?

o Parallelization
e Fault tolerance

e Optimization



Parallelization



Parallelization

» How to scale with increasing the number queries and the rate of
incoming events?

» Three forms of parallelisms.
e Pipelined parallelism
e Task parallelism
¢ Data parallelism



Pipelined Parallelism

» Sequential stages of a computation execute concurrently for different

data items.
time
pipelined parallel tuple 1 2 B C
tuple 2 ABC
._.'_.—. e t
tuple 4 ABC
tuple 5 ABC
tuple 6 A B C



Task Parallelism

» Independent processing stages of a larger computation are executed
concurrently on the same or distinct data items.

time

task parallel
tuple 1
tuple 1
tuple 1
tuple 2, EN
tuple 2
tuple 2



Data Parallelism (1/2)

» The same computation takes place concurrently on different data
items.

data parallel time

tuple
tuple
tuple
tuple
tuple
tuple
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Data Parallelism (2/2)

» How to allocate data items to each computation instance?

Broadcast

Shuffle

Key-based




Fault Tolerance



BN
Recovery Methods (1/2)

» The recovery methods of streaming frameworks must take:

e Correctness, e.g., data loss and duplicates

e Performance, e.g., low latency



BN
Recovery Methods (2/2)

» GAP recovery
» Rollback recovery

» Precise recovery



I
GAP Recovery (Cold Restart)

v

The weakest recovery guarantee

v

A new task takes over the operations of the failed task.

v

The new task starts from an empty state.

v

Tuples can be lost during the recovery phase.
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Rollback Recovery

» The information loss is avoided, but the output may contain dupli-
cate tuples.

» Three types of rollback recovery:
e Active backup
¢ Passive backup
e Upstream backup



|
Rollback Recovery - Active Backup

» Each processing node has an associated backup node.
» Both primary and backup nodes are given the same input.

» The output tuples of the backup node are logged at the output
queues and they are not sent downstream.

v

If the primary fails, the backup takes over by sending the logged tu-
ples to all downstream neighbors and then continuing its processing.

2016/09/19 41 / 82



Rollback Recovery - Passive Backup

» Periodically check-points processing state to a shared storage.

» The backup node takes over from the latest checkpoint when the

primary fails.

» The backup node is always equal or behind the primary.
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Rollback Recovery - Upstream Backup

» Upstream nodes store the tuples until the downstream nodes ac-
knowledge them.

» If a node fails, an empty node rebuilds the latest state of the failed
primary from the logs kept at the upstream server.

» There is no backup node in this model.




Precise Recovery

» Post-failure output is exactly the same as the output without failure.

» Can be achieved by modifying the algorithms for rollback recovery.

e For example, in passive backup, after a failure occurs the backup
node can ask the downstream nodes for the latest tuples they
received and trim the output queues accordingly to prevent the
duplicates.



Optimization



Performance Optimization

» Data sources continuously producing the data.

» Applications must keep up with the rate of the input data they
process.

» Optimization techniques:
¢ Early data volume reduction
¢ Redundancy elimination
e Operator fusion
e Tuple batching
e Load balancing
¢ Load shedding



BN
Early Data Volume Reduction

» Reducing the data volume as early as possible.
e Sampling, filtering, quantization, projection, and aggregation.

» Operator reordering

» Executing the computationally cheaper operator and/or the more
selective operator earlier reduces the overall cost.
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Redundancy Elimination

» Removing the redundant segments from a data flow graph.
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Operator Fusion

» It changes only the physical layout.

» If two operators of the two ends of a stream connection are placed
on different hosts: non-negligible network cost

» But, if these two operators are fused inside a single PE in the same
host: the direct call is used

» Operator fusion can be effective if the per-tuple processing cost of
the operators being fused is low compared to the cost of transferring
the tuples across the stream connection.



BN
Tuple Batching

» Processing a group of tuples in every iteration of an operator’s in-
ternal algorithm.

» Can increase the throughput at the expense of higher latency.
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Load Balancing

» Flow partitioning to distribute the workload, e.g., data or task par-
allelism.

» Distributing the load evenly across the different subflows.
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Load Shedding

» Used by an operator to reduce the amount of computational re-
sources it uses.

» Sidesteping sustained increases in memory utilization.
e Limiting the amount of work an operator performs per unit of time:
decrease the operator latency, and improve the throughput.

» Different techniques: dropping incoming tuples, data reduction
techniques (e.g., sampling), ...
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Distributed Messaging System
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What is Messaging? (1/2)

» Suppose you have a website, and every time someone loads a page,
you send a user viewed page event to a messaging system.
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What is Messaging? (1/2)

» Suppose you have a website, and every time someone loads a page,
you send a user viewed page event to a messaging system.

» The consumers may do any of the following:
Store the message in HDFS for future analysis
Count page views and update a dashboard
Trigger an alert if a page view fails

Send an email notification to another user

» A messaging system lets you decouple all of this work from the

actual web page serving.

Source
System

Hadoop

Source
System

Security
Systems,

Real-time
monitoring
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I
What is Messaging? (2/2)

» Messaging system is a way of implementing near-realtime asyn-
chronous computation.

» Messages can be added to the messaging systems when something
happens.
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What is Messaging? (2/2)

» Messaging system is a way of implementing near-realtime asyn-
chronous computation.

» Messages can be added to the messaging systems when something
happens.

» Consumers read messages from these systems, and process them or
take actions based on the message contents.

Source
System

Source
System

Source
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Source
System

Data
Pipeline
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Real-time
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Security
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Hadoop
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Existing Messaging Systems

» Message queues: ActiveMQ and RabbitMQ
» Pub/Sub systems: Kafka and Kestrel

» Log aggregation systems: Flume and Scribe
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Kafka (1/6)

» Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.

Web logs
Transactions Warehouse

Metrics Alerting

Audit logs Security
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Kafka (2/6)

» Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.
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Kafka (3/6)

» Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.

Source 1
Topic 1

Source 2

Topic 2

Source 3




Kafka (4/6)

» Kafka is a distributed, topic oriented, partitioned, replicated commit
log service.
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Kafka (5/6)

» Kafka is a distributed, topic oriented, partitioned, replicated commit

log service.
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Kafka (6/6)

» Kafka is also a pub-sub messaging system.

Topic 1
(Partition 1)

Source 1 Topic 2
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Kafka Basic Messaging Terminology

» Kafka maintains feeds of messages in categories called topics.
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Kafka Basic Messaging Terminology

» Kafka maintains feeds of messages in categories called topics.

» Processes that publish messages to a Kafka topic called producers.
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Kafka Basic Messaging Terminology

» Kafka maintains feeds of messages in categories called topics.
» Processes that publish messages to a Kafka topic called producers.

» Processes that subscribe to topics and process the feed of published
messages called consumers.

Producer Consumer

Producer Consumer

Broker

Producer Kafka Cluster Consumer

Producer Consumer
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Kafka Basic Messaging Terminology

» Kafka maintains feeds of messages in categories called topics.
» Processes that publish messages to a Kafka topic called producers.

» Processes that subscribe to topics and process the feed of published
messages called consumers.

» Kafka is run as a cluster comprised of one or more servers each of
which is called a broker.

Producer Consumer

Producer Consumer

Broker

Producer Kafka Cluster Consumer

Producer Consumer

2016/09/19 64 / 82



Logs, Topics and Partition (1/5)

» Kafka is about logs.

» Topics are queues: a stream of messages of a particular type

Jkreps mn:~ jkreps$ tail -f -n 20 /var/log/apachez/access log

11 0 GET /images/apache_feather.gif HTTP/1.1" 200 4128
"GET /images/producer_consumer.png HTTP/1.1" 200 8t
"GET /images/log_anatomy.png HTTP/1.1" 200 19579
"GET /images/consumer-groups.png HTTP/1.1" 200 268:
"GET /images/log_compaction.png HTTP/1.1" 200 4141¢
"GET /documentation.html HTTP/1.1" 200 189893
"GET /images/log_cleaner_anatomy.png HTTP/1.1" 200
"GET /images/kafka_log.png HTTP/1.1" 200 134321
“GET /images/mirror-maker.png HTTP/1.1" 200 17054
"GET /documentation.html HTTP/1.1" 200 189937
"GET /styles.css HTTP/1.1" 304 -
"GET /images/kafka_logo.png HTTP/1.1" 304 —
“GET /images/producer_consumer.png HTTP/1.1" 304 —
“GET /images/log_anatomy.png HTTP/1.1" 304 -
"GET /images/consumer-groups.png HTTP/1.1" 304 -
"GET /images/log_cleaner_anatomy.png HTTP/1.1" 304
"GET /images/log_compaction.png HTTP/1.1" 304 -
"GET /images/kafka_log.png HTTP/1.1" 304 —
"GET /images/mirror-maker.png HTTP/1.1" 304 -
"GET /documentation.html HTTP/1.1" 200 195264
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Logs, Topics and Partition (2/5)

» Each message is assigned a sequential id called an offset.

Producer

Consumer B
(time = 11)

Consumer A
(time =7)
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Logs, Topics and Partition (3/5)

» Topics are logical collections of partitions (the physical files).

e Ordered
¢ Append only
e Immutable

Partition0 [0 (1|2|3|4(5|6|7|8

Partition1 |0 (1|2(3|4|5(6|7(8 Writes

Partiton2 [0|1]|2(3|4|5|6|7(8

Oold » New
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Logs, Topics and Partition (4/5)

» Ordering is only guaranteed within a partition for a topic.

> Messages sent by a producer to a particular topic partition will be
appended in the order they are sent.

» A consumer instance sees messages in the order they are stored in
the log.

Partition 0
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Logs, Topics and Partition (5/5)

» Partitions of a topic are replicated: fault-tolerance

» A broker contains some of the partitions for a topic.

» One broker is the leader of a partition: all writes and reads must go
to the leader.

Amir H. Payberah (KTH)

Broker 1 Broker 2

Topic A Topic A
Partition 0 Partition 1 Partition 0  Partition 1

Topic B Topic B
Partition 0 Partition 1

Partition 0 Partition 1

Introduction to Data Stream Processing
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Kafka Architecture

Producer Producer

@fkﬂ Cluster /

Brokgr 1

Partition 1 Partition 2 Partition 3
(leader) (leader) (leader)

Partition 2 Partition 1

Partition 3 Partitici1 3
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Producers

» Producers publish data to the topics of their choice.

» Producers are responsible for choosing which message to assign to
which partition within the topic.
¢ Round-robin
e Key-based



Consumers and Consumer Groups (1/3)

» Consumers pull a range of messages from brokers.
» Multiple consumers can read from same topic on their own pace.

» Consumers maintain the message offset.

Producer

01234567891011125

Consumer B
(time = 11)

Consumer A
(time =7)




Consumers and Consumer Groups (2/3)

» Consumers can be organized into consumer groups.

» Each message is delivered to only one of the consumers within the
group.
» All messages from one partition are consumed only by a single con-

sumer within each consumer group.
e A partition is in a topic the smallest unit of parallelism.

Kafka Cluster
Broker 2 ’

Broker 1
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Consumers and Consumer Groups (3/3)

» If all consumers instances are in one group: a traditional queue with
load balancing

» If all consumers instances are in different groups: all messages are
broadcast to all consumer instances

» |f many consumers are instances in a group: each consumer instance
reads from one or more partitions for a topic

Kafka Cluster

‘ Broker 1 Broker 2 ’
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Brokers

» The published messages are stored at a set of servers called brokers.
» Brokers are sateless.

» Messages are kept on log for predefined period of time.



Coordination

v

Kafka uses Zookeeper for the following tasks:

» Detecting the addition and the removal of brokers and consumers.

v

Triggering a rebalance process in each consumer when the above
events happen.

» Maintaining the consumption relationship and keeping track of the
consumed offset of each partition.



Delivery Guarantees

v

Kafka guarantees that messages from a single partition are delivered
to a consumer in order.

There is no guarantee on the ordering of messages coming from
different partitions.

v

v

Kafka only guarantees at-least-once delivery.

v

No exactly-once delivery: two-phase commits



Summary
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Summary

v

SPS vs. DBMS

v

Data stream, unbounded data, tuples

v

PEs and dataflow

v

SPS programming languages: declarative, imperative, pattern-
based, visualized

v

SPS data flow: composiation and manipulation

v

SPS runtime: parallelization, fault-tolerance, optimization



Summary

v

Messaging system: decoupling

v

Kafka: distributed, topic oriented, partitioned, replicated log service

v

Logs, topcs, partition

v

Kafka architecture: producer, consumer (groups), broker, coordina-
tor



Questions?
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