Scalable Stream Processing
MillWheel and Cloud Dataflow

Amir H. Payberah

amir@sics.se

KTH Royal Institute of Technology

2016/09/27 1/ 54

MillWheel

Motivation

» Google's Zeitgeist pipeline: tracking trends in web queries

» Ingests a continuous input of search queries and performs anomaly
detection.

» Builds a historical model of each query, so that expected changes in

traffic.

Web Window
Search Counter
~ Boccor Anomaly
Notifications

Requirements

» Persistent storage: shortterm and longterm
» Low watermarks: distinguish late records

» Duplicate prevention

B
MillWheel Dataflow

» A graph of user-defined transformations (computations) on input
data that produces output data.

» Computation actions include:
* Contacting external systems
e Manipulating other MillWheel primitives
e Qutputting data

BN
Data Model (1/3)

» Stream: the delivery mechanism between computations.

» Inputs and outputs are represented by (key, value, timestamp)
triples.

BN
Data Model (1/3)

v

Stream: the delivery mechanism between computations.

v

Inputs and outputs are represented by (key, value, timestamp)
triples.

» Key: a metadata field with semantic meaning in the system.

\{

Value: an arbitrary byte string, corresponding to the entire record.

v

Timestamp: typically wall clock time when the event occurred.

Data Model (2/3)

» Keys are abstraction for record aggregation and comparison.

» Key extraction function: specified by the stream consumer to assign
keys to records.

Computation A
Key Extractor:
Search Query

Computation B

Key Extractor: "bfget",
Cookie ID

"a790c2"

"britney",
"carly"

-
Data Model (2/3)

» Keys are abstraction for record aggregation and comparison.

» Key extraction function: specified by the stream consumer to assign
keys to records.

» Computation can only access state for the specific key.

Computation A
Key Extractor:
Search Query

Computation B

Key Extractor: "bfge1",
Cookie ID

"a79bc2"

"britney",
"carly"

 AmirH Paybersh (KTH) " Mil\Whes! and Cloud Dataflow e

BN
Data Model (3/3)

» A computation subscribes to zero or more input streams and pub-
lishes one or more output streams.

Data Model (3/3)

» A computation subscribes to zero or more input streams and pub-
lishes one or more output streams.

» Multiple computations can extract different keys from the same
stream.

-
Computation (1/3)
» Application logic lives in computations.

» Users can add and remove computations from a topology dynami-
cally.

» Runs in the context of a single key.

» Parallel per-key processing

Computation

| Key A || Key A || Key A |
#| Key B | [ke]

Wall Time

2016/09/27 9/ 54

Computation (2/3)

» ProcessRecord

MillWheel System Binary

e Triggered when receiving a record

User Code: Computation

[Tromsrem]

» ProcessTimer [T resssmns T

e Triggered at a specific value or low
watermark value
e Optional

Persistent State

Computation (3/3)

// Upon receipt of a record, update the running total for its timestamp bucket,

// and set a timer to fire when we have received all of the data for that bucket.
void Windower: :ProcessRecord(Record input) {

WindowState state(MutablePersistentState());
state.UpdateBucketCount (input.timestamp()) ;
string id = WindowID(input.timestamp())

SetTimer (id, WindowBoundary (input.timestamp()));
}

("britney", [bytes], 10:59:10
("britney", [bytes], 10:59:11)
("britney", [bytes], 10:59:10)
("carly", [bytes], 10:59:10)

O

Window Counter Model
Calculator

britney: (10:59:10, 2) N -
(10:59:11, 1) | britney: \\W\\, |

[carly: (10:59:10, 1) | [

carly: W |

Amir H. Payberah (KTH) MillWheel and Cloud Dataflow

2016/09/27 11 /54

N
Persistent State

» Managed on per-key basis
» Stored in Bigtable or Spanner

» Common use: aggregation, buffered data for joins,

("britney", [bytes], 10:59:10
("britney", [bytes], 10: 11)
("britney", [bytes], 10:59:10)
("carly”, [bytes], 105910)

O

X Model
e el e [

britney: (10:59:10, 2)) -
(10:59:11, 1) | britney: \N\M, |

| carly:(10:59:10,1)| | carly: WA |

2016,/09/27

12 / 54

B
Low Watermarks (1/3)

» Low watermark: provides a bound on the timestamps of future
records arriving at that computation.

Pending Work

i &
I -
5 .
. ® 4“:'_5&3—".%
. 8 ® H Completed Work
Ed ; K
é [T
PES P
23 i® ® s
Fe HNG) £
28 : 3
gel L
]
T
®, -,
1201 12:02 1203 1204 12005 12:06 12:07 12:08
Event Time
Actual watermark: ~ ===ssse-aad >
Ideal watermark: s eeeeees >

Low Watermarks (1/3)

» Low watermark: provides a bound on the timestamps of future

records arriving at that computation.

» Late records: records behind the low watermark.

* Process them according to application, e.g., discard or correct the

Processing Time

12:06 12:07 12:08 12:09

result.
,6
® /
¥ .T|
® ®
o
._4'
e ®
® -
12‘:01 12:‘02 12;03 12':04 12:‘05 12‘:06 12;07 12:‘08
Event Time
Actual watermark: =~ ==sseseaaad >

Ideal watermark:

ow lem

i

Pending Work

t=timestamp
Completed Work

2016,/09/27

13 / 54

BN
Low Watermarks (3/3)

» min(oldest work of A, low watermark of C: C outputs to A)

Computation C Computation A

BN
Low Watermarks (3/3)

» min(oldest work of A, low watermark of C: C outputs to A)

Computation C Computation A

» Low watermark values are seeded by injectors that send data into
MillWheel from external systems.

Low Watermarks (3/3)

» Example: a file injector reports a low watermark value that corre-
sponds to the oldest unfinished file.

Fault Tolerance

» Delivery guarantees

» State manipulation

NS
Delivery Guarantees - Exactly-One Delivery

» Upon receipt of an input record in a computation:
e The duplicated records are discarded.
e User code is run for the input record.
¢ Pending changes are committed to the backing store.
e Senders are ACKed.

¢ Pending downstream productions are sent.

Delivery Guarantees - Strong Productions

» Inputs are not necessarily ordered or deterministic: emitted records
are checkpointed before delivery.
e If an ACK is not received, the record can be re-sent.
e Duplicates are discarded by MillWheel at the recipient.

Delivery Guarantees - Strong Productions

» Inputs are not necessarily ordered or deterministic: emitted records
are checkpointed before delivery.
e If an ACK is not received, the record can be re-sent.
e Duplicates are discarded by MillWheel at the recipient.

» The checkpoints allow fault-tolerance.
e |If a processor crashes and is restarted somewhere else any intermedi-
ate computations can be recovered.

Delivery Guarantees - Strong Productions

» Inputs are not necessarily ordered or deterministic: emitted records
are checkpointed before delivery.
e If an ACK is not received, the record can be re-sent.
e Duplicates are discarded by MillWheel at the recipient.

» The checkpoints allow fault-tolerance.
e |If a processor crashes and is restarted somewhere else any intermedi-
ate computations can be recovered.

» When a delivery is ACKed the checkpoints can be garbage collected.

Delivery Guarantees - Strong Productions

v

Inputs are not necessarily ordered or deterministic: emitted records
are checkpointed before delivery.

e If an ACK is not received, the record can be re-sent.

e Duplicates are discarded by MillWheel at the recipient.

v

The checkpoints allow fault-tolerance.

* If a processor crashes and is restarted somewhere else any intermedi-
ate computations can be recovered.

v

When a delivery is ACKed the checkpoints can be garbage collected.

v

The Checkpoint— Delivery—ACK— GC sequence is called a strong
production.

 AmirH Paybersh (KTH) " Mil\Whes! and Cloud Dataflow 2016/00/27 18/ 54

.
Delivery Guarantees - Weak Productions (1/2)

» Some computation may be idempotent, regardless of the presence
of strong production and exactly-once delivery.

» Disable the exactly-once and/or strong production guarantee for
applications that do not need it.

» Weak production is when Millwheel users can allow events to be
sent before the checkpoint is committed to persistent storage.

Delivery Guarantees - Weak Productions (2/2)

» Weak production checkpointing prevents straggler productions from
occupying undue resources in the sender (Computation A) by saving

a checkpoint for receiver (Computation B).

| Emeuisiondl | | Eompisiondl | | &
T T

' '
[Produce [
—_— Produce

'
! checkpoint

ACK !

—1sec

[~ 1.3 sec X Brestarts

i<—_| delete
! checkpoint

Replay production |

2016,/09/27

20 / 54

.
State Manipulation (1/2)

» Hard state: persisted to the backing store.

» Soft state: in-memory caches or aggregates.

.
State Manipulation (2/2)

» To ensure consistency in hard state, only one bulk write is permitted
per event.

e Wrap all per-key updates in a single atomic operation.

.
State Manipulation (2/2)

» To ensure consistency in hard state, only one bulk write is permitted
per event.

e Wrap all per-key updates in a single atomic operation.

» To avoid zombie writers (where work has been moved elsewhere
through failure detection or through load balancing), every writer
has a lease or sequencer that ensures only they may write.

-
State Manipulation (2/2)

» To ensure consistency in hard state, only one bulk write is permitted
per event.

e Wrap all per-key updates in a single atomic operation.

» To avoid zombie writers (where work has been moved elsewhere
through failure detection or through load balancing), every writer
has a lease or sequencer that ensures only they may write.

» The single-writer for a key at a particular point in time is critical to
the maintenance of soft state.

 AmirH Paybersh (KTH) " Mil\Whes! and Cloud Dataflow N

Google Cloud Dataflow

BN
Google Cloud Dataflow (1/4)

» Google managed service for batch and stream data processing.

» A programming model and execution framework.

|
Google Cloud Dataflow (2/4)

Cloud Dataflow

MapReduce Flume
Big Table Pregel MillWheel
Colossus

2002 2004 2006 2008 2010 2012 2013

2016/09/27 25/ 54

[
Google Cloud Dataflow (3/4)

» MapReduce: batch processing
» FlumelJava: dataflow programming model

» MillWheel: handling streaming data

BN
Google Cloud Dataflow (4/4)

» Open source Cloud Dataflow SDK

» Express your data processing pipeline using FlumeJava.

BN
Google Cloud Dataflow (4/4)

» Open source Cloud Dataflow SDK
» Express your data processing pipeline using FlumeJava.

» If you run your Cloud Dataflow program in batch mode, it is con-
verted to MapReduce operations and run on Google’s MapReduce
framework.

BN
Google Cloud Dataflow (4/4)

» Open source Cloud Dataflow SDK
» Express your data processing pipeline using FlumeJava.

» If you run your Cloud Dataflow program in batch mode, it is con-
verted to MapReduce operations and run on Google’s MapReduce
framework.

» If you run the same program in streaming mode, it is executed on
the MillWheel stream processing engine.

Programming Model

» Pipeline, a directed graph of data processing transformations

» Optimized and executed as a unit —

-

» May include multiple inputs and
multiple outputs y

» May encompass many logical
MapReduce or Millwheel operations
» PCollections conceptually flow
—

through the pipeline

 AmirH Paybersh (KTH) " Mil\Whes! and Cloud Dataflow 2016/00/27 28/ 54

Dataflow Main Components

v

Pipelines

v

PCollections

Transforms

v

v

[/O sources and sinks

.
Pipelines (1/2)

» A pipeline represents a data processing job

» Directed graph of steps operating on data

» A pipeline consists of two parts:

» Data (PCollection)
e Transforms applied to that data

.
Pipelines (2/2)

L
PCollections - Overview(1/2)

v

A specialized class to represent data in a pipeline.

\{

A parallel collection of records

Immutable

v

v

No random access

v

Must specify bounded or unbounded

.
PCollections - Overview (2/2)

I
PCollections - Windowing (1/6)

» Logically divide up or groups the elements of a PCollection into
finite windows.

» Each element in a PCollection is assigned to one or more windows.

» Windowing functions:
¢ Fixed time windows
e Sliding time windows
¢ Per-session windows

PCollections - Windowing (2/6)

» Fixed time windows

» Represents the time interval in the data stream to define bundles of
data, e.g., hourly

I | | |
Window 0 I Window 1 | Window 2 | Window 3 |
[| | |

Key 0

Key 1

Key 2

1
]
]
'

305 window size '

Time (s)

PCollection<String> items = ...;
PCollection<String> fixed_windowed_items = items.apply(
Window.<String>into(FixedWindows.of (1, TimeUnit.MINUTES))) ;

Amir H. Payberah (KTH) MillWheel and Cloud Dataflow 2016,/09/27 35/ 54

PCollections - Windowing (3/6)

» Sliding time windows

» Uses time intervals in the data stream to define bundles of data,

however the windows overlap.

Key 0

Key 1

Key 2

'
Winalw 0 |
'

Winddw 1

.
'
1
1
1 1
1 1
1 1
1 '

505 vandew size

| g
i i

Time (s)

PCollection<String> items = ...;
PCollection<String> sliding_windowed_items = items.apply(
Window.<String>into(SlidingWindows
.of (Duration.standardMinutes(30))
.every(Duration.standardSeconds(5))));

Amir H. Payberah (KTH) MillWheel and Cloud Dataflow 2016,/09/27

36 / 54

PCollections - Windowing (4/6)

» Session windows

» Defines windows around areas of
concentration in the data.

Key 0

MmnGapDusin BeowNinmmGap Dusben

Window 0 Window 1

Window0 | Window 1 ! Window? }

Time (s)

» Useful for data that is irregularly .,
distributed with respect to time,
e.g., user mouse activity

'
Key 2

» Applies on a per-key basis

PCollection<String> items = ...;
PCollection<String> session_windowed_items = items.apply(
Window.<String>into(Sessions
.withGapDuration(Duration.standardMinutes(10))));

Amir H. Payberah (KTH) MillWheel and Cloud Dataflow 2016,/09/27 37 / 54

- |
PCollections - Windowing (5/6)

» Time skew and late data

» Dataflow tracks a watermark: the system’s notion of when all data
in a certain window can be expected to have arrived in the pipeline.

» Data that arrives with a timestamp after the watermark is considered

late data.
. Lo
al e '.-|
F e &
B ! .
S .
gar H
& .
E[n S,, "l." Actual watermark:
@ 2 Lo ' Ideal watermark:
s ,", . Event Time Skew:
& Bl e
ST
— |r
i
r .
F.

12:01 12:02 12:03 12:04
Event Time

38 /54

I
PCollections - Windowing (6/6)

» Allow late data by invoking the withAllowedLateness operation.

.
PCollections - Triggers (1/3)

» Determine when to emit elements into an aggregated window.

» Provide flexibility for dealing with time skew and data lag.
e Example: deal with late-arriving data.
e Example: get early results, before all the data in a given window has
arrived.

» Three main types of triggers:
e Time-based triggers
e Data-driven triggers
e Composit triggers

I
PCollections - Triggers (2/3)

> Time-base triggers

» Operate on a time reference
e Event time: as indicated by the timestamp on each data element
e Processing time: the time when the data element is processed at
any given stage in the pipeline

I
PCollections - Triggers (3/3)

» Data-driven triggers
o Operate by examining the data as it arrives in each window and firing
when a data condition that you specify is met.
» Example: emit results from a window when that window has received
a certain number of data elements.

» Composit triggers
e Combine multiple time-based or data-driven triggers in some logical
way.
* You can set a composite trigger to fire when all triggers are met
(logical AND), when any trigger is met (logical OR), etc.

NN
Transformations - Overview

» A processing operation that transforms data

» Each transform accepts one (or multiple) PCollections as input, per-
forms an operation on the elements in the input PCollection(s), and
produces one (or multiple) new PCollections as output.

» Core transforms: ParDo, GroupByKey, Combine, Flatten

Transformations - ParDo

» Processes each element of a PCollection independently using a user-
provided DoFn.

NS
Transformations - GroupByKey

» Takes a PCollection of key-value pairs and gathers up all values with
the same key.

|
Transformations - Join and CoGroubByKey

» Groups together the values from multiple PCollections of key-value
pairs, where each PCollection in the input has the same key type.

// Each data set %s represented by key-value pairs in separate PCollections.
// Both data sets share a common key type ("K").

PCollection<KV<K, V1>> pcl = ...;

PCollection<KV<K, V2>> pc2 = ...;

// Create tuple tags for the wvalue types in each collection.
final TupleTag<V1> tagl = new TupleTag<Vi>();
final TupleTag<V2> tag2 = new TupleTag<V2>();

// Merge collection values into a CoGbkResult collection.

PCollection<KV<K, CoGbkResult>> coGbkResultCollection =
KeyedPCollectionTuple.of (tagl, pcl)
.and(tag2, pc2)

.apply (CoGroupByKey . <K>create()) ;

~ Amir H. Payberah (KTH) MillWheel and Cloud Dataflow 2016/09/27 46 / 54

Example: HashTag Autocompletion (1/3)

#SuperBo Q

#SuperBowl
#SuperBowlXLIX
#superbowlcommercials

#SuperBowlSunday

-
Example: HashTag Autocompletion (2/3)

{Go Hawks #Seahawks!, #Seattle works museum pass. Free!

Go #PatriotsNation! Having fun at t#tseaside, .. }
ExtractTags {seahawks, seattle, patriotsnation, lovemypats, ...}
{seahawks->5M, seattle->2M, patriots->9M, ...}

s {d->(deflategate, 10M), d->(denver, 2M), ..,
ExpanciErefixes sea->(seahawks, 5M), sea->(seaside, 2M), ...}

{d->[deflategate, desafiodatransa, djokovic],
de->[deflategate, desafiodatransa, dead5@],...}

2016/09/27 48 / 54

-
Example: HashTag Autocompletion (3/3)

- 3 Pipeline p = Pipeline.create();

.apply(TextIO.Read.from(“gs://.”))
ExtractTags .apply(ParDo.of (new ExtractTags(}))
.apply(Count.perElement())
ExpandPrefixes .apply(ParDo.of (new ExpandPrefixes())
.apply(Top.largestPerKey(3))

.apply(TextIO.Write.to(“gs://..7));

~ Amir H. Payberah (KTH) MillWheel and Cloud Dataflow 2016/09/27

49 / 54

Example: Word Count (1/2)

Example: Word Count (2/2)

Pipeline p = Pipeline.create(...);
p-apply(TextIO.Read.from("gs://..."))
// Apply a ParDo transform to our PCollection of text lines.
.apply(ParDo.of (new DoFn<String, String>() {

public void processElement(ProcessContext c) { ... }}))

// Apply the Count transform to our PCollection of individual words.
.apply(Count.<String>perElement ())

// Formats our PCollection of word counts into a printable string
.apply ("FormatResults", MapElements...))

// Apply a write transform
.apply(TextIO0.Write.to("gs://..."));

// Run the pipeline.
p.run();

Amir H. Payberah (KTH) MillWheel and Cloud Dataflow 2016,/09/27

51 /54

Summary

Summary

» MillWheel

¢ DAG of computations

e Persistent state: per-key
¢ Low watermark

e Exactly-one delivery

» Google cloud dataflow
e Pipeline
e PCollection: windows and triggers
e Transforms

Questions?

