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Spark Streaming
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Existing Streaming Systems (1/2)

I Record-at-a-time processing model:

• Each node has mutable state.

• For each record, updates state and sends
new records.

• State is lost if node dies.
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Existing Streaming Systems (2/2)

I Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost Only need one standby, but slow to recover
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Observation

I Batch processing models for clusters provide fault tolerance effi-
ciently.

I Divide job into deterministic tasks.

I Rerun failed/slow tasks in parallel on other nodes.
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Core Idea

I Run a streaming computation as a series of very small and deter-
ministic batch jobs.
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Challenges

I Latency (interval granularity)
• Traditional batch systems replicate state on-disk storage: slow

I Recovering quickly from faults and stragglers
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Proposed Solution

I Latency (interval granularity)
• Resilient Distributed Dataset (RDD)
• Keep data in memory
• No replication

I Recovering quickly from faults and stragglers
• Storing the lineage graph
• Using the determinism of D-Streams
• Parallel recovery of a lost node’s state
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Programming Model
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Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)
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DStream

I DStream: sequence of RDDs representing a stream of data.

I Any operation applied on a DStream translates to operations on the
underlying RDDs.
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StreamingContext

I StreamingContext: the main entry point of all Spark Streaming
functionality.

I To initialize a Spark Streaming program, a StreamingContext object
has to be created.

val conf = new SparkConf().setAppName(appName).setMaster(master)

val ssc = new StreamingContext(conf, Seconds(1))
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Source of Streaming

I Two categories of streaming sources.

I Basic sources directly available in the StreamingContext API, e.g.,
file systems, socket connections, ....

I Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter, ....

ssc.socketTextStream("localhost", 9999)

TwitterUtils.createStream(ssc, None)
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DStream Transformations

I Transformations: modify data from on DStream to a new DStream.

I Standard RDD operations, e.g., map, join, ...

I DStream operations, e.g., window operations
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DStream Transformation Example

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()
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Window Operations

I Apply transformations over a sliding window of data: window length
and slide interval.

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _,

Seconds(30), Seconds(10))
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MapWithState Operation

I Maintains state while continuously updating it with new information.

I It requires the checkpoint directory.

I A new operation after updateStateByKey.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint(".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(

StateSpec.function(mappingFunc))

val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {

val sum = one.getOrElse(0) + state.getOption.getOrElse(0)

state.update(sum)

(word, sum)

}
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Transform Operation

I Allows arbitrary RDD-to-RDD functions to be applied on a DStream.

I Apply any RDD operation that is not exposed in the DStream API,
e.g., joining every RDD in a DStream with another RDD.

// RDD containing spam information

val spamInfoRDD = ssc.sparkContext.newAPIHadoopRDD(...)

val cleanedDStream = wordCounts.transform(rdd => {

// join data stream with spam information to do data cleaning

rdd.join(spamInfoRDD).filter(...)

...

})
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Output Operations

I Push out DStream’s data to external systems, e.g., a database or a
file system.

I foreachRDD: the most generic output operator
• Applies a function to each RDD generated from the stream.
• The function is executed in the driver process.

dstream.foreachRDD { rdd =>

rdd.foreachPartition { partitionOfRecords =>

val connection = createNewConnection()

partitionOfRecords.foreach(record => connection.send(record))

connection.close()

}

}
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Spark Streaming and DataFrame

val words: DStream[String] = ...

words.foreachRDD { rdd =>

// Get the singleton instance of SQLContext

val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)

import sqlContext.implicits._

// Convert RDD[String] to DataFrame

val wordsDataFrame = rdd.toDF("word")

// Register as table

wordsDataFrame.registerTempTable("words")

// Do word count on DataFrame using SQL and print it

val wordCountsDataFrame =

sqlContext.sql("select word, count(*) as total from words group by word")

wordCountsDataFrame.show()

}
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Implementation

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 21 / 64



System Architecture

I Spark Streaming components:

• Master: tracks the DStream lineage graph and schedules tasks to
compute new RDD partitions.

• Workers: receive data, store the partitions of input and computed
RDDs, and execute tasks.

• Client library: used to send data into the system.
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Application Execution (1/2)

I The system loads streams:
• By receiving records directly from clients,
• or by loading data periodically from an external storage, e.g., HDFS

I All data is managed by a block store on each worker, with a tracker
on the master to let nodes find the locations of blocks.

• Each block is given a unique ID, and any node that has that ID can
serve it.

• The block store keeps new blocks in memory but drops them in an
LRU fashion.
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Application Execution (2/2)

I To decide when to start processing a new interval:
• The nodes have their clocks synchronized via NTP.
• Each node sends the master a list of block IDs it received in each

interval when it ends.

I The master starts each task whenever its parents are finished.
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Fault Tolerance

I Spark remembers the sequence of oper-
ations that creates each RDD from the
original fault-tolerant input data (lineage
graph).

I Batches of input data are replicated in
memory of multiple worker nodes.

I Data lost due to worker failure, can be
recomputed from input data.
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Parallel Recovery

I When a node fails, the RDD partitions on the node and its running
tasks are recomputed in parallel on other nodes.

I The system periodically checkpoints some of the RDDs, by asyn-
chronously replicating them to other worker nodes.

I When a node fails, the system detects all missing RDD partitions
and launches tasks to recompute them from the last checkpoint.

I Many tasks can be launched at the same time to compute different
RDD partitions.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 26 / 64



Master Recovery

I To tolerate failures of Spark master:
• Writing the state of the computation reliably when starting each

timestep.
• Having workers connect to a new master and report their RDD

partitions to it when the old master fails.

I Operations are deterministic, therefore there is no problem if a given
RDD is computed twice.
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Structured Streaming
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Motivation

I Continuous applications: end-to-end applications that react to data
in real-time.

• Updating data that will be served in real-time
• Extract, transform and load (ETL)
• Creating a real-time version of an existing batch job
• Online machine learning
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Structured Streaming

I Structured streaming is a new high-level API to support continuous
applications.

I A higher-level API than Spark streaming.

I Built on the Spark SQL engine.

I Perform database-like query optimizations.
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Programming Model (1/2)

I Treating a live data stream as a table that is being continuously
appended.

I Users can express their streaming computation as standard batch-
like query as on a static table.

I Spark runs it as an incremental query on the unbounded input table.
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Programming Model (2/2)

I A query on the input will generate the Result Table.

I Every trigger interval (e.g., every 1 second), new rows get appended
to the Input Table, which eventually updates the Result Table.

I Whenever the result table gets updated, we can write the changed
result rows to an external sink.
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Example

val spark: SparkSession = ...

val lines = spark.readStream.format("socket").option("host", "localhost")

.option("port", 9999).load()

val words = lines.as[String].flatMap(_.split(" "))

val wordCounts = words.groupBy("value").count()

val query = wordCounts.writeStream.outputMode("complete")

.format("console").start()

query.awaitTermination()
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Creating Streaming DataFrames and Datasets

I Creating through the DataStreamReader returned by
SparkSession.readStream().

val spark: SparkSession = ...

// Read text from socket

val socketDF = spark.readStream.format("socket")

.option("host", "localhost").option("port", 9999).load()

// Read all the csv files written atomically in a directory

val userSchema = new StructType().add("name", "string").add("age", "integer")

val csvDF = spark.readStream.option("sep", ";")

.schema(userSchema).csv("/path/to/directory")
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Basic Operations

I Most of the common operations on DataFrame/Dataset are
supported for streaming.

case class DeviceData(device: String, type: String, signal: Double,

time: DateTime)

// streaming DataFrame with schema

// { device: string, type: string, signal: double, time: string }

val df: DataFrame = ...

val ds: Dataset[DeviceData] = df.as[DeviceData]

// Selection and projection

df.select("device").where("signal > 10") // using untyped APIs

ds.filter(_.signal > 10).map(_.device) // using typed APIs

// Aggregation

df.groupBy("type") // using untyped API

ds.groupByKey(_.type) // using typed API
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Window Operation (1/2)

I Aggregations over a sliding event-time window.

I Event-time is the time embedded in the data itself, not the time
Spark receives them.

// count words within 10 minute windows, updating every 5 minutes.

// streaming DataFrame of schema {timestamp: Timestamp, word: String}

val words = ...

val windowedCounts = words.groupBy(

window($"timestamp", "10 minutes", "5 minutes"),

$"word"

).count()
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Window Operation (2/2)

I Late data
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Flink Stream
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Batch Processing vs. Stream Processing (1/2)

I Batch processing is just a special case of stream processing.
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Batch Processing vs. Stream Processing (2/2)

I Batched/Stateless: scheduled in batches
• Short-lived tasks (hadoop, spark)
• Distributed streaming over batches (spark stream)

I DataFlow/Stateful: continuous/scheduled once (Storm, Samza,
Naiad, Flink)

• Long-lived task execution
• State is kept inside tasks
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Native vs. Non-Native Streaming
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Lambda Architecture
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Flink

I Distributed data flow processing system

I Unified real-time stream and batch processing
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Programming Model
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Programming Model

I Data stream
• An unbounded, partitioned immutable sequence of events.

I Stream operators
• Stream transformations that generate new output data streams

from input ones.
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Flink Stream API (1/2)

I Transformations:

• Basic transformations: Map, Reduce, Filter, Aggregations

• Binary stream transformations: CoMap, CoReduce

• Windowing semantics: policy based flexible windowing (Time, Count,
Delta ...)

• Temporal binary stream operators: Joins, Crosses

• Native support for iterations
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Flink Stream API (2/2)

I Data stream sources
• File system
• Message queue connectors
• Arbitrary source functionality

I Data stream outputs
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Word Count in Flink - Batch and Stream

I Batch (DataSet API)

case class Word (word: String, frequency: Int)

val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap {line => line.split(" ").map(word => Word(word, 1))}

.groupBy("word").sum("frequency").print()

I Streaming (DataStream API)

case class Word (word: String, frequency: Int)

val lines: DataStream[String] = env.fromSocketStream(...)

lines.flatMap {line => line.split(" ").map(word => Word(word, 1))}

.keyBy("word").window(Time.of(5, SECONDS))

.every(Time.of(1, SECONDS)).sum("frequency").print()
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Windowning Semantics

I Trigger and eviction policies
• window(eviction, trigger)
• window(eviction).every(trigger)

I Built-in policies:
• Time: Time.of(length, TimeUnit/Custom timestamp)
• Count: Count.of(windowSize)
• Delta: Delta.of(treshold, Distance function, Start value)

I Window transformations:
• Reduce, mapWindow
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Example 1 - Reading From Multiple Inputs (1/2)
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Example 1 - Reading From Multiple Inputs (2/2)

val env = StreamExecutionEnvironment.getExecutionEnvironment

//Read from a socket stream at map it to StockPrice objects

val socketStockStream = env.socketTextStream("localhost", 9999).map(x => {

val split = x.split(",")

StockPrice(split(0), split(1).toDouble)

})

//Generate other stock streams

val SPX_Stream = env.addSource(generateStock("SPX")(10) _)

val FTSE_Stream = env.addSource(generateStock("FTSE")(20) _)

val DJI_Stream = env.addSource(generateStock("DJI")(30) _)

val BUX_Stream = env.addSource(generateStock("BUX")(40) _)

//Merge all stock streams together

val stockStream = socketStockStream.merge(SPX_Stream, FTSE_Stream,

DJI_Stream, BUX_Stream)
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Example 2 - Window Aggregations (1/2)
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Example 2 - Window Aggregations (2/2)

//Define the desired time window

val windowedStream = stockStream

.window(Time.of(10, SECONDS)).every(Time.of(5, SECONDS))

//Compute some simple statistics on a rolling window

val lowest = windowedStream.minBy("price")

val maxByStock = windowedStream.groupBy("symbol").maxBy("price")

val rollingMean = windowedStream.groupBy("symbol").mapWindow(mean _)

//Compute the mean of a window

def mean(ts: Iterable[StockPrice], out: Collector[StockPrice]) = {

if (ts.nonEmpty) {

out.collect(StockPrice(ts.head.symbol,

ts.foldLeft(0: Double)(_ + _.price) / ts.size))

}

}
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Example 3 - Data-Driven Windows (1/2)
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Example 3 - Data-Driven Windows (2/2)

case class Count(symbol: String, count: Int)

val defaultPrice = StockPrice("", 1000)

//Use delta policy to create price change warnings

val priceWarnings = stockStream.groupBy("symbol")

.window(Delta.of(0.05, priceChange, defaultPrice))

.mapWindow(sendWarning _)

//Count the number of warnings every half a minute

val warningsPerStock = priceWarnings.map(Count(_, 1))

.groupBy("symbol")

.window(Time.of(30, SECONDS))

.sum("count")

def priceChange(p1: StockPrice, p2: StockPrice): Double = {

Math.abs(p1.price / p2.price - 1)

}

def sendWarning(ts: Iterable[StockPrice], out: Collector[String]) = {

if (ts.nonEmpty) out.collect(ts.head.symbol)

}
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Implementation
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Flink Architecture

I Master (JobManager): schedules tasks, coordinates checkpoints,
coordinates recovery on failures, etc.

I Workers (TaskManagers): JVM processes that execute tasks of a
dataflow, and buffer and exchange the data streams.

• Workers use task slots to control the number of tasks it accepts.
• Each task slot represents a fixed subset of resources of the worker.
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Application Execution

I Jobs are expressed as data flows.

I Job graphs are transformed into the execution graph.

I Execution graphs consist information to schedule and execute a job.
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Fault Tolerance (1/3)

I Fault tolerance in Spark
• RDD re-computation

I Fault tolerance in Storm
• Tracks records with unique IDs.
• Operators send acks when a record has been processed.
• Records are dropped from the backup when the have been fully

acknowledged.

I Fault tolerance in Flink
• More coarse-grained approach than Storm.
• Based on consistent global snapshots (inspired by Chandy-Lamport).
• Low runtime overhead, stateful exactly-once semantics.
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Fault Tolerance (2/3)

I Acks sequences of records instead of individual records.

I Periodically, the data sources inject checkpoint barriers into the data
stream.

I The barriers flow through the data stream, and trigger operators to
emit all records that depend only on records before the barrier.

I Once all sinks have received the barriers, Flink knows that all records
before the barriers will never be needed again.
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Fault Tolerance (3/3)

I Asynchronous barrier snapshotting for globally consistent check-
points.

I Checkpointing and recovery.
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Summary
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Summary

I Spark
• Mini-batch processing
• DStream: sequence of RDDs
• RDD and window operations
• Structured streaming

I Flink
• Unified batch and stream
• Native streaming: data flow and pipelining
• Different windowing semantics
• Job graphs and execution graph
• Asynchronous barriers
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Questions?
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