Scalable Stream Processing
Spark Streaming and Flink Stream

Amir H. Payberah

amir@sics.se

KTH Royal Institute of Technology

2016/09/26

1/ 64

Spark Streaming

.
Existing Streaming Systems (1/2)

» Record-at-a-time processing model:

Mutable state

e Each node has mutable state. nput records

e For each record, updates state and sends
new reCOI’dS. Input records ———»

o State is lost if node dies.

Existing Streaming Systems (2/2)

» Fault tolerance via replication or upstream backup.
Input

Input

-
Existing Streaming Systems (2/2)

» Fault tolerance via replication or upstream backup.

Input

Input

Fast recovery, but 2x hardware cost J Only need one standby, but slow to recover J

~ AmirH. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 4 /64

Observation

» Batch processing models for clusters provide fault tolerance effi-
ciently.

» Divide job into deterministic tasks.

» Rerun failed/slow tasks in parallel on other nodes.

Core ldea

» Run a streaming computation as a series of very small and deter-
ministic batch jobs.

|
Challenges

» Latency (interval granularity)
e Traditional batch systems replicate state on-disk storage: slow

» Recovering quickly from faults and stragglers

Proposed Solution

» Latency (interval granularity)
* Resilient Distributed Dataset (RDD)
e Keep data in memory
¢ No replication

» Recovering quickly from faults and stragglers
 Storing the lineage graph
e Using the determinism of D-Streams
o Parallel recovery of a lost node's state

Programming Model

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic

batch jobs.

e Chop up the live stream into batches of X seconds.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

 Finally, the processed results of the RDD operations are returned in
batches.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

 Finally, the processed results of the RDD operations are returned in
batches.

* Discretized Stream Processing (DStream)

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>

DStream

» DStream: sequence of RDDs representing a stream of data.

» Any operation applied on a DStream translates to operations on the

underlying RDDs.

input data
stream

RDD @ time 1

Spark
|:> Streaming

RDD @ time 2

batches of
processed data

T

batches of
input data

Spark
| A |

RDD @time3 RDD @ time 4

DStream = -{

data from
timeOto1

_ | datafrom
time 1to 2

data from
time3to4

data from
time2to3

|__

L >

DStream

» DStream: sequence of RDDs representing a stream of data.

» Any operation applied on a DStream translates to operations on the
underlying RDDs.

input data batches of batches of
stream Spark input data Spark processed data
C——| streaming [[JCIC)| Engine |

RDD @tme1 RDD@tme2 RDD@tme3 RDD @ time4
_| datafom | | datafiom | _| datafiom | o
time 1to 2

time2to3 time3to4

DStream = =4 datafrom
timeOto1

lines from | _ | linesfrom
time 1to 2 time2to3

lines .| linesfrom | o finesfrom L
DStream time Oto 1 time 3to 4

flatMap
operation

words | wordsfrom | _
DStream time0to 1

words from | _ | words from
time 1to 2 time2to3

words from
-I time3to4 F >

 AwmirHPayberah (KTH) " Spark Streaming and Flink Stream TR

StreamingContext

» StreamingContext: the main entry point of all Spark Streaming
functionality.

» To initialize a Spark Streaming program, a StreamingContext object
has to be created.

Source of Streaming

» Two categories of streaming sources.

» Basic sources directly available in the StreamingContext API, e.g.,
file systems, socket connections,

» Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter,

DStream Transformations

» Transformations: modify data from on DStream to a new DStream.
» Standard RDD operations, e.g., map, join, ...

» DStream operations, e.g., window operations

NN
DStream Transformation Example

lines from
+ time3to4 F >

lines | linesfrom | _| linesfrom | _ | linesfrom
DStream timeOto 1 time 1t0 2 time 2to 3
flatMap

operation

words | wordsfrom | _| wordsfrom | _ | wordsfrom |_ | wordsfrom >
DStream time 0to 1 time 1to 2 time2to3 time 3to 4

I
Window Operations

» Apply transformations over a sliding window of data: window length
and slide interval.

time 1 time 2 time 3 time 4 time 5
S
original] e[H
DStream LQ'______'I_:_I ______ B
window-based
operation
windowed
DStream B o
window window window

attime 1 attime 3 attime 5

MapWithState Operation

» Maintains state while continuously updating it with new information.
» It requires the checkpoint directory.
» A new operation after updateStateByKey.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint (".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(
StateSpec.function(mappingFunc))

val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {
val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
state.update (sum)
(word, sum)

}

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016,/09/26 17 / 64

Transform Operation

» Allows arbitrary RDD-to-RDD functions to be applied on a DStream.

» Apply any RDD operation that is not exposed in the DStream API,
e.g., joining every RDD in a DStream with another RDD.

I
Output Operations

» Push out DStream’s data to external systems, e.g., a database or a
file system.

» foreachRDD: the most generic output operator

» Applies a function to each RDD generated from the stream.
e The function is executed in the driver process.

Spark Streaming and DataFrame

val words: DStream[String]l = ...

words.foreachRDD { rdd =>
// Get the singleton instance of SULContext
val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)
import sqlContext.implicits._

// Convert RDD[String] to DataFrame
val wordsDataFrame = rdd.toDF("word")

// Register as table
wordsDataFrame.registerTempTable ("words")

// Do word count on DataFrame using SUL and print it
val wordCountsDataFrame =

sqlContext.sql("select word, count(*) as total from words group by word")
wordCountsDataFrame . show ()

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016,/09/26 20 / 64

Implementation

System Architecture

» Spark Streaming components:

e Master: tracks the DStream lineage graph and schedules tasks to
compute new RDD partitions.

* Workers: receive data, store the partitions of input and computed
RDDs, and execute tasks.

e Client library: used to send data into the system.

Master _ | Input receiver I—_‘i Client |
:Z: £ | Tesk execution T
R, '/ﬁ 2 Block manager
Alnp e Tacnor [Comm. Manager|
replication of
input & check-
&, | o | Input recsiver pointed RDDs
RDD lineage % £ | Task execution
Task scheduler ;o Block manager] New
Block tracker Comm. Manager|] Modied

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016,/09/26 22 / 64

Application Execution (1/2)

» The system loads streams:

* By receiving records directly from clients,
 or by loading data periodically from an external storage, e.g., HDFS

Master _ |_Input receiver l'-‘—_{ i |
:Z: g Task execution -
N A £ | Block manager Client
D-Stream lineage ’/ E o Mansge
Input tracker -
replication of
input & check-
M | [Input receiver pointed RDDs
RDD lineage hY £ [Task execution
Task scheduler g Block manager] New
Block tracker Comm. Manage] Modified

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016,/09/26 23 / 64

Application Execution (1/2)

» The system loads streams:

* By receiving records directly from clients,
 or by loading data periodically from an external storage, e.g., HDFS

» All data is managed by a block store on each worker, with a tracker
on the master to let nodes find the locations of blocks.

e Each block is given a unique ID, and any node that has that ID can

serve it.
e The block store keeps new blocks in memory but drops them in an
LRU fashion.
Master . | Input receiver l'———{ Clienll
:z: g Task execution -
N /)‘ O | Block manager Client
D-Stream lineage E
Input tracker ¥ [Comm. Manager|
replication of
input & check-
M | . [Input receiver pointed RDDs
RDD lineage hY £ [Task execution
Task scheduler é’ Block manager] New
Block tracker Comm. Manager|] Modified

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016,/09/26 23 / 64

.
Application Execution (2/2)

» To decide when to start processing a new interval:

e The nodes have their clocks synchronized via NTP.
e Each node sends the master a list of block IDs it received in each
interval when it ends.

» The master starts each task whenever its parents are finished.

Fault Tolerance

» Spark remembers the sequence of oper-
ations that creates each RDD from the
original fault-tolerant input data (lineage
tweets Input data
gra ph) . DStream replicated

@ m in memory

fiatMap

N - - hashTe
» Batches of input data are replicated in eream

memory of multiple worker nodes. @?@

» Data lost due to worker failure, can be
recomputed from input data.

Lost partitions
recomputed on
other workers

Parallel Recovery

» When a node fails, the RDD partitions on the node and its running
tasks are recomputed in parallel on other nodes.

» The system periodically checkpoints some of the RDDs, by asyn-
chronously replicating them to other worker nodes.

» When a node fails, the system detects all missing RDD partitions
and launches tasks to recompute them from the last checkpoint.

» Many tasks can be launched at the same time to compute different
RDD partitions.

 AwirHPayberah (KTH) " Spark Streaming and Flink Stream 2016/00/26 26 / 64

BEESNN——
Master Recovery

» To tolerate failures of Spark master:

e Writing the state of the computation reliably when starting each
timestep.

e Having workers connect to a new master and report their RDD
partitions to it when the old master fails.

» Operations are deterministic, therefore there is no problem if a given
RDD is computed twice.

Structured Streaming

Motivation

» Continuous applications: end-to-end applications that react to data
in real-time.
¢ Updating data that will be served in real-time
e Extract, transform and load (ETL)
e Creating a real-time version of an existing batch job
e Online machine learning

Pure Streaming System Continuous Application

Ad-hoc
Queries

Input Streaming Output Input Continuous Output
Stream Computation Sink Stream Application Sink
(transactions (transactions
often up to user) handled by engine)

1
O

Static Data

(interactions with other systems
left to the user)

BN
Structured Streaming

v

Structured streaming is a new high-level API to support continuous
applications.

v

A higher-level APl than Spark streaming.

\{

Built on the Spark SQL engine.

v

Perform database-like query optimizations.

Programming Model (1/2)

» Treating a live data stream as a table that is being continuously
appended.

» Users can express their streaming computation as standard batch-
like query as on a static table.

» Spark runs it as an incremental query on the unbounded input table.

Data stream Unbounded Table

N

W *> new datain the
k data stream
T T =

[[| hewrowsappended
to a unbounded table
B I N
— T T]

Data stream as an unbounded table

-
Programming Model (2/2)

» A query on the input will generate the Result Table.

» Every trigger interval (e.g., every 1 second), new rows get appended

to the Input Table, which eventually updates the Result Table.

» Whenever the result table gets updated, we can write the changed

result rows to an external sink.

/Trigger. every 1 sec

1

2 3

Time T
v
data up
Input to=1
>
5]
3
&
Result resuitup
tot=1
Qutput

complete mode

data up data up
tot=2 tot=3

resultup resultup
lo=2 lo=3

Programming Model for Structured Streaming

2016/09/26

32/ 64

Example

y 1 2 3
Time T T T

Input data up [aadon | Gata up dataup
Unbounded tor=3

wot=1 to1=2
table of all input ==l

word count query

Result resultup resultup resultup
Table of o=t (=l o2 [l o
word counts s

Output a a a

Complete Made print zll the counts to console

Model of the Quick Example

Creating Streaming DataFrames and Datasets

» Creating through the DataStreamReader returned by
SparkSession.readStream().

Basic Operations

» Most of the common operations on DataFrame/Dataset are
supported for streaming.

Window Operation (1/2)

» Aggregations over a sliding event-time window.
» Event-time is the time embedded in the data itself, not the time
Spark receives them.

Time

Input Stream 2| ot |
12:00 12:05 12:10 12:15
T T T
U | !

]

2001200 ca

after 5 minute triggers

Result Tables

[[12:05- 1215 [dog[1 |
2
1200-1220and 12051235 B

- . counts incremented for windows
Windowed Grouped Aggregation 1205 1215 2nd 12101220

with 10 min windows, sliding every 5 mins

counts incremented for windows

BN
Window Operation (2/2)

» Late data
late data that was generated
at 12:04 but arrived at 12:11
Input Stream
X 12:00 12:10
Time T T >
| | |
A2 Y Y
[12:00-12:10 | cat | 1 | 12:00-12:10 | cat | 2 12:00-12:10 | cat | 2
[12:00-12:10 [dog | 3 | 12:00-12:10 | dog | 3 12:00-12:10 | dog | 4
Result Tables 12:00-12:10 | owl | 1 12:00-12:10 {owl | 1
after 5 minute triggers 12:05-12:15 | cat | 1 12:05-12:15 | cat | 1
12:05-1215 | owl | 1 12:05-12:15 | owl | 2
12:10-1220 [owl | 1

counts incremented only for

o window 12:00 - 12:10
Late data handlingin

Windowed Grouped Aggregation

Flink Stream

Batch Processing vs. Stream Processing (1/2)

» Batch processing is just a special case of stream processing.

Unbounded
data stream

Streaming
DAGs

Hybrid runtime

N
Batch Processing vs. Stream Processing (2/2)

» Batched/Stateless: scheduled in batches

* Short-lived tasks (hadoop, spark)
« Distributed streaming over batches (spark stream)

» DataFlow/Stateful: continuous/scheduled once (Storm, Samza,
Naiad, Flink)
e Long-lived task execution
o State is kept inside tasks

Native vs. Non-Native Streaming

Non-native streaming
stream I B B B
discretizer !

while (true) {
// get next few records
// issue batch computation

}

Native streaming
Long-standing
operators

while (true) {
// process next record Flink
}

_ Spark Streaming and Flink Stream 2016,/09/26 41 / 64

B
Lambda Architecture

Data Merge

Stream processor

.
Flink

» Distributed data flow processing system

» Unified real-time stream and batch processing

DataStream API

Topology builder

Streaming operators

Streaming recovery logic

Stream processing engine

Programming Model

BN
Programming Model

» Data stream
e An unbounded, partitioned immutable sequence of events.

» Stream operators

e Stream transformations that generate new output data streams
from input ones.

.
Flink Stream API (1/2)

» Transformations:
» Basic transformations: Map, Reduce, Filter, Aggregations
e Binary stream transformations: CoMap, CoReduce

» Windowing semantics: policy based flexible windowing (Time, Count,
Delta ...)

e Temporal binary stream operators: Joins, Crosses

¢ Native support for iterations

.
Flink Stream API (2/2)

» Data stream sources

e File system
* Message queue connectors
e Arbitrary source functionality

» Data stream outputs

Word Count in Flink - Batch and Stream

» Batch (DataSet API)

case class Word (word: String, frequency: Int)
val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap {line => line.split(" ") .map(word => Word(word, 1))}
.groupBy ("word") .sum("frequency") .print ()

» Streaming (DataStream API)

case class Word (word: String, frequency: Int)
val lines: DataStream[String] = env.fromSocketStream(...)

lines.flatMap {line => line.split(" ").map(word => Word(word, 1))}

.keyBy ("word") .window(Time.of (5, SECONDS))
.every(Time.of (1, SECONDS)) .sum("frequency") .print()

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016,/09/26

48 / 64

Windowning Semantics

» Trigger and eviction policies
» window(eviction, trigger)
 window(eviction).every(trigger)

» Built-in policies:
e Time: Time.of(length, TimeUnit/Custom timestamp)
e Count: Count.of(windowSize)
 Delta: Delta.of(treshold, Distance function, Start value)

» Window transformations:
¢ Reduce, mapWindow

Example 1 - Reading From Multiple Inputs (1/2)

&

Socket
Source

—>

Example 1 - Reading From Multiple Inputs (2/2)

val env = StreamExecutionEnvironment.getExecutionEnvironment

//Read from a socket stream at map %t to StockPrice objects

val socketStockStream = env.socketTextStream("localhost", 9999) .map(x => {
val split = x.split(",")
StockPrice(split(0), split(1).toDouble)

1))

//Generate other stock streams

val SPX_Stream = env.addSource(generateStock("SPX") (10) _)
val FTSE_Stream = env.addSource(generateStock("FTSE") (20) _)
val DJI_Stream = env.addSource(generateStock("DJI") (30) _)
val BUX_Stream = env.addSource(generateStock("BUX") (40) _)

//Merge all stock streams together

val stockStream = socketStockStream.merge (SPX_Stream, FTSE_Stream,
DJI_Stream, BUX_Stream)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016,/09/26 51 / 64

Example 2 - Window Aggregations (1/2)

MinBy
Price

MaxBy
Price

Mean
Price

Example 2 - Window Aggregations (2/2)

//Define the desired time window
val windowedStream = stockStream
.window(Time.of (10, SECONDS)) .every(Time.of (5, SECONDS))

//Compute some simple statistics on a rTolling window

val lowest = windowedStream.minBy("price")

val maxByStock = windowedStream.groupBy("symbol") .maxBy("price")
val rollingMean = windowedStream.groupBy("symbol") .mapWindow(mean _)

//Compute the mean of a window
def mean(ts: Iterable[StockPrice], out: Collector[StockPricel) = {
if (ts.nonEmpty) {
out.collect(StockPrice(ts.head.symbol,
ts.foldLeft(0: Double) (_ + _.price) / ts.size))

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016,/09/26 53 / 64

Example 3 - Data-Driven Windows (1/2)

Example 3 - Data-Driven Windows (2/2)

case class Count(symbol: String, count: Int)
val defaultPrice = StockPrice("", 1000)

//Use delta policy to create price change warnings

val priceWarnings = stockStream.groupBy ("symbol")
.window(Delta.of (0.05, priceChange, defaultPrice))
.mapWindow(sendWarning _)

//Count the number of warnings every half a minute
val warningsPerStock = priceWarnings.map(Count(_, 1))
.groupBy ("symbol")
.window(Time.of (30, SECONDS))
.sum("count")

def priceChange(pl: StockPrice, p2: StockPrice): Double = {
Math.abs(pl.price / p2.price - 1)
}

def sendWarning(ts: Iterable[StockPrice], out: Collector[String]) = {

if (ts.nonEmpty) out.collect(ts.head.symbol)
¥

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016,/09/26 55 / 64

Implementation

Flink Architecture

» Master (JobManager): schedules tasks, coordinates checkpoints,
coordinates recovery on failures, etc.

» Workers (TaskManagers): JVM processes that execute tasks of a
dataflow, and buffer and exchange the data streams.
* Workers use task slots to control the number of tasks it accepts.
» Each task slot represents a fixed subset of resources of the worker.

Flink Program

(Worker) (Worker)

Task || Task | Task
Slot || Slot | Slot

Slot Slot. Slot

Task Status

‘Deploy/stop/
Cancel Tasks

Status
updates.

(Master / YARN Application Master)

Application Execution

Job Graph Execution Graph

<— Channels
Tasks /> /
(network chunnel)
—
H Tmemory channel)

» Jobs are expressed as data flows.

Parallel
Execution

» Job graphs are transformed into the execution graph.
» Execution graphs consist information to schedule and execute a job.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016,/09/26 58 / 64

.
Fault Tolerance (1/3)

» Fault tolerance in Spark
¢ RDD re-computation

» Fault tolerance in Storm
e Tracks records with unique IDs.
o Operators send acks when a record has been processed.
» Records are dropped from the backup when the have been fully
acknowledged.

» Fault tolerance in Flink

e More coarse-grained approach than Storm.
» Based on consistent global snapshots (inspired by Chandy-Lamport).
e Low runtime overhead, stateful exactly-once semantics.

-
Fault Tolerance (2/3)

» Acks sequences of records instead of individual records.

» Periodically, the data sources inject checkpoint barriers into the data
stream.

» The barriers flow through the data stream, and trigger operators to
emit all records that depend only on records before the barrier.

» Once all sinks have received the barriers, Flink knows that all records
before the barriers will never be needed again.

data stream barrier

+— newer records older records — i

i

pun|s summ njnm myo i
o el

Data Stream

fevers)

T H .
parof partof After barrier: not i Before barrier: part
checkpointn chedkpaint -1 knowledged | of acl

 AmirHPayberah (KTH) " Spark Streaming and Flink Stream Y

Fault Tolerance (3/3)

» Asynchronous barrier snapshotting for globally consistent check-
points.

» Checkpointing and recovery.

L)
x \ R‘ emit barrier n
L4 L]
L e .,
—_— L) ——

s/ —
heckpoi
d ::"?;"\' operator R operator [L] operator | L) I.
\ ** % .
. . .
. o .
»* ‘V

1. align barriers 2. checkpoint state 3. emit barrier and continue

Summary

Summary

» Spark
e Mini-batch processing
e DStream: sequence of RDDs
¢ RDD and window operations
e Structured streaming

» Flink
e Unified batch and stream
¢ Native streaming: data flow and pipelining
 Different windowing semantics
e Job graphs and execution graph
¢ Asynchronous barriers

Questions?

Some slides and pictures were derived from Gyula Fora slides. I

