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Spark Streaming



.
Existing Streaming Systems (1/2)

» Record-at-a-time processing model:

Mutable state

e Each node has mutable state. nput records

e For each record, updates state and sends
new reCOI’dS. Input records ———»

o State is lost if node dies.



Existing Streaming Systems (2/2)

» Fault tolerance via replication or upstream backup.
Input

Input
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Existing Streaming Systems (2/2)

» Fault tolerance via replication or upstream backup.

Input

Input

Fast recovery, but 2x hardware cost J Only need one standby, but slow to recover J
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Observation

» Batch processing models for clusters provide fault tolerance effi-
ciently.

» Divide job into deterministic tasks.

» Rerun failed/slow tasks in parallel on other nodes.



Core ldea

» Run a streaming computation as a series of very small and deter-
ministic batch jobs.



|
Challenges

» Latency (interval granularity)
e Traditional batch systems replicate state on-disk storage: slow

» Recovering quickly from faults and stragglers



Proposed Solution

» Latency (interval granularity)
* Resilient Distributed Dataset (RDD)
e Keep data in memory
¢ No replication

» Recovering quickly from faults and stragglers
 Storing the lineage graph
e Using the determinism of D-Streams
o Parallel recovery of a lost node's state



Programming Model



EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>
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EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

 Finally, the processed results of the RDD operations are returned in
batches.
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EEESSN——
Spark Streaming

» Run a streaming computation as a series of very small, deterministic
batch jobs.

e Chop up the live stream into batches of X seconds.

e Spark treats each batch of data as RDDs and processes them using
RDD operations.

 Finally, the processed results of the RDD operations are returned in
batches.

* Discretized Stream Processing (DStream)

input data batches of batches of
stream Spark input data Spark processed data
|:> Streaming |:||:||:> Engine |:||:":>




DStream

» DStream: sequence of RDDs representing a stream of data.

» Any operation applied on a DStream translates to operations on the

underlying RDDs.

input data
stream

RDD @ time 1

Spark
|:> Streaming

RDD @ time 2

batches of
processed data

T

batches of
input data

Spark
| A |

RDD @time3  RDD @ time 4

DStream = -{

data from
timeOto1

_ | datafrom
time 1to 2

data from
time3to4

data from
time2to3

|__

L >




DStream

» DStream: sequence of RDDs representing a stream of data.

» Any operation applied on a DStream translates to operations on the
underlying RDDs.

input data batches of batches of
stream Spark input data Spark processed data
C——| streaming [[JCIC)| Engine |

RDD @tme1 RDD@tme2 RDD@tme3 RDD @ time4
_| datafom | | datafiom | _| datafiom | o
time 1to 2

time2to3 time3to4

DStream = =4 datafrom
timeOto1

lines from | _ | linesfrom
time 1to 2 time2to3

lines .| linesfrom | o finesfrom L
DStream time Oto 1 time 3to 4

flatMap
operation

words | wordsfrom | _
DStream time0to 1

words from | _ | words from
time 1to 2 time2to3

words from
-I time3to4 F >
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StreamingContext

» StreamingContext: the main entry point of all Spark Streaming
functionality.

» To initialize a Spark Streaming program, a StreamingContext object
has to be created.




Source of Streaming

» Two categories of streaming sources.

» Basic sources directly available in the StreamingContext API, e.g.,
file systems, socket connections, ....

» Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter, ....




DStream Transformations

» Transformations: modify data from on DStream to a new DStream.
» Standard RDD operations, e.g., map, join, ...

» DStream operations, e.g., window operations



NN
DStream Transformation Example

lines from
+ time3to4 F >

lines | linesfrom | _| linesfrom | _ | linesfrom
DStream timeOto 1 time 1t0 2 time 2to 3
flatMap

operation

words | wordsfrom | _| wordsfrom | _ | wordsfrom |_ | wordsfrom >
DStream time 0to 1 time 1to 2 time2to3 time 3to 4




I
Window Operations

» Apply transformations over a sliding window of data: window length
and slide interval.

time 1 time 2 time 3 time 4 time 5
S
original ] e[ H
DStream LQ'______'I_:_I ______ B
window-based
operation
windowed
DStream B o
window window window

attime 1 attime 3 attime 5




MapWithState Operation

» Maintains state while continuously updating it with new information.
» It requires the checkpoint directory.
» A new operation after updateStateByKey.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint (".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(
StateSpec.function(mappingFunc))

val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {
val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
state.update (sum)
(word, sum)

}
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Transform Operation

» Allows arbitrary RDD-to-RDD functions to be applied on a DStream.

» Apply any RDD operation that is not exposed in the DStream API,
e.g., joining every RDD in a DStream with another RDD.




I
Output Operations

» Push out DStream’s data to external systems, e.g., a database or a
file system.

» foreachRDD: the most generic output operator

» Applies a function to each RDD generated from the stream.
e The function is executed in the driver process.




Spark Streaming and DataFrame

val words: DStream[String]l = ...

words.foreachRDD { rdd =>
// Get the singleton instance of SULContext
val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)
import sqlContext.implicits._

// Convert RDD[String] to DataFrame
val wordsDataFrame = rdd.toDF("word")

// Register as table
wordsDataFrame.registerTempTable ("words")

// Do word count on DataFrame using SUL and print it
val wordCountsDataFrame =

sqlContext.sql("select word, count(*) as total from words group by word")
wordCountsDataFrame . show ()
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Implementation



System Architecture

» Spark Streaming components:

e Master: tracks the DStream lineage graph and schedules tasks to
compute new RDD partitions.

* Workers: receive data, store the partitions of input and computed
RDDs, and execute tasks.

e Client library: used to send data into the system.

Master _ | Input receiver I—_‘i Client |
:Z: £ | Tesk execution T
R, '/ﬁ 2 Block manager
Alnp e Tacnor [Comm. Manager|
replication of
input & check-
&, | o | Input recsiver pointed RDDs
RDD lineage % £ | Task execution
Task scheduler ;o Block manager ] New
Block tracker Comm. Manager| ] Modied
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Application Execution (1/2)

» The system loads streams:

* By receiving records directly from clients,
 or by loading data periodically from an external storage, e.g., HDFS

Master _ |_Input receiver l'-‘—_{ i |
:Z: g Task execution -
N A £ | Block manager Client
D-Stream lineage ’/ E o Mansge
Input tracker -
replication of
input & check-
M | [ Input receiver pointed RDDs
RDD lineage hY £ [ Task execution
Task scheduler g Block manager ] New
Block tracker Comm. Manage ] Modified
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Application Execution (1/2)

» The system loads streams:

* By receiving records directly from clients,
 or by loading data periodically from an external storage, e.g., HDFS

» All data is managed by a block store on each worker, with a tracker
on the master to let nodes find the locations of blocks.

e Each block is given a unique ID, and any node that has that ID can

serve it.
e The block store keeps new blocks in memory but drops them in an
LRU fashion.
Master . | Input receiver l'———{ Clienll
:z: g Task execution -
N /)‘ O | Block manager Client
D-Stream lineage E
Input tracker ¥ [Comm. Manager|
replication of
input & check-
M | . [ Input receiver pointed RDDs
RDD lineage hY £ [ Task execution
Task scheduler é’ Block manager ] New
Block tracker Comm. Manager| ] Modified
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Application Execution (2/2)

» To decide when to start processing a new interval:

e The nodes have their clocks synchronized via NTP.
e Each node sends the master a list of block IDs it received in each
interval when it ends.

» The master starts each task whenever its parents are finished.



Fault Tolerance

» Spark remembers the sequence of oper-
ations that creates each RDD from the
original fault-tolerant input data (lineage
tweets Input data
gra ph ) . DStream replicated

@ m in memory

fiatMap

N - - hashTe
» Batches of input data are replicated in eream

memory of multiple worker nodes. @?@

» Data lost due to worker failure, can be
recomputed from input data.

Lost partitions
recomputed on
other workers




Parallel Recovery

» When a node fails, the RDD partitions on the node and its running
tasks are recomputed in parallel on other nodes.

» The system periodically checkpoints some of the RDDs, by asyn-
chronously replicating them to other worker nodes.

» When a node fails, the system detects all missing RDD partitions
and launches tasks to recompute them from the last checkpoint.

» Many tasks can be launched at the same time to compute different
RDD partitions.
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BEESNN——
Master Recovery

» To tolerate failures of Spark master:

e Writing the state of the computation reliably when starting each
timestep.

e Having workers connect to a new master and report their RDD
partitions to it when the old master fails.

» Operations are deterministic, therefore there is no problem if a given
RDD is computed twice.



Structured Streaming



Motivation

» Continuous applications: end-to-end applications that react to data
in real-time.
¢ Updating data that will be served in real-time
e Extract, transform and load (ETL)
e Creating a real-time version of an existing batch job
e Online machine learning

Pure Streaming System Continuous Application

Ad-hoc
Queries

Input Streaming Output Input Continuous Output
Stream Computation Sink Stream Application Sink
(transactions (transactions
often up to user) handled by engine)

1
O

Static Data

(interactions with other systems
left to the user)
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Structured Streaming

v

Structured streaming is a new high-level API to support continuous
applications.

v

A higher-level APl than Spark streaming.

\{

Built on the Spark SQL engine.

v

Perform database-like query optimizations.



Programming Model (1/2)

» Treating a live data stream as a table that is being continuously
appended.

» Users can express their streaming computation as standard batch-
like query as on a static table.

» Spark runs it as an incremental query on the unbounded input table.

Data stream Unbounded Table

N

W *> new datain the
k data stream
T T =

[ [ | hewrowsappended
to a unbounded table
B I N
— T T ]

Data stream as an unbounded table
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Programming Model (2/2)

» A query on the input will generate the Result Table.

» Every trigger interval (e.g., every 1 second), new rows get appended

to the Input Table, which eventually updates the Result Table.

» Whenever the result table gets updated, we can write the changed

result rows to an external sink.

/Trigger. every 1 sec

1

2 3

Time T
v
data up
Input to=1
>
5]
3
&
Result resuitup
tot=1
Qutput

complete mode

data up data up
tot=2 tot=3

resultup resultup
lo=2 lo=3

Programming Model for Structured Streaming
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Example

y 1 2 3
Time T T T

Input data up [aadon | Gata up dataup
Unbounded tor=3

wot=1 to1=2
table of all input ==l

word count query

Result resultup resultup resultup
Table of o=t (=l o2 [l o
word counts s

Output a a a

Complete Made print zll the counts to console

Model of the Quick Example



Creating Streaming DataFrames and Datasets

» Creating through the DataStreamReader returned by
SparkSession.readStream().




Basic Operations

» Most of the common operations on DataFrame/Dataset are
supported for streaming.




Window Operation (1/2)

» Aggregations over a sliding event-time window.
» Event-time is the time embedded in the data itself, not the time
Spark receives them.

Time

Input Stream 2| ot |
12:00 12:05 12:10 12:15
T T T
U | !

]

2001200 ca

after 5 minute triggers

Result Tables

[[12:05- 1215 [dog[ 1 |
2
1200-1220and 12051235 B

- . counts incremented for windows
Windowed Grouped Aggregation 1205 1215 2nd 12101220

with 10 min windows, sliding every 5 mins

counts incremented for windows
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Window Operation (2/2)

» Late data
late data that was generated
at 12:04 but arrived at 12:11
Input Stream
X 12:00 12:10
Time T T >
| | |
A2 Y Y
[12:00-12:10 | cat | 1 | 12:00-12:10 | cat | 2 12:00-12:10 | cat | 2
[12:00-12:10 [ dog | 3 | 12:00-12:10 | dog | 3 12:00-12:10 | dog | 4
Result Tables 12:00-12:10 | owl | 1 12:00-12:10 {owl | 1
after 5 minute triggers 12:05-12:15 | cat | 1 12:05-12:15 | cat | 1
12:05-1215 | owl | 1 12:05-12:15 | owl | 2
12:10-1220 [owl | 1

counts incremented only for

o window 12:00 - 12:10
Late data handlingin

Windowed Grouped Aggregation



Flink Stream



Batch Processing vs. Stream Processing (1/2)

» Batch processing is just a special case of stream processing.

Unbounded
data stream

Streaming
DAGs

Hybrid runtime
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Batch Processing vs. Stream Processing (2/2)

» Batched/Stateless: scheduled in batches

* Short-lived tasks (hadoop, spark)
« Distributed streaming over batches (spark stream)

» DataFlow/Stateful: continuous/scheduled once (Storm, Samza,
Naiad, Flink)
e Long-lived task execution
o State is kept inside tasks



Native vs. Non-Native Streaming

Non-native streaming
stream I B B B
discretizer !

while (true) {
// get next few records
// issue batch computation

}

Native streaming
Long-standing
operators

while (true) {
// process next record Flink
}
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B
Lambda Architecture

Data Merge

Stream processor



.
Flink

» Distributed data flow processing system

» Unified real-time stream and batch processing

DataStream API

Topology builder

Streaming operators

Streaming recovery logic

Stream processing engine




Programming Model
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Programming Model

» Data stream
e An unbounded, partitioned immutable sequence of events.

» Stream operators

e Stream transformations that generate new output data streams
from input ones.
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Flink Stream API (1/2)

» Transformations:
» Basic transformations: Map, Reduce, Filter, Aggregations
e Binary stream transformations: CoMap, CoReduce

» Windowing semantics: policy based flexible windowing (Time, Count,
Delta ...)

e Temporal binary stream operators: Joins, Crosses

¢ Native support for iterations
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Flink Stream API (2/2)

» Data stream sources

e File system
* Message queue connectors
e Arbitrary source functionality

» Data stream outputs



Word Count in Flink - Batch and Stream

» Batch (DataSet API)

case class Word (word: String, frequency: Int)
val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap {line => line.split(" ") .map(word => Word(word, 1))}
.groupBy ("word") .sum("frequency") .print ()

» Streaming (DataStream API)

case class Word (word: String, frequency: Int)
val lines: DataStream[String] = env.fromSocketStream(...)

lines.flatMap {line => line.split(" ").map(word => Word(word, 1))}

.keyBy ("word") .window(Time.of (5, SECONDS))
.every(Time.of (1, SECONDS)) .sum("frequency") .print()
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Windowning Semantics

» Trigger and eviction policies
» window(eviction, trigger)
 window(eviction).every(trigger)

» Built-in policies:
e Time: Time.of(length, TimeUnit/Custom timestamp)
e Count: Count.of(windowSize)
 Delta: Delta.of(treshold, Distance function, Start value)

» Window transformations:
¢ Reduce, mapWindow



Example 1 - Reading From Multiple Inputs (1/2)

&

Socket
Source

—>




Example 1 - Reading From Multiple Inputs (2/2)

val env = StreamExecutionEnvironment.getExecutionEnvironment

//Read from a socket stream at map %t to StockPrice objects

val socketStockStream = env.socketTextStream("localhost", 9999) .map(x => {
val split = x.split(",")
StockPrice(split(0), split(1).toDouble)

1))

//Generate other stock streams

val SPX_Stream = env.addSource(generateStock("SPX") (10) _)
val FTSE_Stream = env.addSource(generateStock("FTSE") (20) _)
val DJI_Stream = env.addSource(generateStock("DJI") (30) _)
val BUX_Stream = env.addSource(generateStock("BUX") (40) _)

//Merge all stock streams together

val stockStream = socketStockStream.merge (SPX_Stream, FTSE_Stream,
DJI_Stream, BUX_Stream)
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Example 2 - Window Aggregations (1/2)

MinBy
Price

MaxBy
Price

Mean
Price




Example 2 - Window Aggregations (2/2)

//Define the desired time window
val windowedStream = stockStream
.window(Time.of (10, SECONDS)) .every(Time.of (5, SECONDS))

//Compute some simple statistics on a rTolling window

val lowest = windowedStream.minBy("price")

val maxByStock = windowedStream.groupBy("symbol") .maxBy("price")
val rollingMean = windowedStream.groupBy("symbol") .mapWindow(mean _)

//Compute the mean of a window
def mean(ts: Iterable[StockPrice], out: Collector[StockPricel) = {
if (ts.nonEmpty) {
out.collect(StockPrice(ts.head.symbol,
ts.foldLeft(0: Double) (_ + _.price) / ts.size))
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Example 3 - Data-Driven Windows (1/2)




Example 3 - Data-Driven Windows (2/2)

case class Count(symbol: String, count: Int)
val defaultPrice = StockPrice("", 1000)

//Use delta policy to create price change warnings

val priceWarnings = stockStream.groupBy ("symbol")
.window(Delta.of (0.05, priceChange, defaultPrice))
.mapWindow(sendWarning _)

//Count the number of warnings every half a minute
val warningsPerStock = priceWarnings.map(Count(_, 1))
.groupBy ("symbol")
.window(Time.of (30, SECONDS))
.sum("count")

def priceChange(pl: StockPrice, p2: StockPrice): Double = {
Math.abs(pl.price / p2.price - 1)
}

def sendWarning(ts: Iterable[StockPrice], out: Collector[String]) = {

if (ts.nonEmpty) out.collect(ts.head.symbol)
¥
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Implementation



Flink Architecture

» Master (JobManager): schedules tasks, coordinates checkpoints,
coordinates recovery on failures, etc.

» Workers (TaskManagers): JVM processes that execute tasks of a
dataflow, and buffer and exchange the data streams.
* Workers use task slots to control the number of tasks it accepts.
» Each task slot represents a fixed subset of resources of the worker.

Flink Program

(Worker) (Worker)

Task || Task | Task
Slot || Slot | Slot

Slot Slot. Slot

Task Status

‘Deploy/stop/
Cancel Tasks

Status
updates.

(Master / YARN Application Master)



Application Execution

Job Graph Execution Graph

<— Channels
Tasks /> /
(network chunnel)
—
H Tmemory channel)

» Jobs are expressed as data flows.

Parallel
Execution

» Job graphs are transformed into the execution graph.
» Execution graphs consist information to schedule and execute a job.
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Fault Tolerance (1/3)

» Fault tolerance in Spark
¢ RDD re-computation

» Fault tolerance in Storm
e Tracks records with unique IDs.
o Operators send acks when a record has been processed.
» Records are dropped from the backup when the have been fully
acknowledged.

» Fault tolerance in Flink

e More coarse-grained approach than Storm.
» Based on consistent global snapshots (inspired by Chandy-Lamport).
e Low runtime overhead, stateful exactly-once semantics.
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Fault Tolerance (2/3)

» Acks sequences of records instead of individual records.

» Periodically, the data sources inject checkpoint barriers into the data
stream.

» The barriers flow through the data stream, and trigger operators to
emit all records that depend only on records before the barrier.

» Once all sinks have received the barriers, Flink knows that all records
before the barriers will never be needed again.

data stream barrier

+— newer records older records — i

i

pun|s summ njnm myo i
o el

Data Stream

fevers)

T H .
parof partof After barrier: not i Before barrier: part
checkpointn chedkpaint -1 knowledged | of acl
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Fault Tolerance (3/3)

» Asynchronous barrier snapshotting for globally consistent check-
points.

» Checkpointing and recovery.

L)
x \ R‘ emit barrier n
L4 L]
L e .,
—_— L) ——

s/ —
heckpoi
d ::"?;"\' operator R operator [ L] operator | L) I.
\ ** % .
. . .
. o .
»* ‘V

1. align barriers 2. checkpoint state 3. emit barrier and continue




Summary



Summary

» Spark
e Mini-batch processing
e DStream: sequence of RDDs
¢ RDD and window operations
e Structured streaming

» Flink
e Unified batch and stream
¢ Native streaming: data flow and pipelining
 Different windowing semantics
e Job graphs and execution graph
¢ Asynchronous barriers



Questions?

Some slides and pictures were derived from Gyula Fora slides. I




