
Scalable Stream Processing
Spark Streaming and Flink Stream

Amir H. Payberah
amir@sics.se

KTH Royal Institute of Technology

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 1 / 64

Spark Streaming

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 2 / 64

Existing Streaming Systems (1/2)

I Record-at-a-time processing model:

• Each node has mutable state.

• For each record, updates state and sends
new records.

• State is lost if node dies.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 3 / 64

Existing Streaming Systems (2/2)

I Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost Only need one standby, but slow to recover

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 4 / 64

Existing Streaming Systems (2/2)

I Fault tolerance via replication or upstream backup.

Fast recovery, but 2x hardware cost Only need one standby, but slow to recover

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 4 / 64

Observation

I Batch processing models for clusters provide fault tolerance effi-
ciently.

I Divide job into deterministic tasks.

I Rerun failed/slow tasks in parallel on other nodes.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 5 / 64

Core Idea

I Run a streaming computation as a series of very small and deter-
ministic batch jobs.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 6 / 64

Challenges

I Latency (interval granularity)
• Traditional batch systems replicate state on-disk storage: slow

I Recovering quickly from faults and stragglers

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 7 / 64

Proposed Solution

I Latency (interval granularity)
• Resilient Distributed Dataset (RDD)
• Keep data in memory
• No replication

I Recovering quickly from faults and stragglers
• Storing the lineage graph
• Using the determinism of D-Streams
• Parallel recovery of a lost node’s state

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 8 / 64

Programming Model

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 9 / 64

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 10 / 64

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 10 / 64

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 10 / 64

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 10 / 64

Spark Streaming

I Run a streaming computation as a series of very small, deterministic
batch jobs.

• Chop up the live stream into batches of X seconds.

• Spark treats each batch of data as RDDs and processes them using
RDD operations.

• Finally, the processed results of the RDD operations are returned in
batches.

• Discretized Stream Processing (DStream)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 10 / 64

DStream

I DStream: sequence of RDDs representing a stream of data.

I Any operation applied on a DStream translates to operations on the
underlying RDDs.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 11 / 64

DStream

I DStream: sequence of RDDs representing a stream of data.

I Any operation applied on a DStream translates to operations on the
underlying RDDs.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 11 / 64

StreamingContext

I StreamingContext: the main entry point of all Spark Streaming
functionality.

I To initialize a Spark Streaming program, a StreamingContext object
has to be created.

val conf = new SparkConf().setAppName(appName).setMaster(master)

val ssc = new StreamingContext(conf, Seconds(1))

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 12 / 64

Source of Streaming

I Two categories of streaming sources.

I Basic sources directly available in the StreamingContext API, e.g.,
file systems, socket connections,

I Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter,

ssc.socketTextStream("localhost", 9999)

TwitterUtils.createStream(ssc, None)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 13 / 64

DStream Transformations

I Transformations: modify data from on DStream to a new DStream.

I Standard RDD operations, e.g., map, join, ...

I DStream operations, e.g., window operations

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 14 / 64

DStream Transformation Example

val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(_ + _)

wordCounts.print()

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 15 / 64

Window Operations

I Apply transformations over a sliding window of data: window length
and slide interval.

val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val windowedWordCounts = pairs.reduceByKeyAndWindow(_ + _,

Seconds(30), Seconds(10))

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 16 / 64

MapWithState Operation

I Maintains state while continuously updating it with new information.

I It requires the checkpoint directory.

I A new operation after updateStateByKey.

val ssc = new StreamingContext(conf, Seconds(1))

ssc.checkpoint(".")

val lines = ssc.socketTextStream(IP, Port)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val stateWordCount = pairs.mapWithState(

StateSpec.function(mappingFunc))

val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {

val sum = one.getOrElse(0) + state.getOption.getOrElse(0)

state.update(sum)

(word, sum)

}

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 17 / 64

Transform Operation

I Allows arbitrary RDD-to-RDD functions to be applied on a DStream.

I Apply any RDD operation that is not exposed in the DStream API,
e.g., joining every RDD in a DStream with another RDD.

// RDD containing spam information

val spamInfoRDD = ssc.sparkContext.newAPIHadoopRDD(...)

val cleanedDStream = wordCounts.transform(rdd => {

// join data stream with spam information to do data cleaning

rdd.join(spamInfoRDD).filter(...)

...

})

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 18 / 64

Output Operations

I Push out DStream’s data to external systems, e.g., a database or a
file system.

I foreachRDD: the most generic output operator
• Applies a function to each RDD generated from the stream.
• The function is executed in the driver process.

dstream.foreachRDD { rdd =>

rdd.foreachPartition { partitionOfRecords =>

val connection = createNewConnection()

partitionOfRecords.foreach(record => connection.send(record))

connection.close()

}

}

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 19 / 64

Spark Streaming and DataFrame

val words: DStream[String] = ...

words.foreachRDD { rdd =>

// Get the singleton instance of SQLContext

val sqlContext = SQLContext.getOrCreate(rdd.sparkContext)

import sqlContext.implicits._

// Convert RDD[String] to DataFrame

val wordsDataFrame = rdd.toDF("word")

// Register as table

wordsDataFrame.registerTempTable("words")

// Do word count on DataFrame using SQL and print it

val wordCountsDataFrame =

sqlContext.sql("select word, count(*) as total from words group by word")

wordCountsDataFrame.show()

}

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 20 / 64

Implementation

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 21 / 64

System Architecture

I Spark Streaming components:

• Master: tracks the DStream lineage graph and schedules tasks to
compute new RDD partitions.

• Workers: receive data, store the partitions of input and computed
RDDs, and execute tasks.

• Client library: used to send data into the system.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 22 / 64

Application Execution (1/2)

I The system loads streams:
• By receiving records directly from clients,
• or by loading data periodically from an external storage, e.g., HDFS

I All data is managed by a block store on each worker, with a tracker
on the master to let nodes find the locations of blocks.

• Each block is given a unique ID, and any node that has that ID can
serve it.

• The block store keeps new blocks in memory but drops them in an
LRU fashion.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 23 / 64

Application Execution (1/2)

I The system loads streams:
• By receiving records directly from clients,
• or by loading data periodically from an external storage, e.g., HDFS

I All data is managed by a block store on each worker, with a tracker
on the master to let nodes find the locations of blocks.

• Each block is given a unique ID, and any node that has that ID can
serve it.

• The block store keeps new blocks in memory but drops them in an
LRU fashion.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 23 / 64

Application Execution (2/2)

I To decide when to start processing a new interval:
• The nodes have their clocks synchronized via NTP.
• Each node sends the master a list of block IDs it received in each

interval when it ends.

I The master starts each task whenever its parents are finished.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 24 / 64

Fault Tolerance

I Spark remembers the sequence of oper-
ations that creates each RDD from the
original fault-tolerant input data (lineage
graph).

I Batches of input data are replicated in
memory of multiple worker nodes.

I Data lost due to worker failure, can be
recomputed from input data.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 25 / 64

Parallel Recovery

I When a node fails, the RDD partitions on the node and its running
tasks are recomputed in parallel on other nodes.

I The system periodically checkpoints some of the RDDs, by asyn-
chronously replicating them to other worker nodes.

I When a node fails, the system detects all missing RDD partitions
and launches tasks to recompute them from the last checkpoint.

I Many tasks can be launched at the same time to compute different
RDD partitions.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 26 / 64

Master Recovery

I To tolerate failures of Spark master:
• Writing the state of the computation reliably when starting each

timestep.
• Having workers connect to a new master and report their RDD

partitions to it when the old master fails.

I Operations are deterministic, therefore there is no problem if a given
RDD is computed twice.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 27 / 64

Structured Streaming

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 28 / 64

Motivation

I Continuous applications: end-to-end applications that react to data
in real-time.

• Updating data that will be served in real-time
• Extract, transform and load (ETL)
• Creating a real-time version of an existing batch job
• Online machine learning

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 29 / 64

Structured Streaming

I Structured streaming is a new high-level API to support continuous
applications.

I A higher-level API than Spark streaming.

I Built on the Spark SQL engine.

I Perform database-like query optimizations.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 30 / 64

Programming Model (1/2)

I Treating a live data stream as a table that is being continuously
appended.

I Users can express their streaming computation as standard batch-
like query as on a static table.

I Spark runs it as an incremental query on the unbounded input table.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 31 / 64

Programming Model (2/2)

I A query on the input will generate the Result Table.

I Every trigger interval (e.g., every 1 second), new rows get appended
to the Input Table, which eventually updates the Result Table.

I Whenever the result table gets updated, we can write the changed
result rows to an external sink.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 32 / 64

Example

val spark: SparkSession = ...

val lines = spark.readStream.format("socket").option("host", "localhost")

.option("port", 9999).load()

val words = lines.as[String].flatMap(_.split(" "))

val wordCounts = words.groupBy("value").count()

val query = wordCounts.writeStream.outputMode("complete")

.format("console").start()

query.awaitTermination()

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 33 / 64

Creating Streaming DataFrames and Datasets

I Creating through the DataStreamReader returned by
SparkSession.readStream().

val spark: SparkSession = ...

// Read text from socket

val socketDF = spark.readStream.format("socket")

.option("host", "localhost").option("port", 9999).load()

// Read all the csv files written atomically in a directory

val userSchema = new StructType().add("name", "string").add("age", "integer")

val csvDF = spark.readStream.option("sep", ";")

.schema(userSchema).csv("/path/to/directory")

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 34 / 64

Basic Operations

I Most of the common operations on DataFrame/Dataset are
supported for streaming.

case class DeviceData(device: String, type: String, signal: Double,

time: DateTime)

// streaming DataFrame with schema

// { device: string, type: string, signal: double, time: string }

val df: DataFrame = ...

val ds: Dataset[DeviceData] = df.as[DeviceData]

// Selection and projection

df.select("device").where("signal > 10") // using untyped APIs

ds.filter(_.signal > 10).map(_.device) // using typed APIs

// Aggregation

df.groupBy("type") // using untyped API

ds.groupByKey(_.type) // using typed API

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 35 / 64

Window Operation (1/2)

I Aggregations over a sliding event-time window.

I Event-time is the time embedded in the data itself, not the time
Spark receives them.

// count words within 10 minute windows, updating every 5 minutes.

// streaming DataFrame of schema {timestamp: Timestamp, word: String}

val words = ...

val windowedCounts = words.groupBy(

window($"timestamp", "10 minutes", "5 minutes"),

$"word"

).count()

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 36 / 64

Window Operation (2/2)

I Late data

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 37 / 64

Flink Stream

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 38 / 64

Batch Processing vs. Stream Processing (1/2)

I Batch processing is just a special case of stream processing.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 39 / 64

Batch Processing vs. Stream Processing (2/2)

I Batched/Stateless: scheduled in batches
• Short-lived tasks (hadoop, spark)
• Distributed streaming over batches (spark stream)

I DataFlow/Stateful: continuous/scheduled once (Storm, Samza,
Naiad, Flink)

• Long-lived task execution
• State is kept inside tasks

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 40 / 64

Native vs. Non-Native Streaming

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 41 / 64

Lambda Architecture

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 42 / 64

Flink

I Distributed data flow processing system

I Unified real-time stream and batch processing

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 43 / 64

Programming Model

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 44 / 64

Programming Model

I Data stream
• An unbounded, partitioned immutable sequence of events.

I Stream operators
• Stream transformations that generate new output data streams

from input ones.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 45 / 64

Flink Stream API (1/2)

I Transformations:

• Basic transformations: Map, Reduce, Filter, Aggregations

• Binary stream transformations: CoMap, CoReduce

• Windowing semantics: policy based flexible windowing (Time, Count,
Delta ...)

• Temporal binary stream operators: Joins, Crosses

• Native support for iterations

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 46 / 64

Flink Stream API (2/2)

I Data stream sources
• File system
• Message queue connectors
• Arbitrary source functionality

I Data stream outputs

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 47 / 64

Word Count in Flink - Batch and Stream

I Batch (DataSet API)

case class Word (word: String, frequency: Int)

val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap {line => line.split(" ").map(word => Word(word, 1))}

.groupBy("word").sum("frequency").print()

I Streaming (DataStream API)

case class Word (word: String, frequency: Int)

val lines: DataStream[String] = env.fromSocketStream(...)

lines.flatMap {line => line.split(" ").map(word => Word(word, 1))}

.keyBy("word").window(Time.of(5, SECONDS))

.every(Time.of(1, SECONDS)).sum("frequency").print()

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 48 / 64

Windowning Semantics

I Trigger and eviction policies
• window(eviction, trigger)
• window(eviction).every(trigger)

I Built-in policies:
• Time: Time.of(length, TimeUnit/Custom timestamp)
• Count: Count.of(windowSize)
• Delta: Delta.of(treshold, Distance function, Start value)

I Window transformations:
• Reduce, mapWindow

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 49 / 64

Example 1 - Reading From Multiple Inputs (1/2)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 50 / 64

Example 1 - Reading From Multiple Inputs (2/2)

val env = StreamExecutionEnvironment.getExecutionEnvironment

//Read from a socket stream at map it to StockPrice objects

val socketStockStream = env.socketTextStream("localhost", 9999).map(x => {

val split = x.split(",")

StockPrice(split(0), split(1).toDouble)

})

//Generate other stock streams

val SPX_Stream = env.addSource(generateStock("SPX")(10) _)

val FTSE_Stream = env.addSource(generateStock("FTSE")(20) _)

val DJI_Stream = env.addSource(generateStock("DJI")(30) _)

val BUX_Stream = env.addSource(generateStock("BUX")(40) _)

//Merge all stock streams together

val stockStream = socketStockStream.merge(SPX_Stream, FTSE_Stream,

DJI_Stream, BUX_Stream)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 51 / 64

Example 2 - Window Aggregations (1/2)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 52 / 64

Example 2 - Window Aggregations (2/2)

//Define the desired time window

val windowedStream = stockStream

.window(Time.of(10, SECONDS)).every(Time.of(5, SECONDS))

//Compute some simple statistics on a rolling window

val lowest = windowedStream.minBy("price")

val maxByStock = windowedStream.groupBy("symbol").maxBy("price")

val rollingMean = windowedStream.groupBy("symbol").mapWindow(mean _)

//Compute the mean of a window

def mean(ts: Iterable[StockPrice], out: Collector[StockPrice]) = {

if (ts.nonEmpty) {

out.collect(StockPrice(ts.head.symbol,

ts.foldLeft(0: Double)(_ + _.price) / ts.size))

}

}

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 53 / 64

Example 3 - Data-Driven Windows (1/2)

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 54 / 64

Example 3 - Data-Driven Windows (2/2)

case class Count(symbol: String, count: Int)

val defaultPrice = StockPrice("", 1000)

//Use delta policy to create price change warnings

val priceWarnings = stockStream.groupBy("symbol")

.window(Delta.of(0.05, priceChange, defaultPrice))

.mapWindow(sendWarning _)

//Count the number of warnings every half a minute

val warningsPerStock = priceWarnings.map(Count(_, 1))

.groupBy("symbol")

.window(Time.of(30, SECONDS))

.sum("count")

def priceChange(p1: StockPrice, p2: StockPrice): Double = {

Math.abs(p1.price / p2.price - 1)

}

def sendWarning(ts: Iterable[StockPrice], out: Collector[String]) = {

if (ts.nonEmpty) out.collect(ts.head.symbol)

}

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 55 / 64

Implementation

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 56 / 64

Flink Architecture

I Master (JobManager): schedules tasks, coordinates checkpoints,
coordinates recovery on failures, etc.

I Workers (TaskManagers): JVM processes that execute tasks of a
dataflow, and buffer and exchange the data streams.

• Workers use task slots to control the number of tasks it accepts.
• Each task slot represents a fixed subset of resources of the worker.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 57 / 64

Application Execution

I Jobs are expressed as data flows.

I Job graphs are transformed into the execution graph.

I Execution graphs consist information to schedule and execute a job.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 58 / 64

Fault Tolerance (1/3)

I Fault tolerance in Spark
• RDD re-computation

I Fault tolerance in Storm
• Tracks records with unique IDs.
• Operators send acks when a record has been processed.
• Records are dropped from the backup when the have been fully

acknowledged.

I Fault tolerance in Flink
• More coarse-grained approach than Storm.
• Based on consistent global snapshots (inspired by Chandy-Lamport).
• Low runtime overhead, stateful exactly-once semantics.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 59 / 64

Fault Tolerance (2/3)

I Acks sequences of records instead of individual records.

I Periodically, the data sources inject checkpoint barriers into the data
stream.

I The barriers flow through the data stream, and trigger operators to
emit all records that depend only on records before the barrier.

I Once all sinks have received the barriers, Flink knows that all records
before the barriers will never be needed again.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 60 / 64

Fault Tolerance (3/3)

I Asynchronous barrier snapshotting for globally consistent check-
points.

I Checkpointing and recovery.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 61 / 64

Summary

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 62 / 64

Summary

I Spark
• Mini-batch processing
• DStream: sequence of RDDs
• RDD and window operations
• Structured streaming

I Flink
• Unified batch and stream
• Native streaming: data flow and pipelining
• Different windowing semantics
• Job graphs and execution graph
• Asynchronous barriers

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 63 / 64

Questions?

Acknowledgements

Some slides and pictures were derived from Gyula Fora slides.

Amir H. Payberah (KTH) Spark Streaming and Flink Stream 2016/09/26 64 / 64

