
Distributed Systems Architectures

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Based on slides by Maarten Van Steen

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 1 / 51

Basic Idea

I Organize into logically different components, and distribute those
components over the various machines.

Layer N

Layer N-1

Layer 1

Layer 2

Request
flow

Response
flow

(a) (b)

Object

Object

Object

Object

Object

Method call

(a) Layered style is used for client-server system
(b) Object-based style for distributed object systems

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 2 / 51

Basic Idea

I Organize into logically different components, and distribute those
components over the various machines.

Layer N

Layer N-1

Layer 1

Layer 2

Request
flow

Response
flow

(a) (b)

Object

Object

Object

Object

Object

Method call

(a) Layered style is used for client-server system
(b) Object-based style for distributed object systems

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 2 / 51

Architectural Styles

I Decoupling processes in space (anonymous) and also time (asyn-
chronous) has led to alternative styles.

(a) (b)

Component Component

Component

Event bus

Publish

PublishEvent delivery

Component Component

Data delivery

Shared (persistent) data space

(a) Publish/subscribe: decoupled in space
(b) Shared dataspace: decoupled in space and time

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 3 / 51

Architectural Styles

I Decoupling processes in space (anonymous) and also time (asyn-
chronous) has led to alternative styles.

(a) (b)

Component Component

Component

Event bus

Publish

PublishEvent delivery

Component Component

Data delivery

Shared (persistent) data space

(a) Publish/subscribe: decoupled in space
(b) Shared dataspace: decoupled in space and time

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 3 / 51

System Architectures

I Centralized architectures

I Decentralized architectures

I Hybrid architectures

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 4 / 51

Centralized Architectures

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 5 / 51

Centralized Architectures

I Basic client-server model

I Characteristics:

• There are processes offering services: (servers)
• There are processes that use services: (clients)
• Clients and servers can be on different machines
• Clients follow request/reply model w.r.t to using services

Client

Request Reply

Server
Provide service Time

Wait for result

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 6 / 51

Centralized Architectures

I Basic client-server model

I Characteristics:
• There are processes offering services: (servers)

• There are processes that use services: (clients)
• Clients and servers can be on different machines
• Clients follow request/reply model w.r.t to using services

Client

Request Reply

Server
Provide service Time

Wait for result

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 6 / 51

Centralized Architectures

I Basic client-server model

I Characteristics:
• There are processes offering services: (servers)
• There are processes that use services: (clients)

• Clients and servers can be on different machines
• Clients follow request/reply model w.r.t to using services

Client

Request Reply

Server
Provide service Time

Wait for result

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 6 / 51

Centralized Architectures

I Basic client-server model

I Characteristics:
• There are processes offering services: (servers)
• There are processes that use services: (clients)
• Clients and servers can be on different machines

• Clients follow request/reply model w.r.t to using services

Client

Request Reply

Server
Provide service Time

Wait for result

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 6 / 51

Centralized Architectures

I Basic client-server model

I Characteristics:
• There are processes offering services: (servers)
• There are processes that use services: (clients)
• Clients and servers can be on different machines
• Clients follow request/reply model w.r.t to using services

Client

Request Reply

Server
Provide service Time

Wait for result

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 6 / 51

Application Layering (1/2)

I Traditional three-layered view:

• User-interface layer: contains units for an application’s user
interface.

• Processing layer: contains the functions of an application, i.e.,
without specific data.

• Data layer: contains the data that a client wants to manipulate
through the application components.

I This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 7 / 51

Application Layering (1/2)

I Traditional three-layered view:
• User-interface layer: contains units for an application’s user

interface.

• Processing layer: contains the functions of an application, i.e.,
without specific data.

• Data layer: contains the data that a client wants to manipulate
through the application components.

I This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 7 / 51

Application Layering (1/2)

I Traditional three-layered view:
• User-interface layer: contains units for an application’s user

interface.
• Processing layer: contains the functions of an application, i.e.,

without specific data.

• Data layer: contains the data that a client wants to manipulate
through the application components.

I This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 7 / 51

Application Layering (1/2)

I Traditional three-layered view:
• User-interface layer: contains units for an application’s user

interface.
• Processing layer: contains the functions of an application, i.e.,

without specific data.
• Data layer: contains the data that a client wants to manipulate

through the application components.

I This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 7 / 51

Application Layering (1/2)

I Traditional three-layered view:
• User-interface layer: contains units for an application’s user

interface.
• Processing layer: contains the functions of an application, i.e.,

without specific data.
• Data layer: contains the data that a client wants to manipulate

through the application components.

I This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 7 / 51

Application Layering (2/2)

Database
with Web pages

Query
generator

Ranking
algorithm

HTML
generator

User interface

Keyword expression

Database queries

Web page titles
with meta-information

Ranked list
of page titles

HTML page
containing list

Processing
level

User-interface
level

Data level

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 8 / 51

Multi-Tiered Architectures

I Single-tiered: dumb terminal/mainframe configuration

I Two-tiered: client/single server configuration

I Three-tiered: each layer on separate machine

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 9 / 51

Traditional Two-Tiered Configurations

User interface User interface User interface

Application

User interface

Application

User interface

Application

Database

ApplicationApplication Application

Database Database Database Database Database

User interface

(a) (b) (c) (d) (e)

Client machine

Server machine

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 10 / 51

Decentralized Architectures

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 11 / 51

Decentralized Architectures

I Peer-to-Peer (P2P) systems

• Structured P2P: nodes are organized following a specific distributed
data structure

• Unstructured P2P: nodes have randomly selected neighbors

• Hybrid P2P: some nodes are appointed special functions in a well-
organized fashion

I In all cases, we are dealing with overlay networks: data is routed
over connections setup between the nodes.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 12 / 51

Decentralized Architectures

I Peer-to-Peer (P2P) systems

• Structured P2P: nodes are organized following a specific distributed
data structure

• Unstructured P2P: nodes have randomly selected neighbors

• Hybrid P2P: some nodes are appointed special functions in a well-
organized fashion

I In all cases, we are dealing with overlay networks: data is routed
over connections setup between the nodes.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 12 / 51

Decentralized Architectures

I Peer-to-Peer (P2P) systems

• Structured P2P: nodes are organized following a specific distributed
data structure

• Unstructured P2P: nodes have randomly selected neighbors

• Hybrid P2P: some nodes are appointed special functions in a well-
organized fashion

I In all cases, we are dealing with overlay networks: data is routed
over connections setup between the nodes.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 12 / 51

Decentralized Architectures

I Peer-to-Peer (P2P) systems

• Structured P2P: nodes are organized following a specific distributed
data structure

• Unstructured P2P: nodes have randomly selected neighbors

• Hybrid P2P: some nodes are appointed special functions in a well-
organized fashion

I In all cases, we are dealing with overlay networks: data is routed
over connections setup between the nodes.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 12 / 51

Decentralized Architectures

I Peer-to-Peer (P2P) systems

• Structured P2P: nodes are organized following a specific distributed
data structure

• Unstructured P2P: nodes have randomly selected neighbors

• Hybrid P2P: some nodes are appointed special functions in a well-
organized fashion

I In all cases, we are dealing with overlay networks: data is routed
over connections setup between the nodes.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 12 / 51

Structured P2P Systems

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 13 / 51

Structured P2P Systems

I Organize the nodes in a structured overlay network, e.g., logical ring
or a d-dimensional space, and make specific nodes responsible for
services based only on their ID.

0
15

214

313

412

8
79

610

511

1

Actual node

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15} {0,1}

Associated
data keys

(0.2,0.8)

(0.6,0.7)

(0.9,0.9)

(0.2,0.3)

(0.7,0.2)

(0.9,0.6)

(0,0)

Keys associated with
node at (0.6,0.7)

(0.2,0.8)

(0.6,0.7)

(0.9,0.9)

(0.2,0.45)

(0.7,0.2)

(0.9,0.6)

(0.2,0.15)

(1,0)

(0,1) (1,1)

Actual node

(a) (b)

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 14 / 51

Distributed Hash Table

I An ordinary hash-table, which is distributed.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 15 / 51

Steps to Build a DHT

I Step 1: decide on common key space for nodes and values.

I Step 2: connect the nodes smartly.

I Step 3: make a strategy for assigning items to nodes.

I Chord: an example of a DHT

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 16 / 51

Steps to Build a DHT

I Step 1: decide on common key space for nodes and values.

I Step 2: connect the nodes smartly.

I Step 3: make a strategy for assigning items to nodes.

I Chord: an example of a DHT

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 16 / 51

Steps to Build a DHT

I Step 1: decide on common key space for nodes and values.

I Step 2: connect the nodes smartly.

I Step 3: make a strategy for assigning items to nodes.

I Chord: an example of a DHT

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 16 / 51

Steps to Build a DHT

I Step 1: decide on common key space for nodes and values.

I Step 2: connect the nodes smartly.

I Step 3: make a strategy for assigning items to nodes.

I Chord: an example of a DHT

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 16 / 51

Construct Chord - Step 1

I Use a logical name space, called the id space, consisting of identifiers
{0, 1, 2, · · · ,N − 1}.

I Id space is a logical ring modulo N.

I Every node picks a random id though Hash H.

I Example:
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(a) = 6
• H(b) = 5
• H(c) = 0
• H(d) = 11
• H(e) = 2

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 17 / 51

Construct Chord - Step 1

I Use a logical name space, called the id space, consisting of identifiers
{0, 1, 2, · · · ,N − 1}.

I Id space is a logical ring modulo N.

I Every node picks a random id though Hash H.

I Example:
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(a) = 6
• H(b) = 5
• H(c) = 0
• H(d) = 11
• H(e) = 2

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 17 / 51

Construct Chord - Step 1

I Use a logical name space, called the id space, consisting of identifiers
{0, 1, 2, · · · ,N − 1}.

I Id space is a logical ring modulo N.

I Every node picks a random id though Hash H.

I Example:
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(a) = 6
• H(b) = 5
• H(c) = 0
• H(d) = 11
• H(e) = 2

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 17 / 51

Construct Chord - Step 1

I Use a logical name space, called the id space, consisting of identifiers
{0, 1, 2, · · · ,N − 1}.

I Id space is a logical ring modulo N.

I Every node picks a random id though Hash H.

I Example:
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(a) = 6
• H(b) = 5
• H(c) = 0
• H(d) = 11
• H(e) = 2

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 17 / 51

Construct Chord - Step 2 (1/2)

I The successor of an id is the first node met going in clockwise
direction starting at the id.

I succ(x): is the first node on the ring with id greater than or equal
x .

• succ(12) = 0
• succ(1) = 2
• succ(6) = 6

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 18 / 51

Construct Chord - Step 2 (2/2)

I Each node points to its successor.

I The successor of a node n is succ(n + 1).
• 0’s successor is succ(1) = 2.
• 2’s successor is succ(3) = 5.
• 11’s successor is succ(12) = 0.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 19 / 51

Construct Chord - Step 3

I Where to store data?

I Use globally known hash function H.

I Each item 〈key , value〉 gets identifier H(key) = k .
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(Fatemeh) = 12
• H(Cosmin) = 2
• H(Seif) = 9
• H(Sarunas) = 14
• H(Tallat) = 4

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 20 / 51

Construct Chord - Step 3

I Where to store data?

I Use globally known hash function H.

I Each item 〈key , value〉 gets identifier H(key) = k .
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(Fatemeh) = 12
• H(Cosmin) = 2
• H(Seif) = 9
• H(Sarunas) = 14
• H(Tallat) = 4

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 20 / 51

Construct Chord - Step 3

I Where to store data?

I Use globally known hash function H.

I Each item 〈key , value〉 gets identifier H(key) = k .
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(Fatemeh) = 12
• H(Cosmin) = 2
• H(Seif) = 9
• H(Sarunas) = 14
• H(Tallat) = 4

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 20 / 51

Construct Chord - Step 3

I Where to store data?

I Use globally known hash function H.

I Each item 〈key , value〉 gets identifier H(key) = k .
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(Fatemeh) = 12
• H(Cosmin) = 2
• H(Seif) = 9
• H(Sarunas) = 14
• H(Tallat) = 4

I Store each item at its successor.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 21 / 51

Construct Chord - Step 3

I Where to store data?

I Use globally known hash function H.

I Each item 〈key , value〉 gets identifier H(key) = k .
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(Fatemeh) = 12
• H(Cosmin) = 2
• H(Seif) = 9
• H(Sarunas) = 14
• H(Tallat) = 4

I Store each item at its successor.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 22 / 51

How to Lookup?

I To lookup a key k:
• Calculate H(k).
• Follow succ pointers until item k is found.

I Example:
• Lookup Seif at node 2.
• H(Seif) = 9
• Traverse nodes: 2, 5, 6, 11
• Return Stockholm to initiator

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 23 / 51

How to Lookup?

I To lookup a key k:
• Calculate H(k).
• Follow succ pointers until item k is found.

I Example:
• Lookup Seif at node 2.
• H(Seif) = 9
• Traverse nodes: 2, 5, 6, 11
• Return Stockholm to initiator

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 23 / 51

Unstructured P2P Systems

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 24 / 51

Unstructured P2P Systems

I Unstructured P2P systems attempt to maintain a random graph.

I Basic principle: each node is required to contact a randomly selected
other node.

• Let each peer maintain a partial view of the network, consisting of c
other nodes.

• Each node P periodically selects a node Q from its partial view.
• P and Q exchange information and exchange members from their

respective partial views.

I It turns out that, depending on the exchange, randomness, but also
robustness of the network can be maintained.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 25 / 51

Unstructured P2P Systems

I Unstructured P2P systems attempt to maintain a random graph.

I Basic principle: each node is required to contact a randomly selected
other node.

• Let each peer maintain a partial view of the network, consisting of c
other nodes.

• Each node P periodically selects a node Q from its partial view.
• P and Q exchange information and exchange members from their

respective partial views.

I It turns out that, depending on the exchange, randomness, but also
robustness of the network can be maintained.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 25 / 51

Unstructured P2P Systems

I Unstructured P2P systems attempt to maintain a random graph.

I Basic principle: each node is required to contact a randomly selected
other node.

• Let each peer maintain a partial view of the network, consisting of c
other nodes.

• Each node P periodically selects a node Q from its partial view.
• P and Q exchange information and exchange members from their

respective partial views.

I It turns out that, depending on the exchange, randomness, but also
robustness of the network can be maintained.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 25 / 51

Unstructured P2P Systems

I Unstructured P2P systems attempt to maintain a random graph.

I Basic principle: each node is required to contact a randomly selected
other node.

• Let each peer maintain a partial view of the network, consisting of c
other nodes.

• Each node P periodically selects a node Q from its partial view.
• P and Q exchange information and exchange members from their

respective partial views.

I It turns out that, depending on the exchange, randomness, but also
robustness of the network can be maintained.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 25 / 51

Gossiping and Aggregation

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 26 / 51

What is Gossiping?

Active thread Passive thread

selectPeer(&B);
selectToSend(&bufs);
sendTo(B, bufs);

receiveFrom(B, &bufr);
selectToKeep(cache, bufr);

receiveFromAny(&A, &bufr);
selectToSend(&bufs);
sendTo(A, bufs);
selectToKeep(cache, bufr);

I selectPeer: randomly select a neighbor from partial view.

I selectToSend: select s entries from local cache.
I selectToKeep:

1 add received entries to local cache.
2 remove repeated items.
3 shrink cache to size c (according to some strategy).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 27 / 51

What is Gossiping?

Active thread Passive thread
selectPeer(&B);

selectToSend(&bufs);
sendTo(B, bufs);

receiveFrom(B, &bufr);
selectToKeep(cache, bufr);

receiveFromAny(&A, &bufr);
selectToSend(&bufs);
sendTo(A, bufs);
selectToKeep(cache, bufr);

I selectPeer: randomly select a neighbor from partial view.

I selectToSend: select s entries from local cache.
I selectToKeep:

1 add received entries to local cache.
2 remove repeated items.
3 shrink cache to size c (according to some strategy).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 27 / 51

What is Gossiping?

Active thread Passive thread
selectPeer(&B);
selectToSend(&bufs);

sendTo(B, bufs);

receiveFrom(B, &bufr);
selectToKeep(cache, bufr);

receiveFromAny(&A, &bufr);
selectToSend(&bufs);
sendTo(A, bufs);
selectToKeep(cache, bufr);

I selectPeer: randomly select a neighbor from partial view.

I selectToSend: select s entries from local cache.

I selectToKeep:
1 add received entries to local cache.
2 remove repeated items.
3 shrink cache to size c (according to some strategy).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 27 / 51

What is Gossiping?

Active thread Passive thread
selectPeer(&B);
selectToSend(&bufs);
sendTo(B, bufs);

receiveFrom(B, &bufr);
selectToKeep(cache, bufr);

receiveFromAny(&A, &bufr);

selectToSend(&bufs);
sendTo(A, bufs);
selectToKeep(cache, bufr);

I selectPeer: randomly select a neighbor from partial view.

I selectToSend: select s entries from local cache.
I selectToKeep:

1 add received entries to local cache.
2 remove repeated items.
3 shrink cache to size c (according to some strategy).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 27 / 51

What is Gossiping?

Active thread Passive thread
selectPeer(&B);
selectToSend(&bufs);
sendTo(B, bufs);

receiveFrom(B, &bufr);
selectToKeep(cache, bufr);

receiveFromAny(&A, &bufr);
selectToSend(&bufs);

sendTo(A, bufs);
selectToKeep(cache, bufr);

I selectPeer: randomly select a neighbor from partial view.

I selectToSend: select s entries from local cache.
I selectToKeep:

1 add received entries to local cache.
2 remove repeated items.
3 shrink cache to size c (according to some strategy).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 27 / 51

What is Gossiping?

Active thread Passive thread
selectPeer(&B);
selectToSend(&bufs);
sendTo(B, bufs);

receiveFrom(B, &bufr);

selectToKeep(cache, bufr);

receiveFromAny(&A, &bufr);
selectToSend(&bufs);
sendTo(A, bufs);

selectToKeep(cache, bufr);

I selectPeer: randomly select a neighbor from partial view.

I selectToSend: select s entries from local cache.
I selectToKeep:

1 add received entries to local cache.
2 remove repeated items.
3 shrink cache to size c (according to some strategy).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 27 / 51

What is Gossiping?

Active thread Passive thread
selectPeer(&B);
selectToSend(&bufs);
sendTo(B, bufs);

receiveFrom(B, &bufr);
selectToKeep(cache, bufr);

receiveFromAny(&A, &bufr);
selectToSend(&bufs);
sendTo(A, bufs);
selectToKeep(cache, bufr);

I selectPeer: randomly select a neighbor from partial view.

I selectToSend: select s entries from local cache.
I selectToKeep:

1 add received entries to local cache.
2 remove repeated items.
3 shrink cache to size c (according to some strategy).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 27 / 51

Aggregation

I Aggregation provides a summary of some global system property.

I It allows local access to global information.

I Examples of aggregation functions:
• The average load of nodes in a cluster.
• The sum of free space in a distributed storage.
• The total number of nodes in a P2P system.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 28 / 51

Aggregation

I Aggregation provides a summary of some global system property.

I It allows local access to global information.

I Examples of aggregation functions:
• The average load of nodes in a cluster.
• The sum of free space in a distributed storage.
• The total number of nodes in a P2P system.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 28 / 51

Aggregation

I Aggregation provides a summary of some global system property.

I It allows local access to global information.

I Examples of aggregation functions:
• The average load of nodes in a cluster.
• The sum of free space in a distributed storage.
• The total number of nodes in a P2P system.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 28 / 51

Aggregation Example (1/5)

I Taking the average of the numbers in the nodes.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 29 / 51

Aggregation Example (2/5)

I Taking the average of the numbers in the nodes.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 30 / 51

Aggregation Example (3/5)

I Taking the average of the numbers in the nodes.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 31 / 51

Aggregation Example (4/5)

I Taking the average of the numbers in the nodes.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 32 / 51

Aggregation Example (5/5)

I Taking the average of the numbers in the nodes.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 33 / 51

Gossiping-Based Peer Sampling

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 34 / 51

Gossip Protocols

I In a gossip protocol, each node in the system periodically exchanges
information with a subset of nodes.

I The choice of this subset is crucial.

I Ideally, the nodes should be selected following a uniform random
sample of all nodes currently in the system.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 35 / 51

Gossip Protocols

I In a gossip protocol, each node in the system periodically exchanges
information with a subset of nodes.

I The choice of this subset is crucial.

I Ideally, the nodes should be selected following a uniform random
sample of all nodes currently in the system.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 35 / 51

Gossip Protocols

I In a gossip protocol, each node in the system periodically exchanges
information with a subset of nodes.

I The choice of this subset is crucial.

I Ideally, the nodes should be selected following a uniform random
sample of all nodes currently in the system.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 35 / 51

Achieving a Uniform Random Sample

I Each node may be assumed to know every other node in the system.

I Providing each node with a complete membership table is unrealistic
in a large scale dynamic system.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 36 / 51

Achieving a Uniform Random Sample

I Each node may be assumed to know every other node in the system.

I Providing each node with a complete membership table is unrealistic
in a large scale dynamic system.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 36 / 51

Peer Sampling

I An alternative solution.

I Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

I Periodically refreshes the table using a gossiping procedure.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 37 / 51

Peer Sampling

I An alternative solution.

I Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

I Periodically refreshes the table using a gossiping procedure.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 37 / 51

Peer Sampling

I An alternative solution.

I Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

I Periodically refreshes the table using a gossiping procedure.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 37 / 51

Gossip-based Peer Sampling

I Unify partial view and local cache ⇒ exchange neighbors

Active thread Passive thread

selectPeer(&B);
selectToSend(&peers s);
sendTo(B, peers s);

receiveFrom(B, &peers r);
selectToKeep(pview, peers r);

receiveFromAny(&A, &peers r);
selectToSend(&peers s);
sendTo(A, peers s);
selectToKeep(pview, peers r);

I selectPeer: randomly select a neighbor.

I selectToSend: select s references to neighbors.
I selectToKeep:

1 add received references to partial view.
2 remove repeated refs.
3 shrink view to size c by randomly removing sent refs (but never

received ones).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 38 / 51

Gossip-based Peer Sampling

I Unify partial view and local cache ⇒ exchange neighbors

Active thread Passive thread
selectPeer(&B);

selectToSend(&peers s);
sendTo(B, peers s);

receiveFrom(B, &peers r);
selectToKeep(pview, peers r);

receiveFromAny(&A, &peers r);
selectToSend(&peers s);
sendTo(A, peers s);
selectToKeep(pview, peers r);

I selectPeer: randomly select a neighbor.

I selectToSend: select s references to neighbors.
I selectToKeep:

1 add received references to partial view.
2 remove repeated refs.
3 shrink view to size c by randomly removing sent refs (but never

received ones).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 38 / 51

Gossip-based Peer Sampling

I Unify partial view and local cache ⇒ exchange neighbors

Active thread Passive thread
selectPeer(&B);
selectToSend(&peers s);

sendTo(B, peers s);

receiveFrom(B, &peers r);
selectToKeep(pview, peers r);

receiveFromAny(&A, &peers r);
selectToSend(&peers s);
sendTo(A, peers s);
selectToKeep(pview, peers r);

I selectPeer: randomly select a neighbor.

I selectToSend: select s references to neighbors.

I selectToKeep:
1 add received references to partial view.
2 remove repeated refs.
3 shrink view to size c by randomly removing sent refs (but never

received ones).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 38 / 51

Gossip-based Peer Sampling

I Unify partial view and local cache ⇒ exchange neighbors

Active thread Passive thread
selectPeer(&B);
selectToSend(&peers s);
sendTo(B, peers s);

receiveFrom(B, &peers r);
selectToKeep(pview, peers r);

receiveFromAny(&A, &peers r);

selectToSend(&peers s);
sendTo(A, peers s);
selectToKeep(pview, peers r);

I selectPeer: randomly select a neighbor.

I selectToSend: select s references to neighbors.
I selectToKeep:

1 add received references to partial view.
2 remove repeated refs.
3 shrink view to size c by randomly removing sent refs (but never

received ones).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 38 / 51

Gossip-based Peer Sampling

I Unify partial view and local cache ⇒ exchange neighbors

Active thread Passive thread
selectPeer(&B);
selectToSend(&peers s);
sendTo(B, peers s);

receiveFrom(B, &peers r);
selectToKeep(pview, peers r);

receiveFromAny(&A, &peers r);
selectToSend(&peers s);

sendTo(A, peers s);
selectToKeep(pview, peers r);

I selectPeer: randomly select a neighbor.

I selectToSend: select s references to neighbors.
I selectToKeep:

1 add received references to partial view.
2 remove repeated refs.
3 shrink view to size c by randomly removing sent refs (but never

received ones).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 38 / 51

Gossip-based Peer Sampling

I Unify partial view and local cache ⇒ exchange neighbors

Active thread Passive thread
selectPeer(&B);
selectToSend(&peers s);
sendTo(B, peers s);

receiveFrom(B, &peers r);

selectToKeep(pview, peers r);

receiveFromAny(&A, &peers r);
selectToSend(&peers s);
sendTo(A, peers s);

selectToKeep(pview, peers r);

I selectPeer: randomly select a neighbor.

I selectToSend: select s references to neighbors.
I selectToKeep:

1 add received references to partial view.
2 remove repeated refs.
3 shrink view to size c by randomly removing sent refs (but never

received ones).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 38 / 51

Gossip-based Peer Sampling

I Unify partial view and local cache ⇒ exchange neighbors

Active thread Passive thread
selectPeer(&B);
selectToSend(&peers s);
sendTo(B, peers s);

receiveFrom(B, &peers r);
selectToKeep(pview, peers r);

receiveFromAny(&A, &peers r);
selectToSend(&peers s);
sendTo(A, peers s);
selectToKeep(pview, peers r);

I selectPeer: randomly select a neighbor.

I selectToSend: select s references to neighbors.
I selectToKeep:

1 add received references to partial view.
2 remove repeated refs.
3 shrink view to size c by randomly removing sent refs (but never

received ones).

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 38 / 51

Topology Management

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 39 / 51

Topology Management of Overlay Networks (1/3)

I A protocol to construct and maintain any topology with the help of
a ranking function.

I The ranking function orders any set of nodes according to their
desirability to be neighbors of a given node.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 40 / 51

Topology Management of Overlay Networks (1/3)

I A protocol to construct and maintain any topology with the help of
a ranking function.

I The ranking function orders any set of nodes according to their
desirability to be neighbors of a given node.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 40 / 51

Topology Management of Overlay Networks (2/3)

I Distinguish two layers:
1 The lower layer: maintains random partial views in lowest layer
2 The upper layer: be selective on who you keep in higher-layer partial

view

I Lower layer feeds upper layer with random nodes; upper layer is
selective when it comes to keeping references.

Protocol for
randomized

view

Protocol for
specific
overlay

Random peer

Links to randomly
chosen other nodes

Links to topology-
specific other nodes

Random
overlay

Structured
overlay

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 41 / 51

Topology Management of Overlay Networks (3/3)

I Constructing a torus: consider a N × N grid.
I Keep only references to nearest neighbors in the upper layer:

• Line: d(a, b) = |a− b|
• Ring: d(a, b) = min(N − |a− b|, |a− b|)

Time

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 42 / 51

Hybrid P2P Systems

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 43 / 51

Superpeers

I Sometimes it helps to select a few nodes to do specific work:
superpeer.

I Examples:
• Peers maintaining an index (for search)
• Peers monitoring the state of the network
• Peers being able to setup connections

Superpeer

Regular peer

Superpeer
network

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 44 / 51

Superpeers

I Sometimes it helps to select a few nodes to do specific work:
superpeer.

I Examples:
• Peers maintaining an index (for search)
• Peers monitoring the state of the network
• Peers being able to setup connections

Superpeer

Regular peer

Superpeer
network

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 44 / 51

Hybrid Architectures

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 45 / 51

Hybrid Architectures (1/2)

I Client-server combined with P2P

I Edge-server architectures, which are often used for Content
Delivery Networks (CDN)

Edge server

Core Internet

Enterprise network

ISP
ISP

Client Content provider

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 46 / 51

Hybrid Architectures (2/2)

I Example: Bittorrent

I Once a node has identified where to download a file from, it joins
a swarm of downloaders who in parallel get file chunks from the
source, but also distribute these chunks amongst each other.

Node 1

Node 2

Node N

.torrent file
for F

A BitTorrent
Web page

List of nodes
storing F

Web server File server Tracker

Client node
K out of N nodes

Lookup(F)

Ref. to
file

server

Ref. to
tracker

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 47 / 51

Summary

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 48 / 51

Summary

I Client-Server
• Application layers, e.g., two-tier, three-tier

I P2P
• Structured: DHT
• Unstructured: gossip, peer sampling, topology management
• Hybrid: superpeers

I Hybrid P2P and client-server: CDN + P2P

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 49 / 51

Reading

I Chapter 2 of the Distributed Systems: Principles and Paradigms.

I Stoica, Ion, et al., Chord: a scalable peer-to-peer lookup protocol
for internet applications, Networking, IEEE/ACM Transactions on
11.1 (2003): 17-32.

I Jelasity, Mark, and Alberto Montresor, Epidemic-style proactive ag-
gregation in large overlay networks, Distributed Computing Systems,
2004. Proceedings. 24th International Conference on. IEEE, 2004.

I Jelasity, Mark, et al., Gossip-based peer sampling, ACM Transac-
tions on Computer Systems (TOCS) 25.3 (2007): 8.

I Jelasity, Mark, and Ozalp Babaoglu., T-Man: Gossip-based over-
lay topology management, Engineering Self-Organising Systems.
Springer Berlin Heidelberg, 2006. 1-15.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 50 / 51

Questions?

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 51 / 51

