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Basic Idea

I Organize into logically different components, and distribute those
components over the various machines.
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(a) Layered style is used for client-server system
(b) Object-based style for distributed object systems
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Architectural Styles

I Decoupling processes in space (anonymous) and also time (asyn-
chronous) has led to alternative styles.
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(a) Publish/subscribe: decoupled in space
(b) Shared dataspace: decoupled in space and time
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System Architectures

I Centralized architectures

I Decentralized architectures

I Hybrid architectures
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Centralized Architectures
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Centralized Architectures

I Basic client-server model

I Characteristics:

• There are processes offering services: (servers)
• There are processes that use services: (clients)
• Clients and servers can be on different machines
• Clients follow request/reply model w.r.t to using services

Client

Request Reply

Server
Provide service Time

Wait for result
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Application Layering (1/2)

I Traditional three-layered view:

• User-interface layer: contains units for an application’s user
interface.

• Processing layer: contains the functions of an application, i.e.,
without specific data.

• Data layer: contains the data that a client wants to manipulate
through the application components.

I This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.
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Application Layering (2/2)
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Multi-Tiered Architectures

I Single-tiered: dumb terminal/mainframe configuration

I Two-tiered: client/single server configuration

I Three-tiered: each layer on separate machine
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Traditional Two-Tiered Configurations

User interface User interface User interface

Application

User interface

Application
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Decentralized Architectures
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Decentralized Architectures

I Peer-to-Peer (P2P) systems

• Structured P2P: nodes are organized following a specific distributed
data structure

• Unstructured P2P: nodes have randomly selected neighbors

• Hybrid P2P: some nodes are appointed special functions in a well-
organized fashion

I In all cases, we are dealing with overlay networks: data is routed
over connections setup between the nodes.
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Structured P2P Systems
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Structured P2P Systems

I Organize the nodes in a structured overlay network, e.g., logical ring
or a d-dimensional space, and make specific nodes responsible for
services based only on their ID.
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Distributed Hash Table

I An ordinary hash-table, which is distributed.
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Steps to Build a DHT

I Step 1: decide on common key space for nodes and values.

I Step 2: connect the nodes smartly.

I Step 3: make a strategy for assigning items to nodes.

I Chord: an example of a DHT
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Construct Chord - Step 1

I Use a logical name space, called the id space, consisting of identifiers
{0, 1, 2, · · · ,N − 1}.

I Id space is a logical ring modulo N.

I Every node picks a random id though Hash H.

I Example:
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(a) = 6
• H(b) = 5
• H(c) = 0
• H(d) = 11
• H(e) = 2
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Construct Chord - Step 2 (1/2)

I The successor of an id is the first node met going in clockwise
direction starting at the id.

I succ(x): is the first node on the ring with id greater than or equal
x .

• succ(12) = 0
• succ(1) = 2
• succ(6) = 6
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Construct Chord - Step 2 (2/2)

I Each node points to its successor.

I The successor of a node n is succ(n + 1).
• 0’s successor is succ(1) = 2.
• 2’s successor is succ(3) = 5.
• 11’s successor is succ(12) = 0.
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Construct Chord - Step 3

I Where to store data?

I Use globally known hash function H.

I Each item 〈key , value〉 gets identifier H(key) = k .
• Space N = 16{0, · · · , 15}
• Five nodes a, b, c , d , e.
• H(Fatemeh) = 12
• H(Cosmin) = 2
• H(Seif ) = 9
• H(Sarunas) = 14
• H(Tallat) = 4
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How to Lookup?

I To lookup a key k:
• Calculate H(k).
• Follow succ pointers until item k is found.

I Example:
• Lookup Seif at node 2.
• H(Seif ) = 9
• Traverse nodes: 2, 5, 6, 11
• Return Stockholm to initiator
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Unstructured P2P Systems
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Unstructured P2P Systems

I Unstructured P2P systems attempt to maintain a random graph.

I Basic principle: each node is required to contact a randomly selected
other node.

• Let each peer maintain a partial view of the network, consisting of c
other nodes.

• Each node P periodically selects a node Q from its partial view.
• P and Q exchange information and exchange members from their

respective partial views.

I It turns out that, depending on the exchange, randomness, but also
robustness of the network can be maintained.
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Gossiping and Aggregation
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What is Gossiping?

Active thread Passive thread

selectPeer(&B);
selectToSend(&bufs);
sendTo(B, bufs);

receiveFrom(B, &bufr);
selectToKeep(cache, bufr);

receiveFromAny(&A, &bufr);
selectToSend(&bufs);
sendTo(A, bufs);
selectToKeep(cache, bufr);

I selectPeer: randomly select a neighbor from partial view.

I selectToSend: select s entries from local cache.
I selectToKeep:

1 add received entries to local cache.
2 remove repeated items.
3 shrink cache to size c (according to some strategy).
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Aggregation

I Aggregation provides a summary of some global system property.

I It allows local access to global information.

I Examples of aggregation functions:
• The average load of nodes in a cluster.
• The sum of free space in a distributed storage.
• The total number of nodes in a P2P system.
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Aggregation Example (1/5)

I Taking the average of the numbers in the nodes.
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Aggregation Example (2/5)

I Taking the average of the numbers in the nodes.
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Aggregation Example (3/5)

I Taking the average of the numbers in the nodes.
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Aggregation Example (4/5)

I Taking the average of the numbers in the nodes.
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Aggregation Example (5/5)

I Taking the average of the numbers in the nodes.
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Gossiping-Based Peer Sampling
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Gossip Protocols

I In a gossip protocol, each node in the system periodically exchanges
information with a subset of nodes.

I The choice of this subset is crucial.

I Ideally, the nodes should be selected following a uniform random
sample of all nodes currently in the system.
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Achieving a Uniform Random Sample

I Each node may be assumed to know every other node in the system.

I Providing each node with a complete membership table is unrealistic
in a large scale dynamic system.
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Peer Sampling

I An alternative solution.

I Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

I Periodically refreshes the table using a gossiping procedure.
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Gossip-based Peer Sampling

I Unify partial view and local cache ⇒ exchange neighbors

Active thread Passive thread

selectPeer(&B);
selectToSend(&peers s);
sendTo(B, peers s);

receiveFrom(B, &peers r);
selectToKeep(pview, peers r);

receiveFromAny(&A, &peers r);
selectToSend(&peers s);
sendTo(A, peers s);
selectToKeep(pview, peers r);

I selectPeer: randomly select a neighbor.

I selectToSend: select s references to neighbors.
I selectToKeep:

1 add received references to partial view.
2 remove repeated refs.
3 shrink view to size c by randomly removing sent refs (but never

received ones).
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Topology Management
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Topology Management of Overlay Networks (1/3)

I A protocol to construct and maintain any topology with the help of
a ranking function.

I The ranking function orders any set of nodes according to their
desirability to be neighbors of a given node.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 40 / 51



Topology Management of Overlay Networks (1/3)

I A protocol to construct and maintain any topology with the help of
a ranking function.

I The ranking function orders any set of nodes according to their
desirability to be neighbors of a given node.

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 40 / 51



Topology Management of Overlay Networks (2/3)

I Distinguish two layers:
1 The lower layer: maintains random partial views in lowest layer
2 The upper layer: be selective on who you keep in higher-layer partial

view

I Lower layer feeds upper layer with random nodes; upper layer is
selective when it comes to keeping references.

Protocol for
randomized

view

Protocol for
specific
overlay

Random peer

Links to randomly
chosen other nodes

Links to topology-
specific other nodes

Random
overlay

Structured
overlay
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Topology Management of Overlay Networks (3/3)

I Constructing a torus: consider a N × N grid.
I Keep only references to nearest neighbors in the upper layer:

• Line: d(a, b) = |a− b|
• Ring: d(a, b) = min(N − |a− b|, |a− b|)

Time
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Hybrid P2P Systems
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Superpeers

I Sometimes it helps to select a few nodes to do specific work:
superpeer.

I Examples:
• Peers maintaining an index (for search)
• Peers monitoring the state of the network
• Peers being able to setup connections

Superpeer

Regular peer

Superpeer
network
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Hybrid Architectures
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Hybrid Architectures (1/2)

I Client-server combined with P2P

I Edge-server architectures, which are often used for Content
Delivery Networks (CDN)

Edge server

Core Internet

Enterprise network

ISP
ISP

Client Content provider
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Hybrid Architectures (2/2)

I Example: Bittorrent

I Once a node has identified where to download a file from, it joins
a swarm of downloaders who in parallel get file chunks from the
source, but also distribute these chunks amongst each other.

Node 1

Node 2

Node N

.torrent file
for F

A  BitTorrent
Web page

List of nodes
storing F

Web server File server Tracker

Client node
K out of N nodes

Lookup(F)

Ref. to
file

server

Ref. to
tracker
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Summary
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Summary

I Client-Server
• Application layers, e.g., two-tier, three-tier

I P2P
• Structured: DHT
• Unstructured: gossip, peer sampling, topology management
• Hybrid: superpeers

I Hybrid P2P and client-server: CDN + P2P
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Questions?
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