Distributed Systems Architectures

Amir H. Payberah

amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

AMIRKABIR UNIVERSITY
OF TECHNOLOGY

Based on slides by Maarten Van Steen

Basic Idea

» Organize into logically different components, and distribute those
components over the various machines.

Basic Idea

» Organize into logically different components, and distribute those
components over the various machines.

Layer N-1

Request Response
flow flow

Layer 2

]

(@) (b)

(a) Layered style is used for client-server system
(b) Object-based style for distributed object systems

|
Architectural Styles

» Decoupling processes in space (anonymous) and also time (asyn-
chronous) has led to alternative styles.

Architectural Styles

» Decoupling processes in space (anonymous) and also time (asyn-
chronous) has led to alternative styles.

Data delivery l Publish
Publish

Shared (persistent) data space

(@ (b)

Event delivery

(a) Publish/subscribe: decoupled in space
(b) Shared dataspace: decoupled in space and time

System Architectures

» Centralized architectures
» Decentralized architectures

» Hybrid architectures

Centralized Architectures

Centralized Architectures

» Basic client-server model

. Wait for result
ClIeN! — -

Request

Provide service Time —>

Centralized Architectures

» Basic client-server model

» Characteristics:
» There are processes offering services: (servers)

. Wait for result
ClIEN! — - oo -

Request

Provide service Time —>»

Centralized Architectures

» Basic client-server model

» Characteristics:

» There are processes offering services: (servers)
» There are processes that use services: (clients)

. Wait for result
ClIEN! — - oo -

Request

Provide service Time —>»

Centralized Architectures

» Basic client-server model

» Characteristics:

» There are processes offering services: (servers)
» There are processes that use services: (clients)
e Clients and servers can be on different machines

. Wait for result
ClIEN! — - oo -

Request

Provide service Time —>»

NN
Centralized Architectures

» Basic client-server model

» Characteristics:

» There are processes offering services: (servers)

» There are processes that use services: (clients)

e Clients and servers can be on different machines

« Clients follow request/reply model w.r.t to using services

. Wait for result
ClIEN! — - oo -

Request

Provide service Time —>»

.
Application Layering (1/2)

» Traditional three-layered view:

.
Application Layering (1/2)

» Traditional three-layered view:

e User-interface layer: contains units for an application’s user
interface.

Application Layering (1/2)

» Traditional three-layered view:
e User-interface layer: contains units for an application’s user

interface.
¢ Processing layer: contains the functions of an application, i.e.,

without specific data.

Application Layering (1/2)

» Traditional three-layered view:
e User-interface layer: contains units for an application’s user

interface.
¢ Processing layer: contains the functions of an application, i.e.,

without specific data.
e Data layer: contains the data that a client wants to manipulate

through the application components.

Application Layering (1/2)

» Traditional three-layered view:
e User-interface layer: contains units for an application’s user

interface.
¢ Processing layer: contains the functions of an application, i.e.,

without specific data.
e Data layer: contains the data that a client wants to manipulate

through the application components.

» This layering is found in many distributed information systems, using
traditional database technology and accompanying applications.

Application Layering (2/2)

User-interface

-

level
HTML page
Keyword expression containing list
HTML
Processing
Ranked list level

of page titles

Query
generator
Ranking

Database queries algorithm

Web page titles
with meta-information
Database Data level
with Web pages

NN
Multi-Tiered Architectures

» Single-tiered: dumb terminal/mainframe configuration
» Two-tiered: client/single server configuration

» Three-tiered: each layer on separate machine

BN
Traditional Two-Tiered Configurations

Client machine

’ User interta}ggl l User imerface] l User interface] l User interface] lUser interface]
‘___/’// ’ Applicati_o_n_‘l l Application] l Application]
>>>>>>>> $""‘~~»--.._;__$_____» [e Datahas—g_‘

User interface T $>""“-~-—-.._;_$

l Application l l Application l ’\“A—[’);)Iication ‘ ___/,/"—“
l Database] l Database] l Database] l Database] T Database ‘
Server machine
(@) (b) (© (d) (e)

Decentralized Architectures

Decentralized Architectures

» Peer-to-Peer (P2P) systems

Decentralized Architectures

» Peer-to-Peer (P2P) systems

e Structured P2P: nodes are organized following a specific distributed
data structure

Decentralized Architectures

» Peer-to-Peer (P2P) systems

e Structured P2P: nodes are organized following a specific distributed
data structure

e Unstructured P2P: nodes have randomly selected neighbors

NN
Decentralized Architectures

» Peer-to-Peer (P2P) systems

e Structured P2P: nodes are organized following a specific distributed
data structure

e Unstructured P2P: nodes have randomly selected neighbors

e Hybrid P2P: some nodes are appointed special functions in a well-
organized fashion

NN
Decentralized Architectures

» Peer-to-Peer (P2P) systems

e Structured P2P: nodes are organized following a specific distributed
data structure

e Unstructured P2P: nodes have randomly selected neighbors

e Hybrid P2P: some nodes are appointed special functions in a well-
organized fashion

» In all cases, we are dealing with overlay networks: data is routed
over connections setup between the nodes.

Structured P2P Systems

|
Structured P2P Systems

» Organize the nodes in a structured overlay network, e.g., logical ring
or a d-dimensional space, and make specific nodes responsible for
services based only on their ID.

Keys associated with

node at (0.6,0.7)
Actual node 1) | @y
\/®/ '\Gi \ 0909) (0.909)
{13,14,15} {0,1} 0208) ©0208)
©807) ©807)
Actual node
0.9,06) 0.9,06)
{8,9,10,11,12} {234}
N Associated ©0203)
data keys (0.7,0.2) 0.7,0.2)
. 0
{567}
0,0) o)
l ®

Distributed Hash Table

» An ordinary hash-table, which is distributed.

Fatemeh [Stockholm
Ali California
Tallat Islamabad
Cosmin Bucharest
Seif Stockholm
Amir Tehran

D

S e

Amir H. Payberah (Tehran Polytechnic)

Architectures

1393/11/28

15 / 51

Steps to Build a DHT

"
s

Setof nodes Key of nodes Dg

] A |
]

Set of items Key of items

» Step 1: decide on common key space for nodes and values.

Steps to Build a DHT

(12)
—)
e

Setof nodes Key of nodes

F (2)
e

Set of items Key of items

AN

QD
W D@
Dgg

» Step 1: decide on common key space for nodes and values.

» Step 2: connect the nodes smartly.

Steps to Build a DHT

(12)
—)
e

Setof nodes Key of nodes

7 (2)
e

Set of items Key of items

AN

@D
W D@
Dgg

» Step 1: decide on common key space for nodes and values.

» Step 2: connect the nodes smartly.

» Step 3: make a strategy for assigning items to nodes.

Steps to Build a DHT

B

Setof nodes Key of nodes DJ,Q

] A |
]

Set of items Key of items

v

Step 1: decide on common key space for nodes and values.

v

Step 2: connect the nodes smartly.

v

Step 3: make a strategy for assigning items to nodes.

Chord: an example of a DHT

v

|
Construct Chord - Step 1

» Use a logical name space, called the id space, consisting of identifiers
{0,1,2,--- ,N —1}.

9 7

|
Construct Chord - Step 1

» Use a logical name space, called the id space, consisting of identifiers
{0,1,2,--- ,N —1}.

» Id space is a logical ring modulo N.

9 7

|
Construct Chord - Step 1

» Use a logical name space, called the id space, consisting of identifiers
{0,1,2,--- ,N —1}.

» Id space is a logical ring modulo N.

» Every node picks a random id though Hash H.

15 1

13 3

12 4

9 7

|
Construct Chord - Step 1

» Use a logical name space, called the id space, consisting of identifiers
{0,1,2,--- ,N —1}.

» Id space is a logical ring modulo N.

» Every node picks a random id though Hash H.

» Example:

e Space N = 16{0,---,15} ' !
e Five nodes a, b, ¢, d, e. 14
. H(a) =
« H(b) =5 9 °
. H(C) =0 12 4
e H(d) =11
e H(e) =2

10

9 e 7

.
Construct Chord - Step 2 (1/2)

» The successor of an id is the first node met going in clockwise
direction starting at the id.

» succ(x): is the first node on the ring with id greater than or equal

X.
e succ(12) =0
e succ(l) =2
e succ(6) =6 s !
14
13 3
12 B
10
9 a7

Construct Chord - Step 2 (2/2)

» Each node points to its successor.

» The successor of a node n is succ(n + 1).
+ 0's successor is succ(l) = 2.
 2's successor is succ(3) = 5.
e 11's successor is succ(12) = 0.

BN
Construct Chord - Step 3

» Where to store data?

Construct Chord - Step 3

» Where to store data?

» Use globally known hash function H.

Construct Chord - Step 3

» Where to store data?

» Use globally known hash function H.

» Each item (key, value) gets identifier H(key) = k.

Space N = 16{0,---,15}
Five nodes a, b, c, d, e.
H(Fatemeh) = 12
H(Cosmin) = 2
(Seif) =9
(Sarunas) = 14
(

H
H
H(Tallat) = 4

Construct Chord - Step 3

» Where to store data?

» Use globally known hash function H.

» Each item (key, value) gets identifier H(key) = k.

» Store each item at its successor.

Space N = 16{0,---,15}
Five nodes a, b, c, d, e.
H(Fatemeh) = 12
H(Cosmin) = 2

H(Seif) = 9

H(Sarunas) = 14
H(Tallat) = 4

Construct Chord - Step 3

» Where to store data?

» Use globally known hash function H.

» Each item (key, value) gets identifier H(key) = k.
Space N = 16{0,---,15}
Five nodes a, b, c, d, e.
H(Fatemeh) = 12
H(Cosmin) = 2

H(Seif) = 9

H(Sarunas) = 14
H(Tallat) = 4

» Store each item at its successor.

I
How to Lookup?

» To lookup a key k:

« Calculate H(k).
e Follow succ pointers until item k is found.

How to Lookup?

» To lookup a key k:

« Calculate H(k).
¢ Follow succ pointers until item k is found.

» Example:
e Lookup Seif at node 2.
o H(Seif) =9

e Traverse nodes: 2, 5, 6, 11
e Return Stockholm to initiator

‘ Seif ‘ Stockholm \

Unstructured P2P Systems

NS
Unstructured P2P Systems

» Unstructured P2P systems attempt to maintain a random graph.

NS
Unstructured P2P Systems

» Unstructured P2P systems attempt to maintain a random graph.

» Basic principle: each node is required to contact a randomly selected
other node.

NS
Unstructured P2P Systems

» Unstructured P2P systems attempt to maintain a random graph.

» Basic principle: each node is required to contact a randomly selected
other node.

e Let each peer maintain a partial view of the network, consisting of ¢
other nodes.

e Each node P periodically selects a node @ from its partial view.

e P and @ exchange information and exchange members from their
respective partial views.

|
Unstructured P2P Systems

» Unstructured P2P systems attempt to maintain a random graph.

» Basic principle: each node is required to contact a randomly selected
other node.

e Let each peer maintain a partial view of the network, consisting of ¢
other nodes.

e Each node P periodically selects a node @ from its partial view.

e P and Q exchange information and exchange members from their
respective partial views.

» It turns out that, depending on the exchange, randomness, but also
robustness of the network can be maintained.

* Amir H. Payberah (Tehran Polytechnic) Architectures EETERREYED

Gossiping and Aggregation

BN
What is Gossiping?

Active thread Passive thread

BN
What is Gossiping?

Active thread Passive thread
selectPeer (&B);

» selectPeer: randomly select a neighbor from partial view.

BN
What is Gossiping?

Active thread Passive thread
selectPeer (&B);
selectToSend (&bufs) ;

» selectPeer: randomly select a neighbor from partial view.

» selectToSend: select s entries from local cache.

BN
What is Gossiping?

Active thread Passive thread

selectPeer (&B);

selectToSend (&bufs) ;

sendTo (B, bufs); receiveFromAny (&A, &bufr);

» selectPeer: randomly select a neighbor from partial view.
» selectToSend: select s entries from local cache.
» selectToKeep:

@ add received entries to local cache.
@ remove repeated items.
@ shrink cache to size ¢ (according to some strategy).

BN
What is Gossiping?

Active thread Passive thread

selectPeer (&B);

selectToSend (&bufs) ;

sendTo (B, bufs); receiveFromAny (&A, &bufr);

selectToSend (&bufs) ;

» selectPeer: randomly select a neighbor from partial view.
» selectToSend: select s entries from local cache.
» selectToKeep:

@ add received entries to local cache.
@ remove repeated items.
@ shrink cache to size ¢ (according to some strategy).

BN
What is Gossiping?

Active thread Passive thread

selectPeer (&B);

selectToSend (&bufs) ;

sendTo (B, bufs); receiveFromAny (&A, &bufr);
selectToSend (&bufs) ;

receiveFrom(B, &bufr); sendTo(A, bufs);

» selectPeer: randomly select a neighbor from partial view.
» selectToSend: select s entries from local cache.
» selectToKeep:

@ add received entries to local cache.
@ remove repeated items.
@ shrink cache to size ¢ (according to some strategy).

What is Gossiping?

Active thread
selectPeer (&B);
selectToSend (&bufs) ;
sendTo (B, bufs);

receiveFrom(B, &bufr);
selectToKeep(cache, bufr);

Passive thread

receiveFromAny (&A, &bufr);
selectToSend (&bufs) ;
sendTo(A, bufs);
selectToKeep(cache, bufr) ;

» selectPeer: randomly select a neighbor from partial view.

» selectToSend: select s entries from local cache.

» selectToKeep:

@ add received entries to local cache.

@ remove repeated items.

@ shrink cache to size ¢ (according to some strategy).

* Amir H. Payberah (Tehran Polytechnic) Architectures T

27 / 51

BN
Aggregation

» Aggregation provides a summary of some global system property.

BN
Aggregation

» Aggregation provides a summary of some global system property.

» It allows local access to global information.

BN
Aggregation

» Aggregation provides a summary of some global system property.
» It allows local access to global information.

» Examples of aggregation functions:
e The average load of nodes in a cluster.
e The sum of free space in a distributed storage.
e The total number of nodes in a P2P system.

Aggregation Example (1/5)

» Taking the average of the numbers in the nodes.

Aggregation Example (2/5)

» Taking the average of the numbers in the nodes.

Aggregation Example (3/5)

» Taking the average of the numbers in the nodes.

Aggregation Example (4/5)

» Taking the average of the numbers in the nodes.

Aggregation Example (5/5)

» Taking the average of the numbers in the nodes.

Gossiping-Based Peer Sampling

Gossip Protocols

» In a gossip protocol, each node in the system periodically exchanges
information with a subset of nodes.

Gossip Protocols

» In a gossip protocol, each node in the system periodically exchanges
information with a subset of nodes.

» The choice of this subset is crucial.

Gossip Protocols

» In a gossip protocol, each node in the system periodically exchanges
information with a subset of nodes.

» The choice of this subset is crucial.

> |deally, the nodes should be selected following a uniform random
sample of all nodes currently in the system.

Achieving a Uniform Random Sample

» Each node may be assumed to know every other node in the system.

Achieving a Uniform Random Sample

» Each node may be assumed to know every other node in the system.

» Providing each node with a complete membership table is unrealistic
in a large scale dynamic system.

BN
Peer Sampling

» An alternative solution.

BN
Peer Sampling

» An alternative solution.

» Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

BN
Peer Sampling

» An alternative solution.

» Every node maintains a relatively small local membership table that
provides a partial view on the complete set of nodes.

» Periodically refreshes the table using a gossiping procedure.

SN
Gossip-based Peer Sampling

» Unify partial view and local cache = exchange neighbors
Active thread Passive thread

Gossip-based Peer Sampling

» Unify partial view and local cache = exchange neighbors

Active thread
selectPeer (&B);

Passive thread

» selectPeer: randomly select a neighbor.

SN
Gossip-based Peer Sampling

» Unify partial view and local cache = exchange neighbors

Active thread Passive thread

selectPeer(&B);
selectToSend (&peers._s) ;

» selectPeer: randomly select a neighbor.

» selectToSend: select s references to neighbors.

-
Gossip-based Peer Sampling

» Unify partial view and local cache = exchange neighbors

Active thread Passive thread

selectPeer (&B);

selectToSend (&peers_s) ;

sendTo(B, peers._s); receiveFromAny (&A, &peers.r);

» selectPeer: randomly select a neighbor.

» selectToSend: select s references to neighbors.
» selectToKeep:

@ add received references to partial view.

@ remove repeated refs.

@ shrink view to size ¢ by randomly removing sent refs (but never
received ones).

* Amir H. Payberah (Tehran Polytechnic) Architectures etz % s

-
Gossip-based Peer Sampling

» Unify partial view and local cache = exchange neighbors

Active thread Passive thread

selectPeer (&B);

selectToSend (&peers_s) ;

sendTo(B, peers._s); receiveFromAny (&A, &peers.r);

selectToSend (&peers_s) ;

» selectPeer: randomly select a neighbor.

» selectToSend: select s references to neighbors.
» selectToKeep:

@ add received references to partial view.

@ remove repeated refs.

@ shrink view to size ¢ by randomly removing sent refs (but never
received ones).

* Amir H. Payberah (Tehran Polytechnic) Architectures etz % s

-
Gossip-based Peer Sampling

» Unify partial view and local cache = exchange neighbors

Active thread Passive thread

selectPeer (&B);

selectToSend (&peers_s) ;

sendTo(B, peers._s); receiveFromAny (&A, &peers.r);
selectToSend (&peers_s) ;

receiveFrom(B, &peers.r); sendTo (A, peers._s);

» selectPeer: randomly select a neighbor.

» selectToSend: select s references to neighbors.
» selectToKeep:

@ add received references to partial view.

@ remove repeated refs.

@ shrink view to size ¢ by randomly removing sent refs (but never
received ones).

* Amir H. Payberah (Tehran Polytechnic) Architectures e %

-
Gossip-based Peer Sampling

» Unify partial view and local cache = exchange neighbors

Active thread Passive thread

selectPeer (&B);

selectToSend (&peers_s) ;

sendTo(B, peers._s); receiveFromAny (&A, &peers.r);
selectToSend (&peers_s) ;

receiveFrom(B, &peers.r); sendTo (A, peers._s);

selectToKeep(pview, peers.r); selectToKeep(pview, peers.r);

» selectPeer: randomly select a neighbor.

» selectToSend: select s references to neighbors.
» selectToKeep:

@ add received references to partial view.

@ remove repeated refs.

@ shrink view to size ¢ by randomly removing sent refs (but never
received ones).

* Amir H. Payberah (Tehran Polytechnic) Architectures ez % s

Topology Management

NN
Topology Management of Overlay Networks (1/3)

» A protocol to construct and maintain any topology with the help of
a ranking function.

NN
Topology Management of Overlay Networks (1/3)

» A protocol to construct and maintain any topology with the help of
a ranking function.

» The ranking function orders any set of nodes according to their
desirability to be neighbors of a given node.

-
Topology Management of Overlay Networks (2/3)

» Distinguish two layers:
@ The lower layer: maintains random partial views in lowest layer
@ The upper layer: be selective on who you keep in higher-layer partial
view
» Lower layer feeds upper layer with random nodes; upper layer is
selective when it comes to keeping references.

Structured Protocol for ,_—4 Links to topology-
specific ——, specific other nodes
overlay overlay [~—~—_>

Random peer

Random Proctioco_l fo(; /4 Links to randomly
overlay randomize ———, chosen other nodes
view \

* Amir H. Payberah (Tehran Polytechnic) Architectures Y

Topology Management of Overlay Networks (3/3)

» Constructing a torus: consider a N x N grid.

» Keep only references to nearest neighbors in the upper layer:
e Line: d(a,b) =|a— b
e Ring: d(a, b) = min(N —|a— b|,|a— b]|)

Time

Amir H. Payberah (Tehran Polytechnic) Architectures 1393/11/28 42 /51

Hybrid P2P Systems

Superpeers

» Sometimes it helps to select a few nodes to do specific work:
superpeer.

Superpeers

» Sometimes it helps to select a few nodes to do specific work:

superpeer.
» Examples:

¢ Peers maintaining an index (for search)
e Peers monitoring the state of the network
e Peers being able to setup connections

Regular peer

Superpeer

Superpeer
network

* Amir H. Payberah (Tehran Polytechnic) Architectures T

44 / 51

Hybrid Architectures

Hybrid Architectures (1/2)

» Client-server combined with P2P

» Edge-server architectures, which are often used for Content
Delivery Networks (CDN)

Enterprise network

Hybrid Architectures (2/2)

» Example: Bittorrent

» Once a node has identified where to download a file from, it joins
a swarm of downloaders who in parallel get file chunks from the
source, but also distribute these chunks amongst each other.

Client node
K out of N nodes

Lookup(F) Node 1

A BitTorrent torrent file List of nodes ! Node 2
Webpage | Ref.to for F Ref.to | storing F
file tracker
Web server server File server Tracker

Node N

Summary

Summary

» Client-Server
e Application layers, e.g., two-tier, three-tier

» P2P

e Structured: DHT
e Unstructured: gossip, peer sampling, topology management
e Hybrid: superpeers

» Hybrid P2P and client-server: CDN + P2P

-
Reading

» Chapter 2 of the Distributed Systems: Principles and Paradigms.

» Stoica, lon, et al., Chord: a scalable peer-to-peer lookup protocol
for internet applications, Networking, IEEE/ACM Transactions on
11.1 (2003): 17-32.

» Jelasity, Mark, and Alberto Montresor, Epidemic-style proactive ag-
gregation in large overlay networks, Distributed Computing Systems,
2004. Proceedings. 24th International Conference on. |IEEE, 2004.

» Jelasity, Mark, et al., Gossip-based peer sampling, ACM Transac-
tions on Computer Systems (TOCS) 25.3 (2007): 8.

» Jelasity, Mark, and Ozalp Babaoglu., T-Man: Gossip-based over-
lay topology management, Engineering Self-Organising Systems.
Springer Berlin Heidelberg, 2006. 1-15.

* Amir H. Payberah (Tehran Polytechnic) Architectures etz 0 /st

Questions?

