
Communication (Part I)

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 1 / 63



Basic Networking Model

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 2 / 63



Internetworking

I An internetwork (internet (with a lowercase i)) is a network of com-
puter networks.

I Subnetwork refers to one of the networks composing an internet.

I An internet aims to hide the details of different physical networks,
to present a unified network architecture.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 3 / 63



Internetworking

I An internetwork (internet (with a lowercase i)) is a network of com-
puter networks.

I Subnetwork refers to one of the networks composing an internet.

I An internet aims to hide the details of different physical networks,
to present a unified network architecture.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 3 / 63



Internetworking

I An internetwork (internet (with a lowercase i)) is a network of com-
puter networks.

I Subnetwork refers to one of the networks composing an internet.

I An internet aims to hide the details of different physical networks,
to present a unified network architecture.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 3 / 63



The Internet

I TCP/IP has become the dominant protocol for the internetworking.

I The Internet (with an uppercase I) refers to the TCP/IP internet
that connects millions of computers globally.

I The first widespread implementation of TCP/IP appeared with
4.2BSD in 1983.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 4 / 63



The Internet

I TCP/IP has become the dominant protocol for the internetworking.

I The Internet (with an uppercase I) refers to the TCP/IP internet
that connects millions of computers globally.

I The first widespread implementation of TCP/IP appeared with
4.2BSD in 1983.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 4 / 63



The Internet

I TCP/IP has become the dominant protocol for the internetworking.

I The Internet (with an uppercase I) refers to the TCP/IP internet
that connects millions of computers globally.

I The first widespread implementation of TCP/IP appeared with
4.2BSD in 1983.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 4 / 63



Networking Protocols and Layers

I A networking protocol is a set of rules defining how information is
to be transmitted across a network.

I Networking protocols are generally organized as a series of layers.

I Each layer building on the layer below it to add features that are
made available to higher layers.

I Transparency: each protocol layer shields higher layers from the
operation and complexity of lower layers.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 5 / 63



Networking Protocols and Layers

I A networking protocol is a set of rules defining how information is
to be transmitted across a network.

I Networking protocols are generally organized as a series of layers.

I Each layer building on the layer below it to add features that are
made available to higher layers.

I Transparency: each protocol layer shields higher layers from the
operation and complexity of lower layers.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 5 / 63



Networking Protocols and Layers

I A networking protocol is a set of rules defining how information is
to be transmitted across a network.

I Networking protocols are generally organized as a series of layers.

I Each layer building on the layer below it to add features that are
made available to higher layers.

I Transparency: each protocol layer shields higher layers from the
operation and complexity of lower layers.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 5 / 63



Networking Protocols and Layers

I A networking protocol is a set of rules defining how information is
to be transmitted across a network.

I Networking protocols are generally organized as a series of layers.

I Each layer building on the layer below it to add features that are
made available to higher layers.

I Transparency: each protocol layer shields higher layers from the
operation and complexity of lower layers.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 5 / 63



TCP/IP Protocol Suite

I The TCP/IP protocol suite is a layered networking protocol.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 6 / 63



TCP/IP Protocol Layers

I Data-Link layer

I Network layer (IP)

I Transport layer (TCP, UDP)

I Application

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 7 / 63



Encapsulation

I Encapsulation: the information passed from a higher layer to a lower
layer is treated as opaque data by the lower layer.

• The lower layer does not interpret information from the upper layer.

I When data is passed up from a lower layer to a higher layer, a
converse unpacking process takes place.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 8 / 63



Encapsulation

I Encapsulation: the information passed from a higher layer to a lower
layer is treated as opaque data by the lower layer.

• The lower layer does not interpret information from the upper layer.

I When data is passed up from a lower layer to a higher layer, a
converse unpacking process takes place.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 8 / 63



Data-Link Layer (1/3)

I It is concerned with transferring data across a physical link in a
network.

I It consists of the device driver and the hardware interface (network
card) to the underlying physical medium, e.g., fiber-optic cable.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 9 / 63



Data-Link Layer (1/3)

I It is concerned with transferring data across a physical link in a
network.

I It consists of the device driver and the hardware interface (network
card) to the underlying physical medium, e.g., fiber-optic cable.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 9 / 63



Data-Link Layer (2/3)

I The data-link layer encapsulates datagrams from the network layer
into units, called frames.

I It also adds each frame a header containing the destination address
and frame size.

I The data-link layer transmits the frames across the physical link and
handles acknowledgements from the receiver.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 10 / 63



Data-Link Layer (2/3)

I The data-link layer encapsulates datagrams from the network layer
into units, called frames.

I It also adds each frame a header containing the destination address
and frame size.

I The data-link layer transmits the frames across the physical link and
handles acknowledgements from the receiver.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 10 / 63



Data-Link Layer (2/3)

I The data-link layer encapsulates datagrams from the network layer
into units, called frames.

I It also adds each frame a header containing the destination address
and frame size.

I The data-link layer transmits the frames across the physical link and
handles acknowledgements from the receiver.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 10 / 63



Data-Link Layer (3/3)

I From an application-programming point of view, we can generally
ignore the data-link layer, since all communication details are han-
dled in the driver and hardware.

I Maximum Transmission Unit (MTU): the upper limit that the layer
places on the size of a frame.

• data-link layers have different MTUs.

netstat -i

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 11 / 63



Data-Link Layer (3/3)

I From an application-programming point of view, we can generally
ignore the data-link layer, since all communication details are han-
dled in the driver and hardware.

I Maximum Transmission Unit (MTU): the upper limit that the layer
places on the size of a frame.

• data-link layers have different MTUs.

netstat -i

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 11 / 63



Network Layer (1/4)

I It is concerned with delivering data from the source host to the
destination host.

I It tasks include:
• Breaking data into fragments small enough for transmission via the

data-link layer.
• Routing data across the internet.
• Providing services to the transport layer.

I In the TCP/IP protocol suite, the principal protocol in the network
layer is IP.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 12 / 63



Network Layer (1/4)

I It is concerned with delivering data from the source host to the
destination host.

I It tasks include:
• Breaking data into fragments small enough for transmission via the

data-link layer.
• Routing data across the internet.
• Providing services to the transport layer.

I In the TCP/IP protocol suite, the principal protocol in the network
layer is IP.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 12 / 63



Network Layer (1/4)

I It is concerned with delivering data from the source host to the
destination host.

I It tasks include:
• Breaking data into fragments small enough for transmission via the

data-link layer.
• Routing data across the internet.
• Providing services to the transport layer.

I In the TCP/IP protocol suite, the principal protocol in the network
layer is IP.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 12 / 63



Network Layer (2/4)

I IP transmits data in the form of packets.

I Each packet sent between two hosts travels independently across
the network.

I An IP packet includes a header that contains the address of the
source and target hosts.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 13 / 63



Network Layer (2/4)

I IP transmits data in the form of packets.

I Each packet sent between two hosts travels independently across
the network.

I An IP packet includes a header that contains the address of the
source and target hosts.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 13 / 63



Network Layer (2/4)

I IP transmits data in the form of packets.

I Each packet sent between two hosts travels independently across
the network.

I An IP packet includes a header that contains the address of the
source and target hosts.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 13 / 63



Network Layer (3/4)

I IP is a connectionless protocol: it does not provide a virtual circuit
connecting two hosts.

I IP is an unreliable protocol: it makes a best effort to transmit data-
grams from the sender to the receiver, but it does not guarantee:

• that packets will arrive in the order they were transmitted,
• that they will not be duplicated,
• that they will arrive at all.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 14 / 63



Network Layer (3/4)

I IP is a connectionless protocol: it does not provide a virtual circuit
connecting two hosts.

I IP is an unreliable protocol: it makes a best effort to transmit data-
grams from the sender to the receiver, but it does not guarantee:

• that packets will arrive in the order they were transmitted,
• that they will not be duplicated,
• that they will arrive at all.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 14 / 63



Network Layer (4/4)

I An IP address consists of two parts:
• Network ID: specifies the network on which a host resides.
• Host ID: identifies the host within that network.

I An IPv4 address consists of 32 bits: 204.152.189.0/24
• loopback 127.0.0.1 refers to system on which process is running.

I Network mask: a sequence of 1s in the leftmost bits, followed by a
sequence of 0s

• The 1s indicate which part of the address contains the assigned
network ID.

• The 0s indicate which part of the address is available to assign as
host IDs.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 15 / 63



Network Layer (4/4)

I An IP address consists of two parts:
• Network ID: specifies the network on which a host resides.
• Host ID: identifies the host within that network.

I An IPv4 address consists of 32 bits: 204.152.189.0/24
• loopback 127.0.0.1 refers to system on which process is running.

I Network mask: a sequence of 1s in the leftmost bits, followed by a
sequence of 0s

• The 1s indicate which part of the address contains the assigned
network ID.

• The 0s indicate which part of the address is available to assign as
host IDs.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 15 / 63



Network Layer (4/4)

I An IP address consists of two parts:
• Network ID: specifies the network on which a host resides.
• Host ID: identifies the host within that network.

I An IPv4 address consists of 32 bits: 204.152.189.0/24
• loopback 127.0.0.1 refers to system on which process is running.

I Network mask: a sequence of 1s in the leftmost bits, followed by a
sequence of 0s

• The 1s indicate which part of the address contains the assigned
network ID.

• The 0s indicate which part of the address is available to assign as
host IDs.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 15 / 63



Transport Layer (1/5)

I Transport protocol provides an end-to-end communication service
to applications residing on different hosts.

I Two widely used transport-layer protocols in the TCP/IP suite:
• User Datagram Protocol (UDP): the protocol used for datagram

sockets.
• Transmission Control Protocol (TCP): the protocol used for stream

sockets.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 16 / 63



Transport Layer (1/5)

I Transport protocol provides an end-to-end communication service
to applications residing on different hosts.

I Two widely used transport-layer protocols in the TCP/IP suite:
• User Datagram Protocol (UDP): the protocol used for datagram

sockets.
• Transmission Control Protocol (TCP): the protocol used for stream

sockets.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 16 / 63



Transport Layer (2/5)

I Port: a method of differentiating the applications on a host.
• 16-bit number

• All ports below 1024 are well known, used for standard services,
e.g., http: 80, ssh: 22.

• Shown as 192.168.1.1:8080.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 17 / 63



Transport Layer (2/5)

I Port: a method of differentiating the applications on a host.
• 16-bit number
• All ports below 1024 are well known, used for standard services,

e.g., http: 80, ssh: 22.

• Shown as 192.168.1.1:8080.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 17 / 63



Transport Layer (2/5)

I Port: a method of differentiating the applications on a host.
• 16-bit number
• All ports below 1024 are well known, used for standard services,

e.g., http: 80, ssh: 22.
• Shown as 192.168.1.1:8080.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 17 / 63



Transport Layer (3/5)

I UDP, like IP, is connectionless and unreliable.

I If an application layered on top of UDP requires reliability, then this
must be implemented within the application.

I UDP adds just two features to IP:
• Port number
• Data checksum to allow the detection of errors in the transmitted

data.

[http://www.tamos.net/∼rhay/overhead/ip-packet-overhead.htm]

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 18 / 63



Transport Layer (3/5)

I UDP, like IP, is connectionless and unreliable.

I If an application layered on top of UDP requires reliability, then this
must be implemented within the application.

I UDP adds just two features to IP:
• Port number
• Data checksum to allow the detection of errors in the transmitted

data.

[http://www.tamos.net/∼rhay/overhead/ip-packet-overhead.htm]

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 18 / 63



Transport Layer (3/5)

I UDP, like IP, is connectionless and unreliable.

I If an application layered on top of UDP requires reliability, then this
must be implemented within the application.

I UDP adds just two features to IP:
• Port number
• Data checksum to allow the detection of errors in the transmitted

data.

[http://www.tamos.net/∼rhay/overhead/ip-packet-overhead.htm]

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 18 / 63



Transport Layer (4/5)

I TCP provides a reliable, connection-oriented, bidirectional, byte-
stream communication channel between two endpoints.

I Before communication can commence, TCP establishes a commu-
nication channel between the two endpoints.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 19 / 63



Transport Layer (4/5)

I TCP provides a reliable, connection-oriented, bidirectional, byte-
stream communication channel between two endpoints.

I Before communication can commence, TCP establishes a commu-
nication channel between the two endpoints.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 19 / 63



Transport Layer (5/5)

I In TCP, data is broken into segments: each is transmitted in a single
IP packet.

I When a destination receives a TCP segment, it sends an ack. to
the sender, informing weather it received the segment correctly or
not.

I Other features of TCP:
• Sequencing
• Flow control
• Congestion control

[http://www.tamos.net/∼rhay/overhead/ip-packet-overhead.htm]

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 20 / 63



Transport Layer (5/5)

I In TCP, data is broken into segments: each is transmitted in a single
IP packet.

I When a destination receives a TCP segment, it sends an ack. to
the sender, informing weather it received the segment correctly or
not.

I Other features of TCP:
• Sequencing
• Flow control
• Congestion control

[http://www.tamos.net/∼rhay/overhead/ip-packet-overhead.htm]

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 20 / 63



Transport Layer (5/5)

I In TCP, data is broken into segments: each is transmitted in a single
IP packet.

I When a destination receives a TCP segment, it sends an ack. to
the sender, informing weather it received the segment correctly or
not.

I Other features of TCP:
• Sequencing
• Flow control
• Congestion control

[http://www.tamos.net/∼rhay/overhead/ip-packet-overhead.htm]

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 20 / 63



Socket Programming

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 21 / 63



Socket

I A socket is defined as an endpoint for communication.

I A typical client-server scenario:
• Each process creates a socket: both processes require one.
• The server binds its socket to a well-known address (name) so that

clients can locate it.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 22 / 63



Socket

I A socket is defined as an endpoint for communication.

I A typical client-server scenario:
• Each process creates a socket: both processes require one.
• The server binds its socket to a well-known address (name) so that

clients can locate it.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 22 / 63



TCP Socket

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 23 / 63



TCP Server

I Setting up a server process requires five steps:
1 Create a ServerSocket object.
2 Put the server into a waiting state.
3 Set up input and output streams.
4 Send and receive data.
5 Close the connection.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 24 / 63



Setting up a TCP Server Process (1/5)

I Create a ServerSocket object.

I The ServerSocket constructor requires a port number as an argu-
ment.

ServerSocket serverSocket = new ServerSocket(1234);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 25 / 63



Setting up a TCP Server Process (2/5)

I Put the server into a waiting state.

I The server blocks for a client to connect, by calling accept.

I It returns a Socket object when a connection is made.

Socket link = serverSocket.accept();

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 26 / 63



Setting up a TCP Server Process (3/5)

I Set up input and output streams.

I Methods getInputStream and getOutputStream to get references
to streams associated with the socket returned in step 2.

I These streams will be used for communication with the client that
has just made connection.

Scanner input = new Scanner(link.getInputStream());

PrintWriter output = new PrintWriter(link.getOutputStream(),true);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 27 / 63



Setting up a TCP Server Process (4/5)

I Send and receive data using the Scanner and PrintWriter objects.

Scanner input = new Scanner(link.getInputStream());

String input = input.nextLine();

PrintWriter output = new PrintWriter(link.getOutputStream(),true);

output.println("data");

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 28 / 63



Setting up a TCP Server Process (5/5)

I This is achieved via method close of class Socket.

link.close();

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 29 / 63



TCP Server Example (1/2)

public class TCPEchoServer {

private static ServerSocket serverSocket;

private static final int PORT = 1234;

public static void main(String[] args) {

try {

serverSocket = new ServerSocket(PORT); //Step 1.

} catch(IOException ioEx) { ... }

do {

handleClient();

} while (true);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 30 / 63



TCP Server Example (2/2)

private static void handleClient() {

Socket link = null; //Step 2.

try {

link = serverSocket.accept(); //Step 2.

Scanner input = new Scanner(link.getInputStream()); //Step 3.

PrintWriter output = new PrintWriter(link.getOutputStream(),true); //Step 3.

String message = input.nextLine(); //Step 4.

while (!message.equals("CLOSE")) {

System.out.println("Message received.");

output.println("Echo message: " + message); //Step 4.

message = input.nextLine();

}

} catch(IOException ioEx) { ... }

finally {

try {

link.close(); //Step 5.

} catch(IOException ioEx) { ... }

}

}

}

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 31 / 63



TCP Client

I Setting up a client process requires four steps:
1 Establish a connection to the server.
2 Set up input and output streams.
3 Send and receive data.
4 Close the connection.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 32 / 63



Setting up a TCP Client Process (1/4)

I Establish a connection to the server.

I Create a Socket object: supplying it with the server IP address and
a port number for the service.

Socket link = new Socket(InetAddress.getLocalHost(), 1234);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 33 / 63



Setting up a TCP Client Process (2/4)

I These are set up in exactly the same way as the server streams were
set up.

I Calling methods getInputStream and getOutputStream of the
Socket object.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 34 / 63



Setting up a TCP Client Process (3/4)

I Send and receive data.

I The Scanner object at the client end will receive messages sent by
the PrintWriter object at the server end.

I The PrintWriter object at the client end will send messages that
are received by the Scanner object at the server end.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 35 / 63



Setting up a TCP Client Process (4/4)

I Close the connection.

I This is exactly the same as for the server process.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 36 / 63



TCP Client Example (1/2)

public class TCPEchoClient {

private static InetAddress host;

private static final int PORT = 1234;

public static void main(String[] args) {

try {

host = InetAddress.getLocalHost();

} catch(UnknownHostException uhEx) { ... }

accessServer();

}

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 37 / 63



TCP Client Example (2/2)

private static void accessServer() {

Socket link = null; //Step 1.

try {

link = new Socket(host,PORT); //Step 1.

Scanner input = new Scanner(link.getInputStream()); //Step 2.

PrintWriter output = new PrintWriter(link.getOutputStream(),true); //Step 2.

Scanner userEntry = new Scanner(System.in);

String message, response;

do {

message = userEntry.nextLine();

output.println(message); //Step 3.

response = input.nextLine(); //Step 3.

System.out.println("\nSERVER> " + response);

} while (!message.equals("CLOSE"));

} catch(IOException ioEx) { ... }

finally {

try {

link.close(); //Step 4.

} catch(IOException ioEx) { ... }

}

}

}Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 38 / 63



UDP Socket

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 39 / 63



UDP Server

I Setting up a server process requires nine steps:
1 Create a DatagramSocket object.
2 Create a buffer for incoming datagrams.
3 Create a DatagramPacket object for the incoming datagrams.
4 Accept an incoming datagram.
5 Accept the sender’s address and port from the packet.
6 Retrieve the data from the buffer.
7 Create the response datagram socket.
8 Send the response datagram.
9 Close the DatagramSocket.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 40 / 63



Setting up a UDP Server Process (1/9)

I Create a DatagramSocket object.

I Supplying the object’s constructor with the port number.

DatagramSocket datagramSocket = new DatagramSocket(1234);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 41 / 63



Setting up a UDP Server Process (2/9)

I Create a buffer for incoming datagrams.

I This is achieved by creating an array of bytes.

byte[] buffer = new byte[256];

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 42 / 63



Setting up a UDP Server Process (3/9)

I Create a DatagramPacket object for the incoming datagrams.

I The constructor for this object requires the previously-created byte
array and its size.

DatagramPacket inPacket = new DatagramPacket(buffer, buffer.length);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 43 / 63



Setting up a UDP Server Process (4/9)

I Accept an incoming datagram.

I This is effected via the receive method.

datagramSocket.receive(inPacket);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 44 / 63



Setting up a UDP Server Process (5/9)

I Accept the sender’s address and port from the packet.

I Methods getAddress and getPort are used for this.

InetAddress clientAddress = inPacket.getAddress();

int clientPort = inPacket.getPort();

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 45 / 63



Setting up a UDP Server Process (6/9)

I Retrieve the data from the buffer.

I The data will be retrieved as a strin, using a String constructor
that takes three arguments:

• A byte array
• The start position within the array
• The number of byte

String message = new String(inPacket.getData(), 0, inPacket.getLength());

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 46 / 63



Setting up a UDP Server Process (7/9)

I Create the response datagram.

I Create a DatagramPacket object, using the constructor that takes
four arguments:

• Te byte array containing the response message
• The size of the response
• The client’s address
• The client’s port number

DatagramPacket outPacket = new DatagramPacket(response.getBytes(),

response.length(), clientAddress, clientPort);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 47 / 63



Setting up a UDP Server Process (8/9)

I Send the response datagram.

I By calling method send.

datagramSocket.send(outPacket);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 48 / 63



Setting up a UDP Server Process (9/9)

I Close the DatagramSocket.

I By calling method close.

datagramSocket.close();

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 49 / 63



UDP Server Example (1/2)

public class UDPEchoServer {

private static fi nal int PORT = 1234;

private static DatagramSocket datagramSocket;

private static DatagramPacket inPacket, outPacket;

private static byte[] buffer;

public static void main(String[] args) {

try {

datagramSocket = new DatagramSocket(PORT); //Step 1.

} catch(SocketException sockEx) { ... }

handleClient();

}

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 50 / 63



UDP Server Example (2/2)
private static void handleClient() {

try {

String messageIn, messageOut;

InetAddress clientAddress = null;

int clientPort;

do {

buffer = new byte[256]; //Step 2.

inPacket = new DatagramPacket(buffer, buffer.length); //Step 3.

datagramSocket.receive(inPacket); //Step 4.

clientAddress = inPacket.getAddress(); //Step 5.

clientPort = inPacket.getPort(); //Step 5.

messageIn = new String(inPacket.getData(), 0,

inPacket.getLength()); //Step 6.

messageOut = "Message";

outPacket = new DatagramPacket(messageOut.getBytes(),

messageOut.length(), clientAddress, clientPort); //Step 7.

datagramSocket.send(outPacket); //Step 8.

} while (true);

} catch(IOException ioEx) { ... }

finally {

datagramSocket.close(); //Step 9.

}

}

}

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 51 / 63



UDP Client

I Setting up a server process requires eight steps:
1 Create a DatagramSocket object.
2 Create the outgoing datagram.
3 Send the datagram message.
4 Create a buffer for incoming datagrams.
5 Create a DatagramPacket object for the incoming datagrams.
6 Accept an incoming datagram.
7 Retrieve the data from the buffer.
8 Close the DatagramSocket.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 52 / 63



Setting up a UDP Client Process (1/8)

I Create a DatagramSocket object.

I Similar to the creation of a DatagramSocket object in the server
program, but the constructor here requires no argument.

DatagramSocket datagramSocket = new DatagramSocket();

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 53 / 63



Setting up a UDP Client Process (2/8)

I Create the outgoing datagram.

I This step is exactly as for step 7 of the server program.

DatagramPacket outPacket = new DatagramPacket(message.getBytes(),

message.length(), host, PORT);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 54 / 63



Setting up a UDP Client Process (3/8)

I Send the datagram message.

I By calling method send.

datagramSocket.send(outPacket);

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 55 / 63



Setting up a UDP Client Process (4-6/8)

I Exactly the same as steps 2-4 of the server procedure.
• Create a buffer for incoming datagrams.
• Create a DatagramPacket object for the incoming datagrams.
• Accept an incoming datagram.

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 56 / 63



Setting up a UDP Client Process (7/8)

I Retrieve the data from the buffer.

I This is the same as step 6 in the server program.

String response = new String(inPacket.getData(), 0,

inPacket.getLength());

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 57 / 63



Setting up a UDP Client Process (8/8)

I Close the DatagramSocket.

I By calling method close.

datagramSocket.close();

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 58 / 63



UDP Client Example (1/2)

public class UDPEchoClient {

private static InetAddress host;

private static fi nal int PORT = 1234;

private static DatagramSocket datagramSocket;

private static DatagramPacket inPacket, outPacket;

private static byte[] buffer;

public static void main(String[] args) {

try {

host = InetAddress.getLocalHost();

} catch(UnknownHostException uhEx) { ... }

accessServer();

}

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 59 / 63



UDP Client Example (2/2)
private static void accessServer() {

try {

datagramSocket = new DatagramSocket(); //Step 1

Scanner userEntry = new Scanner(System.in);

String message = "", response = "";

do {

message = userEntry.nextLine();

if (!message.equals("CLOSE")) {

outPacket = new DatagramPacket(message.getBytes(),

message.length(), host, PORT); //Step 2

datagramSocket.send(outPacket); //Step 3

buffer = new byte[256]; //Step 4

inPacket = new DatagramPacket(buffer, buffer.length); //Step 5.

datagramSocket.receive(inPacket); //Step 6

response = new String(inPacket.getData(), 0,

inPacket.getLength()); //Step 7.

}

} while (!message.equals("CLOSE"));

} catch(IOException ioEx) { ... }

finally {

datagramSocket.close(); //Step 8.

}

}

}

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 60 / 63



Summary

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 61 / 63



Summary

I TCP-IP protocol layers: data-link, network, transport, application

I Data-link: network card

I Network layer: routing, IP, 32-bit address, 16-bit port

I Transport layer: TCP (stream, connection-oriented), UDP (data-
gram, connectionless)

I Sockets

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 62 / 63



Questions?

Amir H. Payberah (Tehran Polytechnic) Communication 1393/12/12 63 / 63


