
Fault Tolerance

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Based on slides by Maarten Van Steen

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 1 / 46

What is the problem?

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 2 / 46

Dependability

I A component provides a services to a clients.

I To provide services, a component may require the services from
other components.

I A component C depends on C ∗ if the correctness of C ’s behavior
depends on the correctness of C ∗’s behavior.

I Components are processes or channels.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 3 / 46

Dependability

I A component provides a services to a clients.

I To provide services, a component may require the services from
other components.

I A component C depends on C ∗ if the correctness of C ’s behavior
depends on the correctness of C ∗’s behavior.

I Components are processes or channels.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 3 / 46

Dependability

I A component provides a services to a clients.

I To provide services, a component may require the services from
other components.

I A component C depends on C ∗ if the correctness of C ’s behavior
depends on the correctness of C ∗’s behavior.

I Components are processes or channels.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 3 / 46

Dependability

I A component provides a services to a clients.

I To provide services, a component may require the services from
other components.

I A component C depends on C ∗ if the correctness of C ’s behavior
depends on the correctness of C ∗’s behavior.

I Components are processes or channels.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 3 / 46

Terminology - Subtle Differences

I Failure: when a component is not living up to its specifications, a
failure occurs.

I Error: that part of a component’s state that can lead to a failure.

I Fault: the cause of an error.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 4 / 46

Terminology - What To Do About Faults

I Fault prevention: prevent the occurrence of a fault.

I Fault tolerance: build a component such that it can mask the pres-
ence of faults.

I Fault removal: reduce presence, number, seriousness of faults.

I Fault forecasting: estimate present number, future incidence, and
consequences of faults.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 5 / 46

Terminology - Failure Models

I Crash failures: component halts, but behaves correctly before halt-
ing.

I Omission failures: component fails to respond.

I Timing failures: output is correct, but lies outside a specified real-
time interval.

I Response failures: output is incorrect, e.g., wrong value is produced.

I Arbitrary failures: component produces arbitrary output and be sub-
ject to arbitrary timing failures.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 6 / 46

Crash Failures (1/2)

I Clients cannot distinguish between a crashed component and one
that is just a bit slow.

I Consider a server from which a client is expecting output:
• Is the server perhaps exhibiting timing or omission failures?
• Is the channel between client and server faulty?

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 7 / 46

Crash Failures (2/2)

I Assumptions we can make:

• Fail-silent: the component exhibits omission or crash failures; clients
cannot tell what went wrong.

• Fail-stop: the component exhibits crash failures, but its failure can
be detected.

• Fail-safe: the component exhibits arbitrary, but they can’t do any
harm.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 8 / 46

Process Resilience

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 9 / 46

Process Resilience (1/2)

I Protect yourself against faulty processes by replicating and distribut-
ing computations in a group. implement.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 10 / 46

Process Resilience (2/2)

I Flat groups: good for fault tolerance as information exchange imme-
diately occurs with all group members; however, may impose more
overhead as control is completely distributed.

I Hierarchical groups: all communication through a single coordina-
tor ⇒ not really fault tolerant and scalable, but relatively easy to
implement.

(a) (b)

Flat group Hierarchical group Coordinator

Worker

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 11 / 46

Process Resilience (2/2)

I Flat groups: good for fault tolerance as information exchange imme-
diately occurs with all group members; however, may impose more
overhead as control is completely distributed.

I Hierarchical groups: all communication through a single coordina-
tor ⇒ not really fault tolerant and scalable, but relatively easy to
implement.

(a) (b)

Flat group Hierarchical group Coordinator

Worker

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 11 / 46

Groups and Failure Masking (1/4)

I K-fault tolerant group: when a group can mask any k concurrent
member failures (k is called degree of fault tolerance).

I Assumption: all members are identical, and process all input in the
same order.

I How large does a k-fault tolerant group need to be?

• In crash failure semantics ⇒ a total of k + 1 members are needed
to survive k member failures.

• What about in arbitrary failure semantics? the group output defined
by voting.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 12 / 46

Groups and Failure Masking (1/4)

I K-fault tolerant group: when a group can mask any k concurrent
member failures (k is called degree of fault tolerance).

I Assumption: all members are identical, and process all input in the
same order.

I How large does a k-fault tolerant group need to be?

• In crash failure semantics ⇒ a total of k + 1 members are needed
to survive k member failures.

• What about in arbitrary failure semantics? the group output defined
by voting.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 12 / 46

Groups and Failure Masking (1/4)

I K-fault tolerant group: when a group can mask any k concurrent
member failures (k is called degree of fault tolerance).

I Assumption: all members are identical, and process all input in the
same order.

I How large does a k-fault tolerant group need to be?

• In crash failure semantics ⇒ a total of k + 1 members are needed
to survive k member failures.

• What about in arbitrary failure semantics? the group output defined
by voting.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 12 / 46

Groups and Failure Masking (1/4)

I K-fault tolerant group: when a group can mask any k concurrent
member failures (k is called degree of fault tolerance).

I Assumption: all members are identical, and process all input in the
same order.

I How large does a k-fault tolerant group need to be?
• In crash failure semantics ⇒ a total of k + 1 members are needed

to survive k member failures.

• What about in arbitrary failure semantics? the group output defined
by voting.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 12 / 46

Groups and Failure Masking (1/4)

I K-fault tolerant group: when a group can mask any k concurrent
member failures (k is called degree of fault tolerance).

I Assumption: all members are identical, and process all input in the
same order.

I How large does a k-fault tolerant group need to be?
• In crash failure semantics ⇒ a total of k + 1 members are needed

to survive k member failures.
• What about in arbitrary failure semantics? the group output defined

by voting.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 12 / 46

Groups and Failure Masking (2/4)

I (a) What they send to each other.

I (b) What each one got from the other.

I (c) What each one got in the second step.

1

23

1
21

x

y

2

1
2
3

Got(
Got(
Got(

1, 2, x
1, 2, y
1, 2, 3

)
)
)

1 Got 2 Got
((
((
1, 1,
a, d,

2, 2,
b, e,

y x
c f

))
))

(a)

(b) (c)

Faulty process

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 13 / 46

Groups and Failure Masking (3/4)

I (a) What they send to each other.

I (b) What each one got from the other.

I (c) What each one got in the second step.

1 2

3 4

1

2

2 4

z

4
1 x

1

4

y

2

1
2
3
4

Got(
Got(
Got(
Got(

1, 2, x, 4
1, 2, y, 4
1, 2, 3, 4
1, 2, z, 4

)
)
)
)

1 Got 2 Got 4 Got
(((
(((
(((

1, 1, 1,
a, e, 1,
1, 1, i,

2, 2, 2,
b, f, 2,
2, 2, j,

y, x, x,
c, g, y,
z, z, k,

4 4 4
d h 4
4 4 l

)))
)))
)))

(a)

(b) (c)

Faulty process

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 14 / 46

Groups and Failure Masking (4/4)

I In a system with K faulty processes, agreement can be achieved
only if 2K + 1 correctly functioning processes are present.

I Agreement is possible only if more than two-thirds of the processes
are working properly: to achieve a majority vote among a group of
nonfaulty processes.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 15 / 46

Failure Detection

I We detect failures through timeout mechanisms.

I Setting timeouts properly is very difficult:
• You cannot distinguish process failures from network failures.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 16 / 46

Reliable Communication

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 17 / 46

Reliable Communication

I Client-Server communication

I Group communication

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 18 / 46

Client-Server Communication

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 19 / 46

Reliable Communication

I Concentrated on process resilience (by means of process groups).

I What about reliable communication channels?

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 20 / 46

Reliable RPC (1/6)

I RPC communication - what can go wrong?
1 Client cannot locate server
2 Client request is lost
3 Server crashes
4 Server response is lost
5 Client crashes

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 21 / 46

Reliable RPC (2/6)

I Problem: client cannot locate server.

I Solution: report back to client.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 22 / 46

Reliable RPC (3/6)

I Problem: client request is lost.

I Solution: resend message.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 23 / 46

Reliable RPC (4/6)

I Problem: server crashes.

I It is hard as you don’t know what it had already done.

Receive Receive Receive
Execute Execute Crash
Reply Crash

REQ REQ REQ

REP No REP No REP

ServerServerServer

(a) (b) (c)

I We need to decide on what we expect from the server:
• At-least-once-semantics: the server guarantees it will carry out an

operation at least once, no matter what.
• At-most-once-semantics: the server guarantees it will carry out an

operation at most once.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 24 / 46

Reliable RPC (4/6)

I Problem: server crashes.

I It is hard as you don’t know what it had already done.

Receive Receive Receive
Execute Execute Crash
Reply Crash

REQ REQ REQ

REP No REP No REP

ServerServerServer

(a) (b) (c)

I We need to decide on what we expect from the server:
• At-least-once-semantics: the server guarantees it will carry out an

operation at least once, no matter what.
• At-most-once-semantics: the server guarantees it will carry out an

operation at most once.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 24 / 46

Reliable RPC (5/6)

I Problem: server response is lost.

I Detecting lost replies can be hard, because it can also be that the
server had crashed. You don’t know whether the server has carried
out the operation.

I Solution: none, except that you can try to make your operations
idempotent: repeatable without any harm done if it happened to be
carried out before.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 25 / 46

Reliable RPC (6/6)

I Problem: client crashes.

I The server is doing work and holding resources for nothing (called
doing an orphan computation).

I Solution:
• Orphan is killed (or rolled back) by client when it reboots.
• Broadcast new epoch number when recovering ⇒ servers kill

orphans
• Require computations to complete in a T time units. Old ones are

simply removed.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 26 / 46

Group Communication

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 27 / 46

Reliable Multicasting (1/2)

I We have a multicast channel c with two groups:
• SND(c): the sender group of processes that submit messages to

channel c .
• RCV (c): the receiver group of processes that can receive messages

from channel c .

I Simple reliability: if process P ∈ RCV (c) at the time message m
was submitted to c , and P does not leave RCV (c), m should be
delivered to P.

I Atomic multicast: how can we ensure that a message m submitted to
channel c is delivered to process P ∈ RCV (c) only if m is delivered
to all members of RCV (c).

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 28 / 46

Reliable Multicasting (1/2)

I We have a multicast channel c with two groups:
• SND(c): the sender group of processes that submit messages to

channel c .
• RCV (c): the receiver group of processes that can receive messages

from channel c .

I Simple reliability: if process P ∈ RCV (c) at the time message m
was submitted to c , and P does not leave RCV (c), m should be
delivered to P.

I Atomic multicast: how can we ensure that a message m submitted to
channel c is delivered to process P ∈ RCV (c) only if m is delivered
to all members of RCV (c).

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 28 / 46

Reliable Multicasting (1/2)

I We have a multicast channel c with two groups:
• SND(c): the sender group of processes that submit messages to

channel c .
• RCV (c): the receiver group of processes that can receive messages

from channel c .

I Simple reliability: if process P ∈ RCV (c) at the time message m
was submitted to c , and P does not leave RCV (c), m should be
delivered to P.

I Atomic multicast: how can we ensure that a message m submitted to
channel c is delivered to process P ∈ RCV (c) only if m is delivered
to all members of RCV (c).

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 28 / 46

Reliable Multicasting (2/2)

I Let the sender log messages submitted to channel c:
• If P sends message m, m is stored in a history buffer.
• Each receiver acknowledges the receipt of m, or requests retransmis-

sion at P when noticing message lost.
• Sender P removes m from history buffer when everyone has acknowl-

edged receipt.

I Why doesn’t this scale?
• If RCV (c) is large, P will be swamped with feedback (ACKs and

NACKs).
• Sender P has to know all members of RCV (c).

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 29 / 46

Reliable Multicasting (2/2)

I Let the sender log messages submitted to channel c:
• If P sends message m, m is stored in a history buffer.
• Each receiver acknowledges the receipt of m, or requests retransmis-

sion at P when noticing message lost.
• Sender P removes m from history buffer when everyone has acknowl-

edged receipt.

I Why doesn’t this scale?
• If RCV (c) is large, P will be swamped with feedback (ACKs and

NACKs).
• Sender P has to know all members of RCV (c).

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 29 / 46

Scalable Reliable Multicasting

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 30 / 46

Scalable Reliable Multicasting

I Feedback suppression

I Hierarchical solutions

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 31 / 46

Feedback Suppression (1/2)

I Basic idea: let a process P suppress its own feedback when it notices
another process Q is already asking for a retransmission.

I Assumptions:
• All receivers listen to a common feedback channel to which

feedback messages are submitted.
• Process P schedules its own feedback message randomly, and

suppresses it when observing another feedback message.

NACK

NACK

NACK NACK NACK
T=3 T=4 T=1 T=2

Sender Receiver Receiver Receiver Receiver

Network

Receivers suppress their feedbackSender receives
only one NACK

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 32 / 46

Feedback Suppression (1/2)

I Basic idea: let a process P suppress its own feedback when it notices
another process Q is already asking for a retransmission.

I Assumptions:
• All receivers listen to a common feedback channel to which

feedback messages are submitted.
• Process P schedules its own feedback message randomly, and

suppresses it when observing another feedback message.

NACK

NACK

NACK NACK NACK
T=3 T=4 T=1 T=2

Sender Receiver Receiver Receiver Receiver

Network

Receivers suppress their feedbackSender receives
only one NACK

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 32 / 46

Feedback Suppression (2/2)

I Why is the random schedule so important? random schedule needed
to ensure that only one feedback message is eventually sent.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 33 / 46

Hierarchical Solutions (1/2)

I Basic idea: construct a hierarchical feedback channel in which all
submitted messages are sent only to the root.

I Intermediate nodes aggregate feedback messages before passing
them on.

I Intermediate nodes can easily be used for retransmission purposes.

C
C

S

(Long-haul) connection
Sender

Coordinator

Root
R

Receiver

Local-area network

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 34 / 46

Hierarchical Solutions (2/2)

I What’s the main problem with this solution? dynamically construct-
ing the hierarchical feedback channel is the main problem.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 35 / 46

Atomic Multicast

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 36 / 46

Receiving vs. Delivering

I The logical organization of a distributed system to distinguish be-
tween message receipt and message delivery.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 37 / 46

Atomic Multicast

I A message is delivered only to the nonfaulty members of the current
group.

I All members should agree on the current group membership: virtu-
ally synchronous multicast.

I We consider views V ⊆ RCV (c) ∪ SND(c).

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 38 / 46

Virtual Synchrony

I Suppose the message m is multicast at the time its sender has group
view G .

I Assume that while the multicast is taking place, another process
joins or leaves the group.

• The group membership change is announced to all processes in G :
by multicasting a message vc .

I We now have two multicast messages simultaneously in transit: m
and vc .

I We need to guarantee is that m is either delivered to all processes
in G before each one of them is delivered message vc , or m is not
delivered at all.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 39 / 46

Virtual Synchrony

I Suppose the message m is multicast at the time its sender has group
view G .

I Assume that while the multicast is taking place, another process
joins or leaves the group.

• The group membership change is announced to all processes in G :
by multicasting a message vc .

I We now have two multicast messages simultaneously in transit: m
and vc .

I We need to guarantee is that m is either delivered to all processes
in G before each one of them is delivered message vc , or m is not
delivered at all.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 39 / 46

Virtual Synchrony

I Suppose the message m is multicast at the time its sender has group
view G .

I Assume that while the multicast is taking place, another process
joins or leaves the group.

• The group membership change is announced to all processes in G :
by multicasting a message vc .

I We now have two multicast messages simultaneously in transit: m
and vc .

I We need to guarantee is that m is either delivered to all processes
in G before each one of them is delivered message vc , or m is not
delivered at all.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 39 / 46

Virtual Synchrony

I Suppose the message m is multicast at the time its sender has group
view G .

I Assume that while the multicast is taking place, another process
joins or leaves the group.

• The group membership change is announced to all processes in G :
by multicasting a message vc .

I We now have two multicast messages simultaneously in transit: m
and vc .

I We need to guarantee is that m is either delivered to all processes
in G before each one of them is delivered message vc , or m is not
delivered at all.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 39 / 46

Virtual Synchrony

I Suppose the message m is multicast at the time its sender has group
view G .

I Assume that while the multicast is taking place, another process
joins or leaves the group.

• The group membership change is announced to all processes in G :
by multicasting a message vc .

I We now have two multicast messages simultaneously in transit: m
and vc .

I We need to guarantee is that m is either delivered to all processes
in G before each one of them is delivered message vc , or m is not
delivered at all.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 39 / 46

Virtual Synchrony - Implementation (1/3)

I How to guarantee that all messages sent to view G are delivered
to all nonfaulty processes in G before the next group membership
change takes place.

I Make sure that each process in G has received all messages that
were sent to G .

I Because the sender of a message m to G may have failed before
completing its multicast, there may be processes in G that will never
receive m.

• Because the sender has crashed, these processes should get m from
somewhere else.

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 40 / 46

Virtual Synchrony - Implementation (1/3)

I How to guarantee that all messages sent to view G are delivered
to all nonfaulty processes in G before the next group membership
change takes place.

I Make sure that each process in G has received all messages that
were sent to G .

I Because the sender of a message m to G may have failed before
completing its multicast, there may be processes in G that will never
receive m.

• Because the sender has crashed, these processes should get m from
somewhere else.

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 40 / 46

Virtual Synchrony - Implementation (1/3)

I How to guarantee that all messages sent to view G are delivered
to all nonfaulty processes in G before the next group membership
change takes place.

I Make sure that each process in G has received all messages that
were sent to G .

I Because the sender of a message m to G may have failed before
completing its multicast, there may be processes in G that will never
receive m.

• Because the sender has crashed, these processes should get m from
somewhere else.

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 40 / 46

Virtual Synchrony - Implementation (1/3)

I How to guarantee that all messages sent to view G are delivered
to all nonfaulty processes in G before the next group membership
change takes place.

I Make sure that each process in G has received all messages that
were sent to G .

I Because the sender of a message m to G may have failed before
completing its multicast, there may be processes in G that will never
receive m.

• Because the sender has crashed, these processes should get m from
somewhere else.

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 40 / 46

Virtual Synchrony - Implementation (2/3)

I Solution: let every process in G keep m until it knows for sure that
all members in G have received it.

I If m has been received by all members in G , m is said to be stable.

I Only stable messages are allowed to be delivered.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 41 / 46

Virtual Synchrony - Implementation (3/3)

I (a) 4 notices that 7 has crashed and sends a view change.

I (b) 6 sends out all its unstable messages, followed by a flush mes-
sage.

I (c) 6 installs the new view when it has received a flush message
from everyone else.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 42 / 46

Virtual Synchrony - Implementation (3/3)

I (a) 4 notices that 7 has crashed and sends a view change.

I (b) 6 sends out all its unstable messages, followed by a flush mes-
sage.

I (c) 6 installs the new view when it has received a flush message
from everyone else.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 42 / 46

Virtual Synchrony - Implementation (3/3)

I (a) 4 notices that 7 has crashed and sends a view change.

I (b) 6 sends out all its unstable messages, followed by a flush mes-
sage.

I (c) 6 installs the new view when it has received a flush message
from everyone else.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 42 / 46

Summary

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 43 / 46

Summary

I Failure

I Failure models: crash, omission, timing, response, arbitrary

I Crash failure: fail-silent, fail-stop, fail-safe

I Process resilience: flat group, hierarchical group

I K-fault tolerant group: more than two-thirds of the processes work
properly

I Reliable communication: client-server, group

I Scalable reliable multicast: feedback suppression, hierarchical

I Atomic broadcast: virtual synchrony

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 44 / 46

Reading

I Chapter 9 of the Distributed Systems: Principles and Paradigms.

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 45 / 46

Questions?

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/1 46 / 46

