Fault Tolerance - Part Il

Amir H. Payberah

amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

AMIRKABIR UNIVERSITY
OF TECHNOLOGY

Based on slides by Maarten Van Steen

What is the Problem?

Two Generals’' Problem

» Two generals need to be agree on time to attack to win.

» They communicate through messengers, who may be killed on their
way.

1394/2/15 3/ 44

Two Generals’' Problem

» Two generals need to be agree on time to attack to win.

» They communicate through messengers, who may be killed on their
way.

» Agreement is the problem.

 Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1304/2/15 3 /44

Replicated State Machine Problem (1/2)

Replicated State Machine Problem (1/2)

—

Replicated State Machine Problem (1/2)

\

/
O—

» The solution: replicate the server.

-
Replicated State Machine Problem (2/2)

» Make the server deterministic (state machine).
» Replicate the server.

» Ensure correct replicas step through
the same sequence of state
transitions (How?)

1394/2/15 5/ 44

-
Replicated State Machine Problem (2/2)

Make the server deterministic (state machine).

v

v

Replicate the server.

v

Ensure correct replicas step through
the same sequence of state
transitions (How?)

> Agreement is the problem.

1394/2/15 5/ 44

Distributed Commit

BN
The Agreement Problem

» Some nodes propose values (or actions) by sending them to the
others.

» All nodes must decide whether to accept or reject those values.

The Agreement Problem

» Some nodes propose values (or actions) by sending them to the
others.

» All nodes must decide whether to accept or reject those values.

» But, ...

BN
The Agreement Problem

» Some nodes propose values (or actions) by sending them to the
others.

» All nodes must decide whether to accept or reject those values.

» But, ...

» Concurrent processes and uncertainty of timing, order of events and
inputs.

» Failure and recovery of machines/processors, of communication
channels.

Distributed Commit

» Given a computation distributed across a process group, how can we
ensure that either all processes commit to the final result, or none

of them do (atomicity)?

» Possible solutions:

» Two-Phase Commit (2PC)
¢ Three-Phase Commit (3PC)

 Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1304/2/15 8/ 44

Two-Phase Commit (2PC)

- |
Intuitive Example (1/3)

» You want to organize outing with 3 friends at 6pm Tuesday.
e Go out only if all friends can make it.

1394/2/15 10 / 44

BN
Intuitive Example (2/3)

» What do you do?

Intuitive Example (2/3)

» What do you do?

e Call each of them and ask if can do 6pm on Tuesday (voting phase)

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/15 11 / 44

Intuitive Example (2/3)

» What do you do?

e Call each of them and ask if can do 6pm on Tuesday (voting phase)

e If all can do Tuesday, call each friend back to ACK (commit)

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/15 11 / 44

Intuitive Example (2/3)

» What do you do?

e Call each of them and ask if can do 6pm on Tuesday (voting phase)
e If all can do Tuesday, call each friend back to ACK (commit)

e If one cannot do Tuesday, call other three to cancel (abort)

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/15 11 / 44

BN
Intuitive Example (3/3)

» Critical details

BN
Intuitive Example (3/3)

» Critical details

¢ While you were calling everyone to ask, people who have promised
they can do 6pm Tuesday must reserve that slot.

BN
Intuitive Example (3/3)

» Critical details

¢ While you were calling everyone to ask, people who have promised
they can do 6pm Tuesday must reserve that slot.

¢ You need to remember the decision and tell anyone whom you have
not been able to reach during commit/abort phase.

BN
Intuitive Example (3/3)

» Critical details

¢ While you were calling everyone to ask, people who have promised
they can do 6pm Tuesday must reserve that slot.

¢ You need to remember the decision and tell anyone whom you have
not been able to reach during commit/abort phase.

» That is exactly how 2PC works.

|
2PC Players

» Coordinator: the client who initiated the computation.

» Participants: the processes required to commit.

.
2PC (1/2)

» Phase la: the coordinator sends vote-request to participants.

.
2PC (1/2)

» Phase la: the coordinator sends vote-request to participants.

» Phase 1b: when a participant receives vote-request, it returns either
vote-commit or vote-abort to coordinator.

o |If it sends vote-abort, it aborts its local computation.

.
2PC (2/2)

» Phase 2a: the coordinator collects all votes; if all are vote-commit,
it sends global-commit to all participants, otherwise it sends global-
abort.

.
2PC (2/2)

» Phase 2a: the coordinator collects all votes; if all are vote-commit,
it sends global-commit to all participants, otherwise it sends global-
abort.

» Phase 2b: each participant waits for global-commit or global-abort
and handles accordingly.

N
2PC States

Commit
Vote-request

Vote-abort Vote-commit
Global-abort Global-commit
(ABorT) (CcommiT)

(a)
Coordinator

Vote-request
Vote-abort

Vote-request
Vote-commit

Global-abort

ACK ACK
(ABORT) (commiT)
(b)
Participant

* Amir H. Payberah (Tehran Polytechnic) Fault Tolerance T

Global-commit

16 / 44

[
2PC - Failing Participant (1/2)

» Initial state: no problem, participant was unaware of protocol.

2PC - Failing Participant (1/2)

» Initial state: no problem, participant was unaware of protocol.

> Ready state: the participant is waiting to either commit or abort.
After recovery, participant needs to know which state transition it
should make = log the coordinator's decision.

2PC - Failing Participant (1/2)

» Initial state: no problem, participant was unaware of protocol.

> Ready state: the participant is waiting to either commit or abort.
After recovery, participant needs to know which state transition it
should make = log the coordinator's decision.

» Abort state: remove the workspace of results.

[
2PC - Failing Participant (1/2)

Initial state: no problem, participant was unaware of protocol.

v

v

Ready state: the participant is waiting to either commit or abort.
After recovery, participant needs to know which state transition it
should make = log the coordinator's decision.

Abort state: remove the workspace of results.

v

» Commit state: copying workspace to storage.

.
2PC - Failing Participant (2/2)

» Alternative: when a recovery is needed to READY state, check state
of other participants = no need to log coordinator’s decision.

.
2PC - Failing Participant (2/2)

» Alternative: when a recovery is needed to READY state, check state
of other participants = no need to log coordinator’s decision.

» Recovering participant P contacts another participant Q:
State of Q | Action by P

COMMIT Make transition to COMMIT
ABORT Make transition to ABORT
INIT Make transition to ABORT
READY Contact another participant

- |
2PC - Failing Participant (2/2)

» Alternative: when a recovery is needed to READY state, check state
of other participants = no need to log coordinator’s decision.

» Recovering participant P contacts another participant Q:

State of Q

Action by P

COMMIT

Make transition to COMMIT

ABORT

Make transition to ABORT

INIT

Make transition to ABORT

READY

Contact another participant

» If all participants are in the READY state, the protocol blocks. Ap-
parently, the coordinator is failing. Note: The protocol prescribes
that we need the decision from the coordinator.

1394/2/15

18 / 44

BN
2PC - Failing Coordinator

» The real problem lies in the fact that the coordinator’s final decision
may not be available for some time or lost.

BN
2PC - Failing Coordinator

» The real problem lies in the fact that the coordinator’s final decision
may not be available for some time or lost.

» Alternative: let a participant P in the READY state timeout when it
hasn't received the coordinator’s decision; P tries to find out what
other participants know.

-
2PC - Failing Coordinator

» The real problem lies in the fact that the coordinator’s final decision
may not be available for some time or lost.

» Alternative: let a participant P in the READY state timeout when it
hasn't received the coordinator’s decision; P tries to find out what
other participants know.

» Essence of the problem is that a recovering participant cannot make
a local decision: it depends on other (possibly failed) processes.

* Amir H. Payberah (Tehran Polytechnic) Fault Tolerance TS (B

Three-Phase Commit (3PC)

BN
3PC (1/3)

» Phase la: the coordinator sends vote-request to participants.

» Phase 1b: when a participant receives vote-request, it returns either
vote-commit or vote-abort to coordinator.

e |If it sends vote-abort, it aborts its local computation.

BN
3PC (2/3)

» Phase 2a: the coordinator collects all votes; if all are vote-commit, it
sends prepare-commit to all participants, otherwise it sends global-
abort, and halts.

» Phase 2b: each participant waits for prepare-commit, or waits for
global-abort after which it halts.

BN
3PC (3/3)

» Phase 3a: the coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

» Phase 3b: each participant waits for global-commit.

3PC States

INIT
Commit
Vote-request
WAIT
Vote-commit

Vote-abort
Global-abort Prepare-commit

(ABORT) (PRECOMMIT)
Ready-commit

y Global-commit
(comm)
(@)
Coordinator

Vote-request

Vote-abort
Vote-request

Vote-commit

Prepare-commit

Ready-commit

Global-abort
ACK

Global-commit
ACK

®)
Participant

1394/2/15 24 / 44

BN
3PC - Failing Participant

» Can P find out what it should do after crashing in the READY or
PRE-COMMIT state, even if other participants or the coordinator
failed?

BN
3PC - Failing Participant

» Can P find out what it should do after crashing in the READY or
PRE-COMMIT state, even if other participants or the coordinator
failed?

» If a participant timeouts in READY state, it can find out at the
coordinator or other participants whether it should abort, or enter
PRE-COMMIT state.

-
3PC - Failing Participant

» Can P find out what it should do after crashing in the READY or
PRE-COMMIT state, even if other participants or the coordinator
failed?

» If a participant timeouts in READY state, it can find out at the
coordinator or other participants whether it should abort, or enter
PRE-COMMIT state.

» If a participant already made it to the PRE-COMMIT state, it can
always safely commit (but is not allowed to do so for the sake of
failing other processes).

* Amir H. Payberah (Tehran Polytechnic) Fault Tolerance Y

Recovery

Recovery

» When a failure occurs, we need to bring the system into an error-free
state:

Recovery

» When a failure occurs, we need to bring the system into an error-free
state:
e Forward error recovery: find a new state from which the system can
continue operation.

Recovery

» When a failure occurs, we need to bring the system into an error-free
state:

e Forward error recovery: find a new state from which the system can
continue operation.

¢ Backward error recovery: bring the system back into a previous error-
free state.

Recovery

» When a failure occurs, we need to bring the system into an error-free
state:
e Forward error recovery: find a new state from which the system can
continue operation.
¢ Backward error recovery: bring the system back into a previous error-
free state.

» Use backward error recovery, requiring that we establish recovery
points.

Recovery

» When a failure occurs, we need to bring the system into an error-free
state:

e Forward error recovery: find a new state from which the system can
continue operation.

¢ Backward error recovery: bring the system back into a previous error-
free state.

» Use backward error recovery, requiring that we establish recovery
points.

» Recovery in distributed systems is complicated by the fact that pro-
cesses need to cooperate in identifying a consistent state from where
to recover.

Checkpointing

Consistent Recovery State

» Requirement: every message that has been received is also shown
to have been sent in the state of the sender.

Initial state \R;covery line " checkpoint
P1]
T

IRNWVAN

Message sent
from P2 to P1

LIS
.
N

Failure

" Time —»
Inconsistent collection
of checkpoints

|
Consistent Recovery State

» Requirement: every message that has been received is also shown
to have been sent in the state of the sender.

» Recovery line: assuming processes regularly checkpoint their state,
the most recent consistent global checkpoint.

Initial state Recovery line

Checkpomt
P1
; N\ Fanlure
\ \
P2
- Time —»
Message sent | " t lleci
from P2 to P1 nconsistent collection

of checkpoints

1394/2/15 29 / 44

B
Cascaded rollback

» If checkpointing is done at the wrong instants, the recovery line may
lie at system startup time = cascaded rollback

Initial state Checkpoint
P1

IR FY s

Time —»

.
Independent Checkpointing (1/2)

» Each process independently takes checkpoints.

.
Independent Checkpointing (1/2)

» Each process independently takes checkpoints.

» Let CP[i](m) denote m*" checkpoint of process P; and INT[i](m)
the interval between CP[i](m — 1) and CP[i](m).

Independent Checkpointing (1/2)

» Each process independently takes checkpoints.

» Let CP[i](m) denote m*" checkpoint of process P; and INT[i](m)
the interval between CP[i](m — 1) and CP[i](m).

» When process P; sends a message in interval INT[i](m), it piggy-
backs (i, m).

.
Independent Checkpointing (1/2)

» Each process independently takes checkpoints.

Let CP[i](m) denote m* checkpoint of process P; and INT[i](m)
the interval between CP[i](m — 1) and CP[i](m).

v

When process P; sends a message in interval INT[i](m), it piggy-
backs (i, m).

v

v

When process P; receives a message in interval INT[j](n), it records
the dependency INT[i](m) — INT[j](n).

- |
Independent Checkpointing (1/2)

» Each process independently takes checkpoints.

» Let CP[i](m) denote m®" checkpoint of process P; and INT[i](m)
the interval between CP[i](m — 1) and CP[i](m).

» When process P; sends a message in interval INT[i|(m), it piggy-
backs (i, m).

» When process P; receives a message in interval INT[j](n), it records
the dependency INT[i](m) — INT[j](n).

» The dependency INT[i](m) — INT[j](n) is saved in a stable storage
when taking checkpoint CP[j](n).

* Amir H. Payberah (Tehran Polytechnic) Fault Tolerance TSI

.
Independent Checkpointing (2/2)

» If process P; rolls back to CP[i](m — 1), P; must roll back to
CP[j](n—1).

.
Independent Checkpointing (2/2)

» If process P; rolls back to CP[i](m — 1), P; must roll back to
CP[j](n—1).

» How can P; find out where to roll back to? we can build a depen-
dency graph between checkpoints to discover the recovery line.

BN
Coordinated Checkpointing

» Each process takes a checkpoint after a globally coordinated action.

BN
Coordinated Checkpointing

» Each process takes a checkpoint after a globally coordinated action.

» Simple solution: use a two-phase blocking protocol:

BN
Coordinated Checkpointing

» Each process takes a checkpoint after a globally coordinated action.

» Simple solution: use a two-phase blocking protocol:
¢ A coordinator multicasts a checkpoint request message.

BN
Coordinated Checkpointing

» Each process takes a checkpoint after a globally coordinated action.

» Simple solution: use a two-phase blocking protocol:
¢ A coordinator multicasts a checkpoint request message.
e When a participant receives such a message, it takes a checkpoint,
stops sending (application) messages, and reports back that it has
taken a checkpoint.

BN
Coordinated Checkpointing

» Each process takes a checkpoint after a globally coordinated action.

» Simple solution: use a two-phase blocking protocol:

¢ A coordinator multicasts a checkpoint request message.

e When a participant receives such a message, it takes a checkpoint,
stops sending (application) messages, and reports back that it has
taken a checkpoint.

e When all checkpoints have been confirmed at the coordinator, it
latter broadcasts a checkpoint done message to allow all processes
to continue.

Message Logging

|
Message Logging

» Instead of taking an (expensive) checkpoint, try to replay your (com-
munication) behavior from the most recent checkpoint = store mes-
sages in a log.

Message Logging

» Instead of taking an (expensive) checkpoint, try to replay your (com-
munication) behavior from the most recent checkpoint = store mes-

sages in a log.

» We assume a piecewise deterministic execution model:

Message Logging

» Instead of taking an (expensive) checkpoint, try to replay your (com-
munication) behavior from the most recent checkpoint = store mes-

sages in a log.

» We assume a piecewise deterministic execution model:
e The execution of each process can be considered as a sequence of
state intervals.

|
Message Logging

» Instead of taking an (expensive) checkpoint, try to replay your (com-
munication) behavior from the most recent checkpoint = store mes-
sages in a log.

» We assume a piecewise deterministic execution model:
e The execution of each process can be considered as a sequence of
state intervals.
» Each state interval starts with a nondeterministic event (e.g.,
message receipt).

|
Message Logging

» Instead of taking an (expensive) checkpoint, try to replay your (com-
munication) behavior from the most recent checkpoint = store mes-
sages in a log.

» We assume a piecewise deterministic execution model:
e The execution of each process can be considered as a sequence of
state intervals.
» Each state interval starts with a nondeterministic event (e.g.,
message receipt).
¢ Execution in a state interval is deterministic.

Message Logging and Consistency

» Example:
e Process @ has just received and subsequently delivered messages
my and mo.
e Assume that ms is never logged.
o After delivering m; and my,, Q sends message m3 to process R.
e Process R receives and subsequently delivers ms.

Q crashes and recovers
P —& / P
ml mi m2 is never replayed,
so neither will m3
Q&K ;
m2 m3 m2/. X m3
AN Y

—>» Unlogged message Time —»
@®—» Logged message

* Amir H. Payberah (Tehran Polytechnic) Fault Tolerance TS e

Message Logging and Consistency

» Example:
e Process @ has just received and subsequently delivered messages
my and mo.
e Assume that ms is never logged.
o After delivering m; and my,, Q sends message m3 to process R.
e Process R receives and subsequently delivers ms.

» Orphan process: a process that survives the crash of another process,
but whose state is inconsistent with the crashed process after its

recovery.

Q crashes and recovers
P —& / P
ml mi m2 is never replayed,
so neither will m3
Q&K ;
m2 m3 m2/. X m3
AN Y

—>» Unlogged message Time —»
@®—» Logged message

* Amir H. Payberah (Tehran Polytechnic) Fault Tolerance TS e

[
Message-Logging Schemes (1/4)

» HDR[m]: the header of message m containing its source, destina-
tion, sequence number, and delivery number.

[
Message-Logging Schemes (1/4)

» HDR[m]: the header of message m containing its source, destina-
tion, sequence number, and delivery number.

e The header contains all information for resending a message and
delivering it in the correct order.

[
Message-Logging Schemes (1/4)

» HDR[m]: the header of message m containing its source, destina-
tion, sequence number, and delivery number.
e The header contains all information for resending a message and
delivering it in the correct order.
* A message m is stable if HDR[m] cannot be lost (e.g., because it
has been written to stable storage).

[
Message-Logging Schemes (1/4)

» HDR[m]: the header of message m containing its source, destina-
tion, sequence number, and delivery number.

e The header contains all information for resending a message and
delivering it in the correct order.

* A message m is stable if HDR[m] cannot be lost (e.g., because it
has been written to stable storage).

» DEP[m]: the set of processes to which message m has been deliv-
ered, as well as any message that causally depends on delivery of
m.

|
Message-Logging Schemes (1/4)

» HDR[m]: the header of message m containing its source, destina-
tion, sequence number, and delivery number.
e The header contains all information for resending a message and
delivering it in the correct order.
e A message m is stable if HDR[m] cannot be lost (e.g., because it
has been written to stable storage).

» DEP[m]: the set of processes to which message m has been deliv-
ered, as well as any message that causally depends on delivery of
m.

» COPY[m]: the set of processes that have a copy of HDR[m] in their
volatile memory.

* Amir H. Payberah (Tehran Polytechnic) Fault Tolerance TS

[
Message-Logging Schemes (2/4)

» If C is a collection of crashed processes, then @ ¢ C is an orphan if
there is a message m such that Q € DEP[m] and COPY[m] C C.

[
Message-Logging Schemes (2/4)

» If C is a collection of crashed processes, then @ ¢ C is an orphan if
there is a message m such that Q € DEP[m] and COPY[m] C C.

» We want VmVC :: COPY[m] C C = DEP[m] C C.
 This is the same as saying that Vm :: DEP[m] C COPY[m].

[
Message-Logging Schemes (2/4)

» If C is a collection of crashed processes, then @ ¢ C is an orphan if
there is a message m such that Q € DEP[m] and COPY[m] C C.

» We want VmVC :: COPY[m] C C = DEP[m] C C.
 This is the same as saying that Vm :: DEP[m] C COPY[m].

» Goal: no orphans, means that for each message m, DEP[m]| C
COPY[m].

I
Message-Logging Schemes (3/4)

> Pessimistic protocol: for each unstable message m, there is at most
one process dependent on m, that is |DEP[m]| < 1.

» Consequence: an unstable message in a pessimistic protocol must
be made stable before sending a next message.

[
Message-Logging Schemes (4/4)

» Optimistic protocol: for each unstable message m, we ensure that
if COPY[m] C C, then eventually also DEP[m| C C, where C
denotes a set of processes that have been marked as faulty.

» Consequence: to guarantee that DEP[m] C C, we generally rollback
each orphan process Q until @ ¢ DEP[m].

Summary

Summary

» Distributed commit: 2PC and 3PC

» Recovery: checkpointing and message logging

BN
Reading

» Chapter 8 of the Distributed Systems: Principles and Paradigms.

Questions?

