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What is the Problem?
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Two Generals’ Problem

I Two generals need to be agree on time to attack to win.

I They communicate through messengers, who may be killed on their
way.

I Agreement is the problem.
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Replicated State Machine Problem (1/2)

I The solution: replicate the server.
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Replicated State Machine Problem (2/2)

I Make the server deterministic (state machine).

I Replicate the server.

I Ensure correct replicas step through
the same sequence of state
transitions (How?)

I Agreement is the problem.
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Distributed Commit
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The Agreement Problem

I Some nodes propose values (or actions) by sending them to the
others.

I All nodes must decide whether to accept or reject those values.

I But, ...

I Concurrent processes and uncertainty of timing, order of events and
inputs.

I Failure and recovery of machines/processors, of communication
channels.
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Distributed Commit

I Given a computation distributed across a process group, how can we
ensure that either all processes commit to the final result, or none
of them do (atomicity)?

I Possible solutions:
• Two-Phase Commit (2PC)
• Three-Phase Commit (3PC)
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Two-Phase Commit (2PC)
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Intuitive Example (1/3)

I You want to organize outing with 3 friends at 6pm Tuesday.
• Go out only if all friends can make it.
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Intuitive Example (2/3)

I What do you do?

• Call each of them and ask if can do 6pm on Tuesday (voting phase)

• If all can do Tuesday, call each friend back to ACK (commit)

• If one cannot do Tuesday, call other three to cancel (abort)
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Intuitive Example (3/3)

I Critical details

• While you were calling everyone to ask, people who have promised
they can do 6pm Tuesday must reserve that slot.

• You need to remember the decision and tell anyone whom you have
not been able to reach during commit/abort phase.

I That is exactly how 2PC works.
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2PC Players

I Coordinator: the client who initiated the computation.

I Participants: the processes required to commit.
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2PC (1/2)

I Phase 1a: the coordinator sends vote-request to participants.

I Phase 1b: when a participant receives vote-request, it returns either
vote-commit or vote-abort to coordinator.

• If it sends vote-abort, it aborts its local computation.
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2PC (2/2)

I Phase 2a: the coordinator collects all votes; if all are vote-commit,
it sends global-commit to all participants, otherwise it sends global-
abort.

I Phase 2b: each participant waits for global-commit or global-abort
and handles accordingly.
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2PC States

COMMIT

INIT

WAIT

ABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Global-commit

(a)

COMMIT

INIT

READY

ABORT

Vote-request
Vote-commit

Vote-request
Vote-abort

Global-abort
ACK

Global-commit
ACK

(b)

Coordinator Participant
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2PC - Failing Participant (1/2)

I Initial state: no problem, participant was unaware of protocol.

I Ready state: the participant is waiting to either commit or abort.
After recovery, participant needs to know which state transition it
should make ⇒ log the coordinator’s decision.

I Abort state: remove the workspace of results.

I Commit state: copying workspace to storage.
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2PC - Failing Participant (2/2)

I Alternative: when a recovery is needed to READY state, check state
of other participants ⇒ no need to log coordinator’s decision.

I Recovering participant P contacts another participant Q:

State of Q Action by P

COMMIT Make transition to COMMIT

ABORT Make transition to ABORT

INIT Make transition to ABORT

READY Contact another participant

I If all participants are in the READY state, the protocol blocks. Ap-
parently, the coordinator is failing. Note: The protocol prescribes
that we need the decision from the coordinator.
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2PC - Failing Coordinator

I The real problem lies in the fact that the coordinator’s final decision
may not be available for some time or lost.

I Alternative: let a participant P in the READY state timeout when it
hasn’t received the coordinator’s decision; P tries to find out what
other participants know.

I Essence of the problem is that a recovering participant cannot make
a local decision: it depends on other (possibly failed) processes.
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Three-Phase Commit (3PC)
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3PC (1/3)

I Phase 1a: the coordinator sends vote-request to participants.

I Phase 1b: when a participant receives vote-request, it returns either
vote-commit or vote-abort to coordinator.

• If it sends vote-abort, it aborts its local computation.
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3PC (2/3)

I Phase 2a: the coordinator collects all votes; if all are vote-commit, it
sends prepare-commit to all participants, otherwise it sends global-
abort, and halts.

I Phase 2b: each participant waits for prepare-commit, or waits for
global-abort after which it halts.
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3PC (3/3)

I Phase 3a: the coordinator waits until all participants have sent
ready-commit, and then sends global-commit to all.

I Phase 3b: each participant waits for global-commit.
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3PC States

PRECOMMIT

COMMIT

INIT

WAIT

ABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Prepare-commit

(a)

Ready-commit
Global-commit

PRECOMMIT

COMMIT

INIT

READY

ABORT

Vote-request
Vote-commit

Vote-request
Vote-abort

Global-abort
ACK

Prepare-commit
Ready-commit

(b)

Global-commit
ACK

Coordinator Participant
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3PC - Failing Participant

I Can P find out what it should do after crashing in the READY or
PRE-COMMIT state, even if other participants or the coordinator
failed?

I If a participant timeouts in READY state, it can find out at the
coordinator or other participants whether it should abort, or enter
PRE-COMMIT state.

I If a participant already made it to the PRE-COMMIT state, it can
always safely commit (but is not allowed to do so for the sake of
failing other processes).
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Recovery
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Recovery

I When a failure occurs, we need to bring the system into an error-free
state:

• Forward error recovery: find a new state from which the system can
continue operation.

• Backward error recovery: bring the system back into a previous error-
free state.

I Use backward error recovery, requiring that we establish recovery
points.

I Recovery in distributed systems is complicated by the fact that pro-
cesses need to cooperate in identifying a consistent state from where
to recover.
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Checkpointing
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Consistent Recovery State

I Requirement: every message that has been received is also shown
to have been sent in the state of the sender.

I Recovery line: assuming processes regularly checkpoint their state,
the most recent consistent global checkpoint.

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection

of checkpoints

Message sent
from P2 to P1
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Cascaded rollback

I If checkpointing is done at the wrong instants, the recovery line may
lie at system startup time ⇒ cascaded rollback

P1

P2

Initial state

Failure

Checkpoint

Time

mm
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Independent Checkpointing (1/2)

I Each process independently takes checkpoints.

I Let CP[i ](m) denote mth checkpoint of process Pi and INT [i ](m)
the interval between CP[i ](m − 1) and CP[i ](m).

I When process Pi sends a message in interval INT [i ](m), it piggy-
backs (i ,m).

I When process Pj receives a message in interval INT [j ](n), it records
the dependency INT [i ](m)→ INT [j ](n).

I The dependency INT [i ](m)→ INT [j ](n) is saved in a stable storage
when taking checkpoint CP[j ](n).
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Independent Checkpointing (2/2)

I If process Pi rolls back to CP[i ](m − 1), Pj must roll back to
CP[j ](n − 1).

I How can Pj find out where to roll back to? we can build a depen-
dency graph between checkpoints to discover the recovery line.
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Coordinated Checkpointing

I Each process takes a checkpoint after a globally coordinated action.

I Simple solution: use a two-phase blocking protocol:

• A coordinator multicasts a checkpoint request message.
• When a participant receives such a message, it takes a checkpoint,

stops sending (application) messages, and reports back that it has
taken a checkpoint.

• When all checkpoints have been confirmed at the coordinator, it
latter broadcasts a checkpoint done message to allow all processes
to continue.
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stops sending (application) messages, and reports back that it has
taken a checkpoint.

• When all checkpoints have been confirmed at the coordinator, it
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Message Logging
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Message Logging

I Instead of taking an (expensive) checkpoint, try to replay your (com-
munication) behavior from the most recent checkpoint⇒ store mes-
sages in a log.

I We assume a piecewise deterministic execution model:

• The execution of each process can be considered as a sequence of
state intervals.

• Each state interval starts with a nondeterministic event (e.g.,
message receipt).

• Execution in a state interval is deterministic.
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Message Logging and Consistency

I Example:
• Process Q has just received and subsequently delivered messages
m1 and m2.

• Assume that m2 is never logged.
• After delivering m1 and m2, Q sends message m3 to process R.
• Process R receives and subsequently delivers m3.

I Orphan process: a process that survives the crash of another process,
but whose state is inconsistent with the crashed process after its
recovery.

P

Q

R

Q crashes and recovers

Unlogged message
Logged message

m1

m2 m2 m3m3

m1 m2 is never replayed,
so neither will m3

Time
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Message-Logging Schemes (1/4)

I HDR[m]: the header of message m containing its source, destina-
tion, sequence number, and delivery number.

• The header contains all information for resending a message and
delivering it in the correct order.

• A message m is stable if HDR[m] cannot be lost (e.g., because it
has been written to stable storage).

I DEP[m]: the set of processes to which message m has been deliv-
ered, as well as any message that causally depends on delivery of
m.

I COPY [m]: the set of processes that have a copy of HDR[m] in their
volatile memory.
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Message-Logging Schemes (2/4)

I If C is a collection of crashed processes, then Q 6∈ C is an orphan if
there is a message m such that Q ∈ DEP[m] and COPY [m] ⊆ C .

I We want ∀m∀C :: COPY [m] ⊆ C ⇒ DEP[m] ⊆ C .
• This is the same as saying that ∀m :: DEP[m] ⊆ COPY [m].

I Goal: no orphans, means that for each message m, DEP[m] ⊆
COPY [m].
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Message-Logging Schemes (3/4)

I Pessimistic protocol: for each unstable message m, there is at most
one process dependent on m, that is |DEP[m]| ≤ 1.

I Consequence: an unstable message in a pessimistic protocol must
be made stable before sending a next message.
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Message-Logging Schemes (4/4)

I Optimistic protocol: for each unstable message m, we ensure that
if COPY [m] ⊆ C , then eventually also DEP[m] ⊆ C , where C
denotes a set of processes that have been marked as faulty.

I Consequence: to guarantee that DEP[m] ⊆ C , we generally rollback
each orphan process Q until Q 6∈ DEP[m].
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Summary
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Summary

I Distributed commit: 2PC and 3PC

I Recovery: checkpointing and message logging

Amir H. Payberah (Tehran Polytechnic) Fault Tolerance 1394/2/15 42 / 44



Reading

I Chapter 8 of the Distributed Systems: Principles and Paradigms.
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Questions?
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