MapReduce
Simplified Data Processing on Large Clusters

Amir H. Payberah

amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

AMIRKABIR UNIVERSITY
OF TECHNOLOGY

What do we do when there is too much data to

process?

Scale Up vs. Scale Out (1/2)

» Scale up or scale vertically: adding resources to a single node in a
system.

» Scale out or scale horizontally: adding more nodes to a system.

Amir H. Payberah (Tehran Polytechnic) MapReduce 1394/3/11 3 /40

-
Scale Up vs. Scale Out (2/2)

» Scale up: more expensive than scaling out.

» Scale out: more challenging for fault tolerance and software devel-
opment.

* Amir H. Payberah (Tehran Polytechnic) MapReduce e T

Taxonomy of Parallel Architectures

Shared nothing Shared disk Shared memory
Interconnect] ? Q -------- CP
................ Interconnect

O Process I:l Memory B Disk

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

Taxonomy of Parallel Architectures

Shared nothing Shared disk Shared memory
Interconnect] % %

O Process I:l Memory 8 Disk

DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
Communications, 35(6), 85-98, 1992.

~ Amir H. Payberah (Tehran Polytechnicy =~ MapReduce 1304/3/11 5/ 40

MapReduce

» A shared nothing architecture for processing large data sets with a
parallel /distributed algorithm on clusters of commodity hardware.

|
Challenges

» How to distribute computation?

» How can we make it easy to write distributed programs?

» Machines failure.

B
Idea

> Issue:
* Copying data over a network takes time.

B
Idea

> Issue:
* Copying data over a network takes time.

» ldea:

e Bring computation close to the data.
e Store files multiple times for reliability.

BN
Simplicity

» Don’t worry about parallelization, fault tolerance, data distribution,
and load balancing (MapReduce takes care of these).

» Hide system-level details from programmers.

Simplicity!

I
MapReduce Definition

» A programming model: to batch process large data sets (inspired
by functional programming).

I
MapReduce Definition

» A programming model: to batch process large data sets (inspired
by functional programming).

» An execution framework: to run parallel algorithms on clusters of
commodity hardware.

Programming Model

Warm-up Task (1/2)

» We have a huge text document.
» Count the number of times each distinct word appears in the file

» Application: analyze web server logs to find popular URLs.

N

I
Warm-up Task (2/2)

» File too large for memory, but all (word, count) pairs fit in memory.

I
Warm-up Task (2/2)

» File too large for memory, but all (word, count) pairs fit in memory.

» words(doc.txt) | sort | uniq -c
* where words takes a file and outputs the words in it, one per a line

I
Warm-up Task (2/2)

» File too large for memory, but all (word, count) pairs fit in memory.

» words(doc.txt) | sort | uniq -c
* where words takes a file and outputs the words in it, one per a line

> It captures the essence of MapReduce: great thing is that it is
naturally parallelizable.

MapReduce Overview

» words(doc.txt) | sort | uniq -c

MapReduce Overview

» words(doc.txt) | sort | uniq -c

» Sequentially read a lot of data.

Map Shuffle Reduce
A

MapReduce Overview

» words(doc.txt) | sort | uniq -c
» Sequentially read a lot of data.

» Map: extract something you care about.

Map Shuffle Reduce
A

MapReduce Overview

» words(doc.txt) | sort | uniq -c
» Sequentially read a lot of data.
» Map: extract something you care about.

» Group by key: sort and shuffle.

Map Shuffle Reduce
A

I
MapReduce Overview

» words(doc.txt) | sort | uniq -c

v

Sequentially read a lot of data.

v

Map: extract something you care about.

v

Group by key: sort and shuffle.

v

Reduce: aggregate, summarize, filter or transform.

Map Shuffle Reduce
A

I
MapReduce Overview

» words(doc.txt) | sort | uniq -c

v

Sequentially read a lot of data.

v

Map: extract something you care about.

v

Group by key: sort and shuffle.

v

Reduce: aggregate, summarize, filter or transform.

v

Write the result. Map Shuffle Reduce

MapReduce Dataflow

» map function: processes data and generates a set of intermediate
key/value pairs.

» reduce function: merges all intermediate values associated with the
same intermediate key.

Map Shuffle Reduce
A

fllllll—‘Oéll
|||||r—O<:"
|||||P—O<:"

NS
Example: Word Count

» Consider doing a word count of the following file using MapReduce:

Hello World Bye World
Hello Hadoop Goodbye Hadoop

NS
Example: Word Count - map

» The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

» The map function output is:

(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

NS
Example: Word Count - shuffle

» The shuffle phase between map and reduce phase creates a list of
values associated with each key.

» The reduce function input is:

(Bye, (1))

(Goodbye, (1))
(Hadoop, (1, 1)
(Hello, (1, 1))
(World, (1, 1))

Example: Word Count - reduce

» The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

» The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)
(Goodbye, 1)
(Hadoop, 2)
(Hello, 2)
(World, 2)

.
Combiner Function (1/2)

» In some cases, there is significant repetition in the intermediate keys
produced by each map task, and the reduce function is commutative
and associative.

Machine 1:
(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)

Machine 2:
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)

.
Combiner Function (2/2)

» Users can specify an optional combiner function to merge partially
data before it is sent over the network to the reduce function.

» Typically the same code is used to implement both the combiner
and the reduce function.

Machine 1:
(Hello, 1)
(World, 2)
(Bye, 1)

Machine 2:
(Hello, 1)
(Hadoop, 2)
(Goodbye, 1)

Example: Word Count - map

Example: Word Count - reduce

Example: Word Count - driver

Example: Word Count - Compile and Run (1/2)

Example: Word Count - Compile and Run (2/2)

> mkdir wordcount_classes

> javac -classpath
$HADOOP_HOME/share/hadoop/common/hadoop-common-2.2.0. jar:
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.2.0.jar:
$HADOOP_HOME/share/hadoop/common/1lib/commons-cli-1.2. jar

-d wordcount_classes sics/WordCount.java

> jar -cvf wordcount.jar -C wordcount_classes/ .
> hadoop jar wordcount.jar sics.WordCount input output

> hdfs dfs -1s output
output/part-00000

> hdfs dfs -cat output/part-00000
Bye 1

Goodbye 1

Hadoop 2

Hello 2

World 2

Amir H. Payberah (Tehran Polytechnic) MapReduce 1394/3/11 26 / 40

Execution Engine

I
MapReduce Execution (1/7)

» The user program divides the input files into M splits.

A typical size of a split is the size of a HDFS block (64 MB).
» Converts them to key/value pairs.

» |t starts up many copies of the program on a cluster of machines.

tnput Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

I
MapReduce Execution (2/7)

» One of the copies of the program is master, and the rest are workers.

» The master assigns works to the workers.

e |t picks idle workers and assigns each one a map task or a reduce
task.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

I
MapReduce Execution (3/7)

» A map worker reads the contents of the corresponding input splits.

» It parses key/value pairs out of the input data and passes each pair
to the user defined map function.

» The intermediate key/value pairs produced by the map function are
buffered in memory.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

I
MapReduce Execution (4/7)

» The buffered pairs are periodically written to local disk.
» They are partitioned into R regions (hash(key) mod R).

» The locations of the buffered pairs on the local disk are passed back
to the master.

» The master forwards these locations to the reduce workers.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

I
MapReduce Execution (5/7)

» A reduce worker reads the buffered data from the local disks of the
map workers.

» When a reduce worker has read all intermediate data, it sorts it by

the intermediate keys.
’ (1) fork

(4 fork

(1) fork

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

NN
MapReduce Execution (6/7)

» The reduce worker iterates over the intermediate data.

» For each unique intermediate key, it passes the key and the cor-
responding set of intermediate values to the user defined reduce
function.

» The output of the reduce function is appended to a final output file
for this reduce partition.

Intermediate files Redu
1 di ph.

\ap
asr (on local disks)

I
MapReduce Execution (7/7)

» When all map tasks and reduce tasks have been completed, the
master wakes up the user program.

(1) fork . . (1) fork
fork

(on local disks) les

toput Map Intermediate files Reduce Output
files phasr ase i

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.

Hadoop MapReduce and HDFS

G

Job Name
Tracker Node
e | — N—
Task Tas / Task Task
Tracker Tracker, racker
Task
- -
Data Task Data Data
Node Node Node

l:l Server O MapReduce 8 HDFS

1394/3/11

35 / 40

Fault Tolerance - Worker

v

Detect failure via periodic heartbeats.

v

Re-execute in-progress map and reduce tasks.

\{

Re-execute completed map tasks: their output is stored on the local
disk of the failed machine and is therefore inaccessible.

v

Completed reduce tasks do not need to be re-executed since their
output is stored in a global filesystem.

Fault Tolerance - Master

» State is periodically checkpointed: a new copy of master starts
from the last checkpoint state.

Summary

v

Programming model: Map and Reduce

Execution framework

v

v

Batch processing

v

Shared nothing architecture

References:

» J. Dean and S. Ghemawat, MapReduce: simplified data processing
on large clusters. In Proc. of OSDI, 2004.

Questions?

