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What do we do when there is too much data to

process?




Scale Up vs. Scale Out (1/2)

» Scale up or scale vertically: adding resources to a single node in a
system.

» Scale out or scale horizontally: adding more nodes to a system.
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Scale Up vs. Scale Out (2/2)

» Scale up: more expensive than scaling out.

» Scale out: more challenging for fault tolerance and software devel-
opment.
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Taxonomy of Parallel Architectures
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DeWitt, D. and Gray, J. “Parallel database systems: the future of high performance database systems”. ACM
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MapReduce

» A shared nothing architecture for processing large data sets with a
parallel /distributed algorithm on clusters of commodity hardware.




|
Challenges

» How to distribute computation?

» How can we make it easy to write distributed programs?

» Machines failure.




B
Idea

> Issue:
* Copying data over a network takes time.



B
Idea

> Issue:
* Copying data over a network takes time.

» ldea:

e Bring computation close to the data.
e Store files multiple times for reliability.
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Simplicity

» Don’t worry about parallelization, fault tolerance, data distribution,
and load balancing (MapReduce takes care of these).

» Hide system-level details from programmers.

Simplicity!




I
MapReduce Definition

» A programming model: to batch process large data sets (inspired
by functional programming).



I
MapReduce Definition

» A programming model: to batch process large data sets (inspired
by functional programming).

» An execution framework: to run parallel algorithms on clusters of
commodity hardware.



Programming Model



Warm-up Task (1/2)

» We have a huge text document.
» Count the number of times each distinct word appears in the file

» Application: analyze web server logs to find popular URLs.

N




I
Warm-up Task (2/2)

» File too large for memory, but all (word, count) pairs fit in memory.
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» File too large for memory, but all (word, count) pairs fit in memory.

» words(doc.txt) | sort | uniq -c
* where words takes a file and outputs the words in it, one per a line



I
Warm-up Task (2/2)

» File too large for memory, but all (word, count) pairs fit in memory.

» words(doc.txt) | sort | uniq -c
* where words takes a file and outputs the words in it, one per a line

> It captures the essence of MapReduce: great thing is that it is
naturally parallelizable.



MapReduce Overview
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MapReduce Overview

» words(doc.txt) | sort | uniq -c

v

Sequentially read a lot of data.

v

Map: extract something you care about.

v

Group by key: sort and shuffle.

v

Reduce: aggregate, summarize, filter or transform.

Map Shuffle Reduce
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MapReduce Overview

» words(doc.txt) | sort | uniq -c

v

Sequentially read a lot of data.

v

Map: extract something you care about.

v

Group by key: sort and shuffle.

v

Reduce: aggregate, summarize, filter or transform.

v

Write the result. Map Shuffle Reduce




MapReduce Dataflow

» map function: processes data and generates a set of intermediate
key/value pairs.

» reduce function: merges all intermediate values associated with the
same intermediate key.

Map Shuffle Reduce
A
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Example: Word Count

» Consider doing a word count of the following file using MapReduce:

Hello World Bye World
Hello Hadoop Goodbye Hadoop



NS
Example: Word Count - map

» The map function reads in words one a time and outputs (word, 1)
for each parsed input word.

» The map function output is:

(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)
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Example: Word Count - shuffle

» The shuffle phase between map and reduce phase creates a list of
values associated with each key.

» The reduce function input is:

(Bye, (1))

(Goodbye, (1))
(Hadoop, (1, 1)
(Hello, (1, 1))
(World, (1, 1))



Example: Word Count - reduce

» The reduce function sums the numbers in the list for each key and
outputs (word, count) pairs.

» The output of the reduce function is the output of the MapReduce
job:

(Bye, 1)
(Goodbye, 1)
(Hadoop, 2)
(Hello, 2)
(World, 2)



.
Combiner Function (1/2)

» In some cases, there is significant repetition in the intermediate keys
produced by each map task, and the reduce function is commutative
and associative.

Machine 1:
(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)

Machine 2:
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)



.
Combiner Function (2/2)

» Users can specify an optional combiner function to merge partially
data before it is sent over the network to the reduce function.

» Typically the same code is used to implement both the combiner
and the reduce function.

Machine 1:
(Hello, 1)
(World, 2)
(Bye, 1)

Machine 2:
(Hello, 1)
(Hadoop, 2)
(Goodbye, 1)



Example: Word Count - map




Example: Word Count - reduce




Example: Word Count - driver




Example: Word Count - Compile and Run (1/2)




Example: Word Count - Compile and Run (2/2)

> mkdir wordcount_classes

> javac -classpath
$HADOOP_HOME/share/hadoop/common/hadoop-common-2.2.0. jar:
$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.2.0.jar:
$HADOOP_HOME/share/hadoop/common/1lib/commons-cli-1.2. jar

-d wordcount_classes sics/WordCount.java

> jar -cvf wordcount.jar -C wordcount_classes/ .
> hadoop jar wordcount.jar sics.WordCount input output

> hdfs dfs -1s output
output/part-00000

> hdfs dfs -cat output/part-00000
Bye 1

Goodbye 1

Hadoop 2

Hello 2

World 2
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Execution Engine



I
MapReduce Execution (1/7)

» The user program divides the input files into M splits.

A typical size of a split is the size of a HDFS block (64 MB).
» Converts them to key/value pairs.

» |t starts up many copies of the program on a cluster of machines.

tnput Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (2/7)

» One of the copies of the program is master, and the rest are workers.

» The master assigns works to the workers.

e |t picks idle workers and assigns each one a map task or a reduce
task.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (3/7)

» A map worker reads the contents of the corresponding input splits.

» It parses key/value pairs out of the input data and passes each pair
to the user defined map function.

» The intermediate key/value pairs produced by the map function are
buffered in memory.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (4/7)

» The buffered pairs are periodically written to local disk.
» They are partitioned into R regions (hash(key) mod R).

» The locations of the buffered pairs on the local disk are passed back
to the master.

» The master forwards these locations to the reduce workers.

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (5/7)

» A reduce worker reads the buffered data from the local disks of the
map workers.

» When a reduce worker has read all intermediate data, it sorts it by

the intermediate keys.
’ (1) fork

(4 fork

(1) fork

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.
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MapReduce Execution (6/7)

» The reduce worker iterates over the intermediate data.

» For each unique intermediate key, it passes the key and the cor-
responding set of intermediate values to the user defined reduce
function.

» The output of the reduce function is appended to a final output file
for this reduce partition.

Intermediate files Redu
1 di ph.

\ap
asr (on local disks)
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MapReduce Execution (7/7)

» When all map tasks and reduce tasks have been completed, the
master wakes up the user program.

(1) fork . . (1) fork
fork

(on local disks) les

toput Map Intermediate files Reduce Output
files phasr ase i

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”, ACM Communications 51(1), 2008.




Hadoop MapReduce and HDFS

G

Job Name
Tracker Node
e | — N—
Task Tas / Task Task
Tracker Tracker, racker
Task
- -
Data Task Data Data
Node Node Node

l:l Server O MapReduce 8 HDFS
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Fault Tolerance - Worker

v

Detect failure via periodic heartbeats.

v

Re-execute in-progress map and reduce tasks.

\{

Re-execute completed map tasks: their output is stored on the local
disk of the failed machine and is therefore inaccessible.

v

Completed reduce tasks do not need to be re-executed since their
output is stored in a global filesystem.



Fault Tolerance - Master

» State is periodically checkpointed: a new copy of master starts
from the last checkpoint state.



Summary

v

Programming model: Map and Reduce

Execution framework

v

v

Batch processing

v

Shared nothing architecture
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Questions?



