
Processes

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Based on slides by Maarten Van Steen

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 1 / 47



Introduction

I Processor: provides a set of instructions along with the capability
of automatically executing a series of those instructions.

I Thread: a minimal software processor in whose context a series of
instructions can be executed.

I Process: a software processor in whose context one or more threads
may be executed.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 2 / 47



Introduction

I Processor: provides a set of instructions along with the capability
of automatically executing a series of those instructions.

I Thread: a minimal software processor in whose context a series of
instructions can be executed.

I Process: a software processor in whose context one or more threads
may be executed.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 2 / 47



Introduction

I Processor: provides a set of instructions along with the capability
of automatically executing a series of those instructions.

I Thread: a minimal software processor in whose context a series of
instructions can be executed.

I Process: a software processor in whose context one or more threads
may be executed.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 2 / 47



Context

I Processor context: the minimal collection of values stored in the reg-
isters of a processor used for the execution of a series of instructions
(e.g., stack pointer, addressing registers, program counter).

I Thread context: the minimal collection of values stored in registers
and memory, used for the execution of a series of instructions.

I Process context: the minimal collection of values stored in registers
and memory, used for the execution of a thread.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 3 / 47



Context

I Processor context: the minimal collection of values stored in the reg-
isters of a processor used for the execution of a series of instructions
(e.g., stack pointer, addressing registers, program counter).

I Thread context: the minimal collection of values stored in registers
and memory, used for the execution of a series of instructions.

I Process context: the minimal collection of values stored in registers
and memory, used for the execution of a thread.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 3 / 47



Context

I Processor context: the minimal collection of values stored in the reg-
isters of a processor used for the execution of a series of instructions
(e.g., stack pointer, addressing registers, program counter).

I Thread context: the minimal collection of values stored in registers
and memory, used for the execution of a series of instructions.

I Process context: the minimal collection of values stored in registers
and memory, used for the execution of a thread.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 3 / 47



Context Switching

I Threads share the same address space. Thread context switching
can be done entirely independent of the operating system (OS).

I Process switching is generally more expensive as it involves getting
the OS in the loop, i.e., trapping to the kernel.

I Creating and destroying threads is much cheaper than doing so for
processes.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 4 / 47



Context Switching

I Threads share the same address space. Thread context switching
can be done entirely independent of the operating system (OS).

I Process switching is generally more expensive as it involves getting
the OS in the loop, i.e., trapping to the kernel.

I Creating and destroying threads is much cheaper than doing so for
processes.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 4 / 47



Context Switching

I Threads share the same address space. Thread context switching
can be done entirely independent of the operating system (OS).

I Process switching is generally more expensive as it involves getting
the OS in the loop, i.e., trapping to the kernel.

I Creating and destroying threads is much cheaper than doing so for
processes.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 4 / 47



Threads and Operating Systems (1/4)

I Question: should an OS kernel provide threads, or should they be
implemented as user-level packages?

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 5 / 47



Threads and Operating Systems (2/4)

I User-space solution.

• All operations can be completely handled within a single process ⇒
implementations can be extremely efficient.

• All services provided by the kernel are done on behalf of the process
in which a thread resides ⇒ if the kernel decides to block a thread,
the entire process will be blocked.

• Threads are used when there are lots of external events: threads
block on a per-event basis.

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 6 / 47



Threads and Operating Systems (2/4)

I User-space solution.

• All operations can be completely handled within a single process ⇒
implementations can be extremely efficient.

• All services provided by the kernel are done on behalf of the process
in which a thread resides ⇒ if the kernel decides to block a thread,
the entire process will be blocked.

• Threads are used when there are lots of external events: threads
block on a per-event basis.

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 6 / 47



Threads and Operating Systems (2/4)

I User-space solution.

• All operations can be completely handled within a single process ⇒
implementations can be extremely efficient.

• All services provided by the kernel are done on behalf of the process
in which a thread resides ⇒ if the kernel decides to block a thread,
the entire process will be blocked.

• Threads are used when there are lots of external events: threads
block on a per-event basis.

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 6 / 47



Threads and Operating Systems (2/4)

I User-space solution.

• All operations can be completely handled within a single process ⇒
implementations can be extremely efficient.

• All services provided by the kernel are done on behalf of the process
in which a thread resides ⇒ if the kernel decides to block a thread,
the entire process will be blocked.

• Threads are used when there are lots of external events: threads
block on a per-event basis.

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 6 / 47



Threads and Operating Systems (3/4)

I Kernel solution: the kernel contains the implementation of a thread
package. This means that all operations return as system calls.

• Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process.

• Handling external events is simple: the kernel schedules the thread
associated with the event.

• The big problem is the loss of efficiency due to the fact that each
thread operation requires a trap to the kernel.

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 7 / 47



Threads and Operating Systems (3/4)

I Kernel solution: the kernel contains the implementation of a thread
package. This means that all operations return as system calls.

• Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process.

• Handling external events is simple: the kernel schedules the thread
associated with the event.

• The big problem is the loss of efficiency due to the fact that each
thread operation requires a trap to the kernel.

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 7 / 47



Threads and Operating Systems (3/4)

I Kernel solution: the kernel contains the implementation of a thread
package. This means that all operations return as system calls.

• Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process.

• Handling external events is simple: the kernel schedules the thread
associated with the event.

• The big problem is the loss of efficiency due to the fact that each
thread operation requires a trap to the kernel.

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 7 / 47



Threads and Operating Systems (3/4)

I Kernel solution: the kernel contains the implementation of a thread
package. This means that all operations return as system calls.

• Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process.

• Handling external events is simple: the kernel schedules the thread
associated with the event.

• The big problem is the loss of efficiency due to the fact that each
thread operation requires a trap to the kernel.

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 7 / 47



Threads and Operating Systems (4/4)

I Conclusion
• Try to mix user-level and kernel-level threads into a single concept.

Lightweight process

Thread

Kernel space

User space

LWP executing a thread

Thread state

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 8 / 47



Threads and Distributed Systems (1/4)

I Multithreaded web client: hiding network latencies.

• Web browser scans an incoming HTML page, and finds that more
files need to be fetched.

• Each file is fetched by a separate thread, each doing a (blocking)
HTTP request.

• As files come in, the browser displays them.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 9 / 47



Threads and Distributed Systems (1/4)

I Multithreaded web client: hiding network latencies.

• Web browser scans an incoming HTML page, and finds that more
files need to be fetched.

• Each file is fetched by a separate thread, each doing a (blocking)
HTTP request.

• As files come in, the browser displays them.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 9 / 47



Threads and Distributed Systems (2/4)

I Multiple request-response calls to other machines (RPC).

• A client does several calls at the same time, each one by a different
thread.

• It then waits until all results have been returned.

• Note: if calls are to different servers, we may have a linear speed-up.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 10 / 47



Threads and Distributed Systems (2/4)

I Multiple request-response calls to other machines (RPC).

• A client does several calls at the same time, each one by a different
thread.

• It then waits until all results have been returned.

• Note: if calls are to different servers, we may have a linear speed-up.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 10 / 47



Threads and Distributed Systems (3/4)

I Improve performance

• Starting a thread is much cheaper than starting a new process.

• Having a single-threaded server prohibits simple scale-up to a multi-
processor system.

• As with clients: hide network latency by reacting to next request
while previous one is being replied.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 11 / 47



Threads and Distributed Systems (3/4)

I Improve performance

• Starting a thread is much cheaper than starting a new process.

• Having a single-threaded server prohibits simple scale-up to a multi-
processor system.

• As with clients: hide network latency by reacting to next request
while previous one is being replied.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 11 / 47



Threads and Distributed Systems (4/4)

I Better structure

• Most servers have high I/O demands. Using simple, well-understood
blocking calls simplifies the overall structure.

• Multithreaded programs tend to be smaller and easier to understand
due to simplified flow of control.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 12 / 47



Clients

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 13 / 47



Clients

I A major part of client-side software is focused on (graphical) user
interfaces.

X kernel

Device drivers

Application

Xlib

Xlib interface

X protocol

Terminal (includes display
keyboard, mouse, etc.)

Application serverApplication server User's terminal

Local OS

Window
manager

Xlib

Local OS

I User interface is application-aware:
• Drag-and-drop: move objects across the screen to invoke

interaction with other applications
• In-place editing: integrate several applications at user-interface level

(word processing + drawing facilities)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 14 / 47



Clients

I A major part of client-side software is focused on (graphical) user
interfaces.

X kernel

Device drivers

Application

Xlib

Xlib interface

X protocol

Terminal (includes display
keyboard, mouse, etc.)

Application serverApplication server User's terminal

Local OS

Window
manager

Xlib

Local OS

I User interface is application-aware:
• Drag-and-drop: move objects across the screen to invoke

interaction with other applications
• In-place editing: integrate several applications at user-interface level

(word processing + drawing facilities)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 14 / 47



Client-Side Software

I Generally tailored for distribution transparency.

I Access transparency: client-side stubs for RPCs

I Location/migration transparency: let client-side software keep track
of actual location

I Replication transparency: multiple invocations handled by client
stub.


Client machine

Replicated request

Server 1 Server 2 Server 3

Client side handles
request replication

Client
appl.

Server
appl

Server
appl

Server
appl

I Failure transparency: can often be placed only at client (we’re trying
to mask server and communication failures).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 15 / 47



Client-Side Software

I Generally tailored for distribution transparency.

I Access transparency: client-side stubs for RPCs

I Location/migration transparency: let client-side software keep track
of actual location

I Replication transparency: multiple invocations handled by client
stub.


Client machine

Replicated request

Server 1 Server 2 Server 3

Client side handles
request replication

Client
appl.

Server
appl

Server
appl

Server
appl

I Failure transparency: can often be placed only at client (we’re trying
to mask server and communication failures).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 15 / 47



Client-Side Software

I Generally tailored for distribution transparency.

I Access transparency: client-side stubs for RPCs

I Location/migration transparency: let client-side software keep track
of actual location

I Replication transparency: multiple invocations handled by client
stub.


Client machine

Replicated request

Server 1 Server 2 Server 3

Client side handles
request replication

Client
appl.

Server
appl

Server
appl

Server
appl

I Failure transparency: can often be placed only at client (we’re trying
to mask server and communication failures).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 15 / 47



Client-Side Software

I Generally tailored for distribution transparency.

I Access transparency: client-side stubs for RPCs

I Location/migration transparency: let client-side software keep track
of actual location

I Replication transparency: multiple invocations handled by client
stub.


Client machine

Replicated request

Server 1 Server 2 Server 3

Client side handles
request replication

Client
appl.

Server
appl

Server
appl

Server
appl

I Failure transparency: can often be placed only at client (we’re trying
to mask server and communication failures).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 15 / 47



Client-Side Software

I Generally tailored for distribution transparency.

I Access transparency: client-side stubs for RPCs

I Location/migration transparency: let client-side software keep track
of actual location

I Replication transparency: multiple invocations handled by client
stub.


Client machine

Replicated request

Server 1 Server 2 Server 3

Client side handles
request replication

Client
appl.

Server
appl

Server
appl

Server
appl

I Failure transparency: can often be placed only at client (we’re trying
to mask server and communication failures).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 15 / 47



Servers

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 16 / 47



Servers

I A server is a process that waits for incoming service requests at a
specific transport address (port). In practice, there is a one-to-one
mapping between a port and a service.

ftp-data 20 File Transfer [Default Data]

ftp 21 File Transfer [Control]

telnet 23 Telnet

smtp 25 Simple Mail Transfer

login 49 Login Host Protocol

sunrpc 111 SUN RPC (portmapper)

courier 530 Xerox RPC

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 17 / 47



Types of Servers

I Superservers: servers that listen to several ports, i.e., provide several
independent services. In practice, when a service request comes in,
they start a subprocess to handle the request.

I Iterative vs. concurrent servers: iterative servers can handle only one
client at a time, in contrast to concurrent servers.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 18 / 47



Types of Servers

I Superservers: servers that listen to several ports, i.e., provide several
independent services. In practice, when a service request comes in,
they start a subprocess to handle the request.

I Iterative vs. concurrent servers: iterative servers can handle only one
client at a time, in contrast to concurrent servers.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 18 / 47



Server and State (1/2)

I Stateless and stateful servers

I Stateless servers: never keep accurate information about the status
of a client after having handled a request:

• Don’t record whether a file has been opened (simply close it again
after access)

• Don’t promise to invalidate a client’s cache
• Don’t keep track of your clients

I Consequences
• Clients and servers are completely independent
• State inconsistencies due to client or server crashes are reduced
• Possible loss of performance because, e.g., a server cannot anticipate

client behavior (think of prefetching file blocks)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 19 / 47



Server and State (1/2)

I Stateless and stateful servers

I Stateless servers: never keep accurate information about the status
of a client after having handled a request:

• Don’t record whether a file has been opened (simply close it again
after access)

• Don’t promise to invalidate a client’s cache
• Don’t keep track of your clients

I Consequences
• Clients and servers are completely independent
• State inconsistencies due to client or server crashes are reduced
• Possible loss of performance because, e.g., a server cannot anticipate

client behavior (think of prefetching file blocks)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 19 / 47



Server and State (1/2)

I Stateless and stateful servers

I Stateless servers: never keep accurate information about the status
of a client after having handled a request:

• Don’t record whether a file has been opened (simply close it again
after access)

• Don’t promise to invalidate a client’s cache
• Don’t keep track of your clients

I Consequences
• Clients and servers are completely independent
• State inconsistencies due to client or server crashes are reduced
• Possible loss of performance because, e.g., a server cannot anticipate

client behavior (think of prefetching file blocks)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 19 / 47



Server and State (1/2)

I Stateless and stateful servers

I Stateless servers: never keep accurate information about the status
of a client after having handled a request:

• Don’t record whether a file has been opened (simply close it again
after access)

• Don’t promise to invalidate a client’s cache
• Don’t keep track of your clients

I Consequences
• Clients and servers are completely independent
• State inconsistencies due to client or server crashes are reduced
• Possible loss of performance because, e.g., a server cannot anticipate

client behavior (think of prefetching file blocks)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 19 / 47



Server and State (2/2)

I Stateful servers: keeps track of the status of its clients.

• Record that a file has been opened, so that prefetching can be done
• Knows which data a client has cached, and allows clients to keep

local copies of shared data

I The performance of stateful servers can be extremely high, provided
clients are allowed to keep local copies. As it turns out, reliability is
not a major problem.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 20 / 47



Server and State (2/2)

I Stateful servers: keeps track of the status of its clients.
• Record that a file has been opened, so that prefetching can be done
• Knows which data a client has cached, and allows clients to keep

local copies of shared data

I The performance of stateful servers can be extremely high, provided
clients are allowed to keep local copies. As it turns out, reliability is
not a major problem.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 20 / 47



Server and State (2/2)

I Stateful servers: keeps track of the status of its clients.
• Record that a file has been opened, so that prefetching can be done
• Knows which data a client has cached, and allows clients to keep

local copies of shared data

I The performance of stateful servers can be extremely high, provided
clients are allowed to keep local copies. As it turns out, reliability is
not a major problem.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 20 / 47



Server Clusters (1/2)

I Three different tiers.

I The first tier is generally responsible for passing requests to an ap-
propriate server.

Logical switch
(possibly multiple)

Application/compute servers Distributed
file/database

system

Client requests

Dispatched
request

First tier Second tier Third tier

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 21 / 47



Server Clusters (2/2)

I Having the first tier handle all communication from/to the cluster
may lead to a bottleneck.

I Solution: various, but one popular one is TCP-handoff

SwitchClient

 Server

 
Server

Request
Request

(handed off)

Response
Logically a
single TCP
connection

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 22 / 47



Server Clusters (2/2)

I Having the first tier handle all communication from/to the cluster
may lead to a bottleneck.

I Solution: various, but one popular one is TCP-handoff

SwitchClient

 Server

 
Server

Request
Request

(handed off)

Response
Logically a
single TCP
connection

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 22 / 47



Example: Planet Lab (1/2)

I Different organizations contribute machines, which they subse-
quently share for various experiments.

I Problem: we need to ensure that different distributed applications
do not get into each other’s way ⇒ virtualization

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 23 / 47



Example: Planet Lab (2/2)

I Vserver: Independent and protected environment with its own li-
braries, server versions, and so on.

I Distributed applications are assigned a collection of vservers dis-
tributed across multiple machines (slice).

Hardware

Linux enhanced operating system

Vserver

P
rocess

P
rocess

...

Vserver

P
rocess

P
rocess

...

Vserver

P
rocess

P
rocess

...

Vserver

P
rocess

P
rocess

...

Vserver

P
rocess

P
rocess

...

User-assigned
virtual machines

Priviliged management
virtual machines

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 24 / 47



Virtualization

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 25 / 47



Virtualization

I Technique for hiding the physical characterizes of computing re-
sources from the way other systems, applications or end users inter-
act with them.

I Offer a different interface.

I Virtualized interface is not necessarily simpler.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 26 / 47



Different Types of Virtualization

I Process-level virtualization

I OS-level virtualization

I System-level virtualization

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 27 / 47



Process-Level Virtualization (1/2)

I Usually implemented on top of an OS.

I Application has to be written specifically for the VM.

I The virtual machine runs one application (one process).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 28 / 47



Process-Level Virtualization (2/2)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 29 / 47



OS-Level Virtualization (1/2)

I The virtual machine runs a set of userland processes.

I Userland domains are separated.

I Kernel is the same for all userland domains.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 30 / 47



OS-Level Virtualization (2/2)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 31 / 47



System-Level Virtualization (1/3)

I Emulates a computer similar to a real physical one.
• With CPU(s), memory, disk(s), network interface(s), etc.

I The virtual machine runs a full OS.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 32 / 47



System-Level Virtualization (2/3)

I Full virtualization vs. Paravirtualization.

I Full virtualization: the guest OS is not aware it is being virtualized
and requires no modification.

I Paravirtualization: the guest OS should be modified in order to be
operated in the virtual environment.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 33 / 47



System-Level Virtualization (2/3)

I Full virtualization vs. Paravirtualization.

I Full virtualization: the guest OS is not aware it is being virtualized
and requires no modification.

I Paravirtualization: the guest OS should be modified in order to be
operated in the virtual environment.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 33 / 47



System-Level Virtualization (2/3)

I Full virtualization vs. Paravirtualization.

I Full virtualization: the guest OS is not aware it is being virtualized
and requires no modification.

I Paravirtualization: the guest OS should be modified in order to be
operated in the virtual environment.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 33 / 47



System-Level Virtualization (3/3)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 34 / 47



Hypervisor

I In the system-level virtualization, virtual machines are managed by
another software layer.

I It is called hypervisor or Virtual Machine Manager (VMM).

I Two types of hypervisors:
• Type 1: runs directly on hardware (Native/Bare-Metal)
• Type 2: hosted on top of another operating system (Hosted)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 35 / 47



Hypervisor

I In the system-level virtualization, virtual machines are managed by
another software layer.

I It is called hypervisor or Virtual Machine Manager (VMM).

I Two types of hypervisors:
• Type 1: runs directly on hardware (Native/Bare-Metal)
• Type 2: hosted on top of another operating system (Hosted)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 35 / 47



Bare Metal Hypervisor

I Xen, ...

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 36 / 47



Hosted Hypervisor

I VMWare, KVM, Virtualbox, ...

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 37 / 47



Code Migration

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 38 / 47



Strong and Weak Mobility (1/2)

I Code segment: contains the actual code

I Data segment: contains the state

I Execution state: contains context of thread executing the object’s
code

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 39 / 47



Strong and Weak Mobility (2/2)

I Weak mobility: move only code and data segment (and reboot ex-
ecution):

• Relatively simple, especially if code is portable
• Distinguish code shipping (push) from code fetching (pull)

I Strong mobility: move component, including execution state
• Migration: move entire object from one machine to the other
• Cloning: start a clone, and set it in the same execution state.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 40 / 47



Strong and Weak Mobility (2/2)

I Weak mobility: move only code and data segment (and reboot ex-
ecution):

• Relatively simple, especially if code is portable
• Distinguish code shipping (push) from code fetching (pull)

I Strong mobility: move component, including execution state
• Migration: move entire object from one machine to the other
• Cloning: start a clone, and set it in the same execution state.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 40 / 47



Managing Local Resources (1/2)

I Problem: an object uses local resources that may or may not be
available at the target site.

I Resource types:

• Fixed: the resource cannot be migrated, such as local hardware.

• Fastened: the resource can, in principle, be migrated but only at high
cost.

• Unattached: the resource can easily be moved along with the object
(e.g., a cache).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 41 / 47



Managing Local Resources (1/2)

I Problem: an object uses local resources that may or may not be
available at the target site.

I Resource types:

• Fixed: the resource cannot be migrated, such as local hardware.

• Fastened: the resource can, in principle, be migrated but only at high
cost.

• Unattached: the resource can easily be moved along with the object
(e.g., a cache).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 41 / 47



Managing Local Resources (1/2)

I Problem: an object uses local resources that may or may not be
available at the target site.

I Resource types:

• Fixed: the resource cannot be migrated, such as local hardware.

• Fastened: the resource can, in principle, be migrated but only at high
cost.

• Unattached: the resource can easily be moved along with the object
(e.g., a cache).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 41 / 47



Managing Local Resources (1/2)

I Problem: an object uses local resources that may or may not be
available at the target site.

I Resource types:

• Fixed: the resource cannot be migrated, such as local hardware.

• Fastened: the resource can, in principle, be migrated but only at high
cost.

• Unattached: the resource can easily be moved along with the object
(e.g., a cache).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 41 / 47



Managing Local Resources (2/2)

I Object-to-resource binding:

• By identifier: the object requires a specific instance of a resource
(e.g., a specific database).

• By value: the object requires the value of a resource (e.g., standard
libraries).

• By type: the object requires that only a type of resource is available
(e.g., a color monitor).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 42 / 47



Managing Local Resources (2/2)

I Object-to-resource binding:

• By identifier: the object requires a specific instance of a resource
(e.g., a specific database).

• By value: the object requires the value of a resource (e.g., standard
libraries).

• By type: the object requires that only a type of resource is available
(e.g., a color monitor).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 42 / 47



Managing Local Resources (2/2)

I Object-to-resource binding:

• By identifier: the object requires a specific instance of a resource
(e.g., a specific database).

• By value: the object requires the value of a resource (e.g., standard
libraries).

• By type: the object requires that only a type of resource is available
(e.g., a color monitor).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 42 / 47



Managing Local Resources (2/2)

I Object-to-resource binding:

• By identifier: the object requires a specific instance of a resource
(e.g., a specific database).

• By value: the object requires the value of a resource (e.g., standard
libraries).

• By type: the object requires that only a type of resource is available
(e.g., a color monitor).

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 42 / 47



Migration in Heterogeneous Systems

I The target machine may not be suitable to execute the migrated
code

I The definition of process/thread/processor context is highly depen-
dent on local hardware, OS and runtime system.

I Only solution: make use of an abstract machine that is implemented
on different platforms:

• Interpreted languages, effectively having their own VM
• Virtual VM (as discussed previously)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 43 / 47



Migration in Heterogeneous Systems

I The target machine may not be suitable to execute the migrated
code

I The definition of process/thread/processor context is highly depen-
dent on local hardware, OS and runtime system.

I Only solution: make use of an abstract machine that is implemented
on different platforms:

• Interpreted languages, effectively having their own VM
• Virtual VM (as discussed previously)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 43 / 47



Migration in Heterogeneous Systems

I The target machine may not be suitable to execute the migrated
code

I The definition of process/thread/processor context is highly depen-
dent on local hardware, OS and runtime system.

I Only solution: make use of an abstract machine that is implemented
on different platforms:

• Interpreted languages, effectively having their own VM
• Virtual VM (as discussed previously)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 43 / 47



Summary

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 44 / 47



Summary

I Process and Threads

I Threads in OS: user-level vs. kernel-level implementations

I Threads in distributed systems: improve performance

I Clients

I Servers: stateless vs. stateful, server clusters

I Virtualization: process level, OS level, and system level

I Code migration
• Weak vs. strong mobility
• Local resources: fixed, fastened, and unattached
• Object-to-resource-binding: by id, by value, by type

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 45 / 47



Reading

I Chapter 3 of the Distributed Systems: Principles and Paradigms.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 46 / 47



Questions?

Amir H. Payberah (Tehran Polytechnic) Processes 1393/12/4 47 / 47


