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What is the problem?
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Two Generals’ Problem (1/3)

I Two generals need to coordinate an attack.
• Must agree on time to attack.
• They will win only if they attack simultaneously.
• Communicate through messengers.
• Messengers may be killed on their way.
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Two Generals’ Problem (2/3)

I Lets try to solve it for general g1 and g2.

I g1 sends time of attack to g2.

• Problem: how to ensure g2 received message?
• Solution: let g2 ack receipt of message.
• Problem: how to ensure g1 received ack?
• Solution: let g1 ack the receipt of the ack.
• ...

I This problem is impossible to solve!
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Two Generals’ Problem (3/3)

I Applicability to distributed systems:
• Two nodes need to agree on a value.
• Communicate by messages using an unreliable channel.

I Agreement is a core problem.
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Clock Synchronization
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Clock Synchronization

I Physical clocks

I Logical clocks
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Physical Clock

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 8 / 52



Physical Clock (1/3)

I Sometimes we simply need the exact time, not just an ordering.

I A solution: Universal Coordinated Time (UTC)

• Based on the number of transitions per second of the cesium 133
atom.

• At present, the real time is taken as the average of some 50
cesium-clocks around the world.

I UTC is broadcast through short wave radio and satellite.
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Physical Clock (2/3)

I Suppose we have a distributed system with a UTC-receiver some-
where in it ⇒ we still have to distribute its time to each machine.

I Basic principle

• Every machine has a timer that generates an interrupt H times per
second.

• There is a clock in machine p that ticks on each timer interrupt.
Denote the value of that clock by Cp(t), where t is UTC time.

• Ideally, we have that for each machine p, Cp(t) = t, or, in other
words, dC

dt = 1.
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Physical Clock (3/3)

I In practice: 1− ρ ≤ dC
dt ≤ 1 + ρ.

I Never let two clocks in any system differ by more than δ time units
⇒ synchronize at least every δ/(2ρ) seconds.
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Clock Synchronization

I Network Time Protocol (NTP)

I The Berkeley algorithm
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Clock Synchronization - NTP

I Network Time Protocol (NTP)

I Every machine asks a time server for the accurate time at least once
every δ/(2ρ) seconds.

I You need an accurate measure of round trip delay, including inter-
rupt handling and processing incoming messages.
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Clock Synchronization - The Berkeley Algorithm

I The time daemon asks all the other machines for their clock values.

I The machines answer.

I The time daemon tells everyone how to adjust their clock.
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Logical Clock
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The Happened-Before Relationship

I The happened-before relation:

• If a and b are two events in the same process, and a comes before b,
then a→ b.

• If a is the sending of a message, and b is the receipt of that message,
then a→ b.

• If a→ b and b → c , then a→ c .

I If two events, a and b, happen in different processes that do not
exchange messages, then a → b is not true, but neither is b → a.
These events are said to be concurrent.
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Lamport Logical Clocks (1/4)

I How do we maintain a global view on the system’s behavior that is
consistent with the happened-before relation?

I Solution: attach a time-stamp C (e) to each event e, satisfying the
following properties:

• P1: if a and b are two events in the same process, and a → b, then
we demand that C (a) < C (b).

• P2: if a corresponds to sending a message m, and b to the receipt
of that message, then also C (a) < C (b).
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Lamport Logical Clocks (2/4)

I How to attach a time-stamp to an event when there’s no global
clock.

I Solution: each process Pi maintains a local counter Ci and adjusts
this counter according to the following rules:

1 For any two successive events that take place within Pi , Ci is incre-
mented by 1.

2 Each time a message m is sent by process Pi , the message receives
a time-stamp ts(m) = Ci .

3 Whenever a message m is received by a process Pj , Pj adjusts its local
counter Cj to max{Cj , ts(m)}; then executes step 1 before passing
m to the application.

I Property P1 is satisfied by (1); Property P2 by (2) and (3).

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 18 / 52



Lamport Logical Clocks (2/4)

I How to attach a time-stamp to an event when there’s no global
clock.

I Solution: each process Pi maintains a local counter Ci and adjusts
this counter according to the following rules:

1 For any two successive events that take place within Pi , Ci is incre-
mented by 1.

2 Each time a message m is sent by process Pi , the message receives
a time-stamp ts(m) = Ci .

3 Whenever a message m is received by a process Pj , Pj adjusts its local
counter Cj to max{Cj , ts(m)}; then executes step 1 before passing
m to the application.

I Property P1 is satisfied by (1); Property P2 by (2) and (3).

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 18 / 52



Lamport Logical Clocks (2/4)

I How to attach a time-stamp to an event when there’s no global
clock.

I Solution: each process Pi maintains a local counter Ci and adjusts
this counter according to the following rules:

1 For any two successive events that take place within Pi , Ci is incre-
mented by 1.

2 Each time a message m is sent by process Pi , the message receives
a time-stamp ts(m) = Ci .

3 Whenever a message m is received by a process Pj , Pj adjusts its local
counter Cj to max{Cj , ts(m)}; then executes step 1 before passing
m to the application.

I Property P1 is satisfied by (1); Property P2 by (2) and (3).

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 18 / 52



Lamport Logical Clocks (2/4)

I How to attach a time-stamp to an event when there’s no global
clock.

I Solution: each process Pi maintains a local counter Ci and adjusts
this counter according to the following rules:

1 For any two successive events that take place within Pi , Ci is incre-
mented by 1.

2 Each time a message m is sent by process Pi , the message receives
a time-stamp ts(m) = Ci .

3 Whenever a message m is received by a process Pj , Pj adjusts its local
counter Cj to max{Cj , ts(m)}; then executes step 1 before passing
m to the application.

I Property P1 is satisfied by (1); Property P2 by (2) and (3).

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 18 / 52



Lamport Logical Clocks (2/4)

I How to attach a time-stamp to an event when there’s no global
clock.

I Solution: each process Pi maintains a local counter Ci and adjusts
this counter according to the following rules:

1 For any two successive events that take place within Pi , Ci is incre-
mented by 1.

2 Each time a message m is sent by process Pi , the message receives
a time-stamp ts(m) = Ci .

3 Whenever a message m is received by a process Pj , Pj adjusts its local
counter Cj to max{Cj , ts(m)}; then executes step 1 before passing
m to the application.

I Property P1 is satisfied by (1); Property P2 by (2) and (3).

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 18 / 52



Lamport Logical Clocks (2/4)

I How to attach a time-stamp to an event when there’s no global
clock.

I Solution: each process Pi maintains a local counter Ci and adjusts
this counter according to the following rules:

1 For any two successive events that take place within Pi , Ci is incre-
mented by 1.

2 Each time a message m is sent by process Pi , the message receives
a time-stamp ts(m) = Ci .

3 Whenever a message m is received by a process Pj , Pj adjusts its local
counter Cj to max{Cj , ts(m)}; then executes step 1 before passing
m to the application.

I Property P1 is satisfied by (1); Property P2 by (2) and (3).

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 18 / 52



Lamport Logical Clocks (3/4)
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Lamport Logical Clocks (4/4)

I a→ b implies C (a) < C (b).

I C (a) < C (b) does not necessarily imply a→ b.

I C (E31) < C (E13), but E31 6→ E13.
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Example: Totally Ordered Multicast (1/2)

I We sometimes need to guarantee that concurrent updates on a repli-
cated database are seen in the same order everywhere:

• P1 adds $100 to an account (initial value: $1000)
• P2 increments account by 1%
• There are two replicas

I In absence of proper synchronization:
replica #1 ← $1111, while replica #2 ← $1110.

Update 1 Update 2

Update 1 is
performed before

update 2

Update 2 is
performed before

update 1

Replicated database
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Example: Totally Ordered Multicast (2/2)

I Solution:
• Process Pi sends timestamped message msgi to all others. The

message itself is put in a local queue queuei .
• Any incoming message at Pj is queued in queuej , according to its

timestamp, and acknowledged to every other process.

I Pj passes a message msgi to its application if:
• msgi is at the head of queuej .
• for each process Pk , there is a message msgk in queuej with a larger

timestamp.

I We are assuming that communication is reliable and FIFO ordered.
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Shortcoming of Lamport Clocks

I Main shortcoming of Lamport’s clocks:
• C (a) < C (b) does not necessarily imply a→ b
• We cannot deduce causal dependencies from time stamps.

I Why?
• Clocks advance independently or via messages.
• There is no history as to where advances come from.
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Vector Clocks (1/2)

I Each process Pi has an array VCi [1..n], where VCi [j ] denotes the
number of events that process Pi knows have taken place at Pj .

I When Pi sends a message m, it adds 1 to VCi [i ], and sends VCi

along with m as vector time-stamp vt(m). Result: upon arrival,
recipient knows Pi ’s time-stamp.

I When a process Pj delivers a message m that it received from Pi

with vector time-stamp ts(m), it

(1) updates each VCj [k] to max{VCj [k], ts(m)[k]}
(2) increments VCj [j ] by 1.

I VCi [j ] = k tells us that Pi knows that Pj has sent k messages.
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Vector Clocks (2/2)
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Example: Causally Ordered Multicasting (1/2)

I To ensure that a message is delivered only if all causally preceding
messages have already been delivered.

I Pi increments VCi [i ] only when sending a message, and Pj adjusts
VCj when receiving a message.

I Pj postpones delivery of m until:
• ts(m)[i ] = VCj [i ] + 1.
• ts(m)[k] ≤ VCj [k] for k 6= i .
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Example: Causally Ordered Multicasting (2/2)

P0

P1

P2


 VC  = (0,0,0)2 VC  = (1,0,0)2

VC  = (1,1,0)1

VC  = (1,0,0)0 VC  = (1,1,0)0

VC  = (1,1,0)2

m

m*
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Mutual Exclusion
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Mutual Exclusion

I A number of processes in a distributed system want exclusive access
to some resource.

I Basic solutions:
• Via a centralized server.
• Decentralized algorithm.
• Distributed algorithm, with no topology imposed.
• Logical ring algorithm.
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Mutual Exclusion
Centralized Model
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Centralized Algorithm

I Process 1 asks the coordinator for permission to access the shared
resource. Permission is granted.

I Process 2 then asks permission to access the same resource. The
coordinator does not reply.

I When process 1 releases the resource, it tells the coordinator, which
then replies to 2.

(a) (b) (c)

0 0 01 1 1

3 3 3

2 2

2

2

Request
Request ReleaseOK

OK

Coordinator

Queue is
empty

No reply
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Mutual Exclusion
Decentralized Algorithm
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Decentralized Algorithm (1/2)

I Assume every resource is replicated n times, with each replica having
its own coordinator⇒ access requires a majority vote from m > n/2
coordinators.

I A coordinator always responds immediately to a request.

I When a coordinator crashes, it will recover quickly, but will have
forgotten about permissions it had granted.
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Decentralized Algorithm (2/2)

I How robust is this system?

I Let p = ∆t/T denote the probability that a coordinator crashes
and recovers in a period ∆t while having an average lifetime T .

I Probability that k out m coordinators reset:

P[violation] = pv =
n∑

k=2m−n

(
m

k

)
pk(1− p)m−k

With p = 0.001, n = 32, m = 0.75n, pv < 10−40
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Mutual Exclusion
Distributed Algorithm
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Distributed Algorithm (1/3)

I Ricart and Agrawala’s algorithm

I Requires a total ordering of all events: Lamport’s algorithm.

I When a process wants to access a shared resource:
• It builds a message containing the name of the resource, its process

number, and the current (logical) time.
• It then sends the message to all other processes, conceptually includ-

ing itself.
• The sending of messages is assumed to be reliable.

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 36 / 52



Distributed Algorithm (1/3)

I Ricart and Agrawala’s algorithm

I Requires a total ordering of all events: Lamport’s algorithm.

I When a process wants to access a shared resource:
• It builds a message containing the name of the resource, its process

number, and the current (logical) time.
• It then sends the message to all other processes, conceptually includ-

ing itself.
• The sending of messages is assumed to be reliable.

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 36 / 52



Distributed Algorithm (2/3)

I When a process receives a request message from another process:

• If the receiver is not accessing the resource and does not want to
access it, it sends back an OK message to the sender.

• If the receiver already has access to the resource, it simply does not
reply. Instead, it queues the request.

• If the receiver wants to access the resource as well but has not yet
done so, it compares the timestamp of the incoming message with
the one contained in the message that it has sent everyone. The
lowest one wins.
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Distributed Algorithm (3/3)

I Two processes want to access a shared resource at the same mo-
ment.

I Process 0 has the lowest timestamp, so it wins.

I When process 0 is done, it sends an OK also, so 2 can now go ahead.

0 0 0

1 1 12 2 2

8

8
8 12

12

12

OK OK

OK

OK

Accesses

resource

Accesses

resource

(a) (b) (c)
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Mutual Exclusion
Token Ring Algorithm
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Token Ring Algorithm

I Organize processes in a logical ring.

I Let a token be passed between them.

I The one that holds the token is allowed to enter the critical region
(if it wants to).

1

00
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2 4 7 1 6 53

(a) (b)
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Election Algorithms
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Election Algorithms

I An algorithm requires that some process acts as a coordinator.

I The question is how to select this special process dynamically.
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Election by Bullying (1/3)

I Each process has an associated priority (weight), and the process
with the highest priority should always be elected as the coordinator.

I How do we find the heaviest process?
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Election by Bullying (2/3)

I Any process can just start an election by sending an election message
to all other processes (assuming you don’t know the weights of the
others).

I If a process Pheavy receives an election message from a lighter pro-
cess Plight , it sends a take-over message to Plight . Plight is out of
the race.

I If a process doesn’t get a take-over message back, it wins, and sends
a victory message to all other processes.

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 44 / 52



Election by Bullying (2/3)

I Any process can just start an election by sending an election message
to all other processes (assuming you don’t know the weights of the
others).

I If a process Pheavy receives an election message from a lighter pro-
cess Plight , it sends a take-over message to Plight . Plight is out of
the race.

I If a process doesn’t get a take-over message back, it wins, and sends
a victory message to all other processes.

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 44 / 52



Election by Bullying (2/3)

I Any process can just start an election by sending an election message
to all other processes (assuming you don’t know the weights of the
others).

I If a process Pheavy receives an election message from a lighter pro-
cess Plight , it sends a take-over message to Plight . Plight is out of
the race.

I If a process doesn’t get a take-over message back, it wins, and sends
a victory message to all other processes.

Amir H. Payberah (Tehran Polytechnic) Synchronization 1394/1/18 44 / 52



Election by Bullying (3/3)

I Process 4 holds an election.

I Processes 5 and 6 respond, telling 4 to stop.

I Now 5 and 6 each hold an election.

I Process 6 tells 5 to stop.

I Process 6 wins and tells
everyone.
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Election in a Ring (1/3)

I Process priority is obtained by organizing processes into a (logical)
ring.

I Process with the highest priority should be elected as coordinator.
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Election in a Ring (2/3)

I Any process can start an election by sending an election message to
its successor.

• If a successor is down, the message is passed on to the next
successor.

I If a message is passed on, the sender adds itself to the list. When
it gets back to the initiator, everyone had a chance to make its
presence known.

I The initiator sends a coordinator message around the ring containing
a list of all living processes. The one with the highest priority is
elected as coordinator.
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Election in a Ring (3/3)

I Does it matter if two processes initiate an election?
• There is no problem with having two concurrent initiators.

I What happens if a process crashes during the election?
• Crashes during elections are permitted: you just start over again.
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Summary
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Summary

I Agreement in a distribute system

I Clocks: physical vs. logical

I Physical clocks: NTP, Berkeley

I Logical clocks: Happened-Before, Lamport, vector clocks

I Mutual exclusion: centralized, decentralized, distributed, ring-based

I Election: bullying, ring
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Reading

I Chapter 6 of the Distributed Systems: Principles and Paradigms.
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Questions?
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