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What is a Process?
 Program

 An executable file
 Process

 An instance of a program that is being 
executed by the OS.

 Every process has a unique ID (PID).
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Process Management
 The Unix OS is a time-sharing system.
 Each process is represented by a 

task_struct data structure.
 The task_vector is an array of pointers 

to every task_struct data structure in 
the system.
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Process Statuses
 Running

 The process is either running or it is ready to 
run. 

 Waiting
 The process is waiting for an event or for a 

resource. 

 Stopped
 The process has been stopped, usually by 

receiving a signal.

 Zombie
 This is a halted process which, for some 

reason, still has a task_struct data structure in 
the task vector.
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Type of Processes
 Interactive Process

 Initiated from (and controlled by) a shell
 Daemon Process

 Run in the background until required
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Related Commands
 ps

 Report process status.
 pstree

 Display a tree of processes.
 nice

 Run a program with modified scheduling 
priority.

 renice
 Alter priority of running process.

 kill
 Send signal to a process.
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Related Commands 
(Cont.)
 top

 Display top CPU processes.
 jobs

 List the active jobs.
 bg

 Place a job in background (similar to &);
 fg

 Place a job in foreground.
 Ctrl+z

 Stopped a process.
 Ctrl+c

 Terminate a process.
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Process Control
 fork and vfork
 exit
 wait and waitpid
 exec
 signal
 kill
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fork

fork
Parent Child

PID1 PID2
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fork (cont.)

 int fork();
 The only way a new process is created 

by the Unix kernel.
 The new process created is called the child 

process.
 The child is a copy of the parent.

 The child gets a copy of the parent’s data 
space, heap and stack.

 The parent and child don’t share these 
portions of memory.
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fork (cont.)

 This function is called once, but return 
twice.
 The process ID of the new child (to the 

parent).
 A process can have more than one child.

 0 (to the child).
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fork Sample
main()
{

int pid;
pid = fork();

    if (pid < 0)
// error

else if (pid == 0)
//child

else
//parent

}
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fork (cont.)

 We never know if the child starts 
executing before the parent or vice 
versa.
 This depends on the scheduling algorithm 

used by the kernel.
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vfork
 int = vfork();
 It has the same calling sequence and 

same return values as fork.
 The child doesn’t copy the parent data 

space.
 The child runs in the address space of the 

parent.
 With vfork, child runs first, then parent 

runs.
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exit
 Normal termination

 Executing a return from the main function.
 Calling the exit function.
 Calling the _exit function.

 Abnormal termination
 Calling abort.
 Receives certain signals.
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exit (cont.)

 int exit (int state);
 Sometimes we want the terminating 

process to be able to notify its parent 
how it terminated.

 For the exit and _exit function this is 
done by passing an exit status as the 
argument to these two functions.

 The parent of the process can obtain 
the termination status from either the 
wait or waitpid function.
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Termination Conditions
 Parent terminate before the child

 The init process becomes the parent process 
of any process whose parent terminated.
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Termination Conditions
 Child terminate before the parent

 The child is completely disappeared, but the 
parent wouldn’t be able to fetch its 
termination status.

 The kernel has to keep a certain amount of 
information for every terminating process.

 The process that has terminated, but whose 
parent has not waited for it, is called zombie.
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wait
 When a process terminates, the parent 

is notified by the kernel sending the 
parent the SIGCHLD signal.

 The parent of the process can obtain 
the termination status from either the 
wait or waitpid function.



 22

Tehran

Polytechnic

University

wait (cont.)

 The process that calls wait or waitpid 
can:
 Block (if all of its children are still running)
 Return immediately with the termination 

status of a child (if a child has terminated)
 Return immediately with an error (if it 

doesn’t have any child process)
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wait and waitpid
 int wait (int *statloc);
 int waitpid (int pid, int *statloc, int 

options);
 If statloc is not a null pointer, the termination status 

of the terminated process is stored in this location.

 The difference between these two 
function:
 wait can block, while waitpid has an option that 

prevents it from blocking.
 waitpid doesn’t wait for the first child to terminate (it 

can control which process it waits for)
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exec
 A process cause another program to be 

executed by calling one of the exec 
functions.

 When a process calls one of the exec 
functions, that process is completely 
replaced by the new program.

 The process ID doesn’t change across 
an exec.
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exec functions
 int execl (char *path, char *arg0, … /*(char *) 0 

*/);
 int execle (char *path, char *arg0, … /*(char *) 0, 

char *envp[] */);
 int execlp (char *filename, char *arg0, … /*(char 

*) 0 */);
 int execv (char *pathname, char *argv0[]);
 int execve (char *pathname, char *argv0[], char 

*envp[]);
 int execvp (char *filename, char *envp[]);
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signal
 Signals are software interrupts.
 The name of signals all begin with the 

three character SIG : SIGABRT
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signal (cont.)

 void (*signal (int signo, void (*func) (int))) 
(int);

 Kernel do when a signal occurs:
 Ignore the signal

 Can not ignore : SIGKILL, SIGSTOP
 Catch the signal
 Let the default action apply
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signal Sample
main()
{

signal (SIGUSER, sig_user);
while (1);

}
//---------------------------------
void sig_user (int signo)
{

if (signo == SIGUSER)
printf (“receive signal\n”);

return;
}
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kill
 int kill (int pid, int signo);
 Send a signal to a process or group of 

the processes.



 30

Tehran

Polytechnic

University

Contents

 What is a Process?
 Process Control
 Process Relationship
 Inter- Process Communication



 31

Tehran

Polytechnic

University

Process Relationship

fork
fork

fork

exec

exec

fork & 
exec

exec

exec

fork
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IPC
 Pipe
 FIFO
 Message queue
 Shared memory
 socket
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pipe
 It provides a one-way flow of data.
 It is in the kernel
 It can only be used between processes 

that have a parent process in common.

Parent Child

pipe
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pipe (cont.)

 int pipe (int *filedes);
 filedes[0] : open for reading
 filedes[1] : open for writing
 pipe command :

 who | sort | lpr



 36

Tehran

Polytechnic

University

FIFO
 It is similar to a pipe.
 Unlike pipes, a FIFO has a name 

associated with it (named pipe).
 It uses a file as a communication way.
 int mknod (char *path, int mode, int 

dev)
 mode is or’ed with S_IFIFO
 dev is equal 0 for FIFO.
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Name Space
 The set of possible names for a given 

type of IPC is called its name space.
 The name is how the client and server 

connect to exchange messages.
 key_t ftok (char *path, char proj);
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Message Queue
 Message queues are a linked list of 

messages stored within the kernel.
 We don’t have to fetch messages in a 

first-int, first-out order.
 We can fetch messages based on their type 

field.
 A process wants to impose some 

structure on the data being transferred.
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Message Queue (cont.)

 int msgget (key_t key, int msgflag);
 A new queue is created, or an existing 

queue is open by msgget.
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Message Queue (cont.)

 int msgsnd(int msgid, void *ptr, size_t len, int flag);
 Data is placed onto a message queue by calling 

msgsnd;
 ptr points to a long integer that contains the 

positive integer message type, and it is 
immediately followed by the message data.
 Struct my_msg
   {

long type;
char data[SIZE];

   }
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Message Queue (cont.)

 int msgrcv (int msgid, void *ptr, sizet 
len, long mtype, int flag);

 The type argument lets us specify which 
message we want:
 mtype == 0, the first message on the queue
 mtype > 0, the first message on the queue 

whose type equals mtype.
 mtype < 0, the first message on the queue 

whose type is the lowest value less or equal 
to the absolute value of mtype.
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Message Queue (cont.)

 int msgctl (int msgid, int cmd, struct 
msgid_ds *buf);

 The msgctl function performs various 
operations in a queue.
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Shared memory

   Server     Client  

Pipe, FIFO,
message

Input
file

Output
file

kernel
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Shared memory (cont.)

   Server     Client  

Kernel

Shared memory

Input
file

Output
file
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Shared memory (cont.)

 int shmget (key_t key, int size, int flag);
 A shared memory segment is created, 

or an existing one is accessed with the 
shmget system call.
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Shared memory (cont.)

 Char *shmat (int shmid, char *shmaddr, 
int shmfalg);

 The shmget dose not provide access to 
the segment for the calling process.

 We must attach the shared memory 
segment by calling the shmat system 
call.
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Shared memory (cont.)

 int shmdt (char *shmaddr);
 When a process is finished with a 

shared memory segment, it detaches 
the segment by calling the shmdt 
system call.

 This call dose not delete the shared 
memory segment.
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Shared memory (cont.)

 int shmctl (int shmid, int cmd, struct 
shmid_ds *buf);

 The msgctl function performs various 
operations in a shared memory 
segment.
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Semaphore 
 Semaphores are a synchronization 

primitive.
 To obtain a shared resource:

 Test the semaphore that controls the 
resource.

 If the value is positive the process can use 
the resource. The process decrements the 
value by 1.

 If the value is 0, the process goes to sleep 
until the value is greater than 0.
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Semaphore (cont.)

 int semget (key_t key, int nsems, int 
flag);

 This function get a semaphore ID.

 int semctl (int semid, int semnum, int 
cmd, union semun arg);

 The semctl function performs various 
operations in a semaphore.
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Semaphore (cont.)

 int semop (int semid, struct sembuf 
*semop, size_t nops);

 Struct sembuf
   {

ushort sem_num;
short sem_op;
shoet sem_flag;

}
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Semaphore (cont.)

 Each particular operation is specified by 
a sem_op value:
 sem_op > 0, this correspond to the release of 

resources. The sem_op value is added to the 
current value;

 sem_op == 0, the caller wants to wait until 
the semaphore’s value become zero.

 sem_op < 0, this correspond to the allocation 
od resources. The caller wants to wait until 
the value become greater or equal the 
absolute value of sem_op. then the absolute 
value of sem_op is subtracted from the 
current value.
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Question?


