
 1

Tehran

Polytechnic

University

Process
and

 Inter-Process
Communication

 By : Amir Hossein Payberah
payberah@yahoo.com

 2

Tehran

Polytechnic

University

Contents

 What is a Process?
 Process Control
 Process Relationship
 Inter- Process Communication

 3

Tehran

Polytechnic

University

What is a Process?
 Program

 An executable file
 Process

 An instance of a program that is being
executed by the OS.

 Every process has a unique ID (PID).

 4

Tehran

Polytechnic

University

Process Management
 The Unix OS is a time-sharing system.
 Each process is represented by a

task_struct data structure.
 The task_vector is an array of pointers

to every task_struct data structure in
the system.

 5

Tehran

Polytechnic

University

Process Statuses
 Running

 The process is either running or it is ready to
run.

 Waiting
 The process is waiting for an event or for a

resource.

 Stopped
 The process has been stopped, usually by

receiving a signal.

 Zombie
 This is a halted process which, for some

reason, still has a task_struct data structure in
the task vector.

 6

Tehran

Polytechnic

University

Type of Processes
 Interactive Process

 Initiated from (and controlled by) a shell
 Daemon Process

 Run in the background until required

 7

Tehran

Polytechnic

University

Related Commands
 ps

 Report process status.
 pstree

 Display a tree of processes.
 nice

 Run a program with modified scheduling
priority.

 renice
 Alter priority of running process.

 kill
 Send signal to a process.

 8

Tehran

Polytechnic

University

Related Commands
(Cont.)
 top

 Display top CPU processes.
 jobs

 List the active jobs.
 bg

 Place a job in background (similar to &);
 fg

 Place a job in foreground.
 Ctrl+z

 Stopped a process.
 Ctrl+c

 Terminate a process.

 9

Tehran

Polytechnic

University

Contents

 What is a Process?
 Process Control
 Process Relationship
 Inter- Process Communication

 10

Tehran

Polytechnic

University

Process Control
 fork and vfork
 exit
 wait and waitpid
 exec
 signal
 kill

 11

Tehran

Polytechnic

University

fork

fork
Parent Child

PID1 PID2

 12

Tehran

Polytechnic

University

fork (cont.)

 int fork();
 The only way a new process is created

by the Unix kernel.
 The new process created is called the child

process.
 The child is a copy of the parent.

 The child gets a copy of the parent’s data
space, heap and stack.

 The parent and child don’t share these
portions of memory.

 13

Tehran

Polytechnic

University

fork (cont.)

 This function is called once, but return
twice.
 The process ID of the new child (to the

parent).
 A process can have more than one child.

 0 (to the child).

 14

Tehran

Polytechnic

University

fork Sample
main()
{

int pid;
pid = fork();

 if (pid < 0)
// error

else if (pid == 0)
//child

else
//parent

}

 15

Tehran

Polytechnic

University

fork (cont.)

 We never know if the child starts
executing before the parent or vice
versa.
 This depends on the scheduling algorithm

used by the kernel.

 16

Tehran

Polytechnic

University

vfork
 int = vfork();
 It has the same calling sequence and

same return values as fork.
 The child doesn’t copy the parent data

space.
 The child runs in the address space of the

parent.
 With vfork, child runs first, then parent

runs.

 17

Tehran

Polytechnic

University

exit
 Normal termination

 Executing a return from the main function.
 Calling the exit function.
 Calling the _exit function.

 Abnormal termination
 Calling abort.
 Receives certain signals.

 18

Tehran

Polytechnic

University

exit (cont.)

 int exit (int state);
 Sometimes we want the terminating

process to be able to notify its parent
how it terminated.

 For the exit and _exit function this is
done by passing an exit status as the
argument to these two functions.

 The parent of the process can obtain
the termination status from either the
wait or waitpid function.

 19

Tehran

Polytechnic

University

Termination Conditions
 Parent terminate before the child

 The init process becomes the parent process
of any process whose parent terminated.

 20

Tehran

Polytechnic

University

Termination Conditions
 Child terminate before the parent

 The child is completely disappeared, but the
parent wouldn’t be able to fetch its
termination status.

 The kernel has to keep a certain amount of
information for every terminating process.

 The process that has terminated, but whose
parent has not waited for it, is called zombie.

 21

Tehran

Polytechnic

University

wait
 When a process terminates, the parent

is notified by the kernel sending the
parent the SIGCHLD signal.

 The parent of the process can obtain
the termination status from either the
wait or waitpid function.

 22

Tehran

Polytechnic

University

wait (cont.)

 The process that calls wait or waitpid
can:
 Block (if all of its children are still running)
 Return immediately with the termination

status of a child (if a child has terminated)
 Return immediately with an error (if it

doesn’t have any child process)

 23

Tehran

Polytechnic

University

wait and waitpid
 int wait (int *statloc);
 int waitpid (int pid, int *statloc, int

options);
 If statloc is not a null pointer, the termination status

of the terminated process is stored in this location.

 The difference between these two
function:
 wait can block, while waitpid has an option that

prevents it from blocking.
 waitpid doesn’t wait for the first child to terminate (it

can control which process it waits for)

 24

Tehran

Polytechnic

University

exec
 A process cause another program to be

executed by calling one of the exec
functions.

 When a process calls one of the exec
functions, that process is completely
replaced by the new program.

 The process ID doesn’t change across
an exec.

 25

Tehran

Polytechnic

University

exec functions
 int execl (char *path, char *arg0, … /*(char *) 0

*/);
 int execle (char *path, char *arg0, … /*(char *) 0,

char *envp[] */);
 int execlp (char *filename, char *arg0, … /*(char

*) 0 */);
 int execv (char *pathname, char *argv0[]);
 int execve (char *pathname, char *argv0[], char

*envp[]);
 int execvp (char *filename, char *envp[]);

 26

Tehran

Polytechnic

University

signal
 Signals are software interrupts.
 The name of signals all begin with the

three character SIG : SIGABRT

 27

Tehran

Polytechnic

University

signal (cont.)

 void (*signal (int signo, void (*func) (int)))
(int);

 Kernel do when a signal occurs:
 Ignore the signal

 Can not ignore : SIGKILL, SIGSTOP
 Catch the signal
 Let the default action apply

 28

Tehran

Polytechnic

University

signal Sample
main()
{

signal (SIGUSER, sig_user);
while (1);

}
//---------------------------------
void sig_user (int signo)
{

if (signo == SIGUSER)
printf (“receive signal\n”);

return;
}

 29

Tehran

Polytechnic

University

kill
 int kill (int pid, int signo);
 Send a signal to a process or group of

the processes.

 30

Tehran

Polytechnic

University

Contents

 What is a Process?
 Process Control
 Process Relationship
 Inter- Process Communication

 31

Tehran

Polytechnic

University

Process Relationship

fork
fork

fork

exec

exec

fork &
exec

exec

exec

fork

 32

Tehran

Polytechnic

University

Contents

 What is a Process?
 Process Control
 Process Relationship
 Inter- Process Communication

 33

Tehran

Polytechnic

University

IPC
 Pipe
 FIFO
 Message queue
 Shared memory
 socket

 34

Tehran

Polytechnic

University

pipe
 It provides a one-way flow of data.
 It is in the kernel
 It can only be used between processes

that have a parent process in common.

Parent Child

pipe

 35

Tehran

Polytechnic

University

pipe (cont.)

 int pipe (int *filedes);
 filedes[0] : open for reading
 filedes[1] : open for writing
 pipe command :

 who | sort | lpr

 36

Tehran

Polytechnic

University

FIFO
 It is similar to a pipe.
 Unlike pipes, a FIFO has a name

associated with it (named pipe).
 It uses a file as a communication way.
 int mknod (char *path, int mode, int

dev)
 mode is or’ed with S_IFIFO
 dev is equal 0 for FIFO.

 37

Tehran

Polytechnic

University

Name Space
 The set of possible names for a given

type of IPC is called its name space.
 The name is how the client and server

connect to exchange messages.
 key_t ftok (char *path, char proj);

 38

Tehran

Polytechnic

University

Message Queue
 Message queues are a linked list of

messages stored within the kernel.
 We don’t have to fetch messages in a

first-int, first-out order.
 We can fetch messages based on their type

field.
 A process wants to impose some

structure on the data being transferred.

 39

Tehran

Polytechnic

University

Message Queue (cont.)

 int msgget (key_t key, int msgflag);
 A new queue is created, or an existing

queue is open by msgget.

 40

Tehran

Polytechnic

University

Message Queue (cont.)

 int msgsnd(int msgid, void *ptr, size_t len, int flag);
 Data is placed onto a message queue by calling

msgsnd;
 ptr points to a long integer that contains the

positive integer message type, and it is
immediately followed by the message data.
 Struct my_msg
 {

long type;
char data[SIZE];

 }

 41

Tehran

Polytechnic

University

Message Queue (cont.)

 int msgrcv (int msgid, void *ptr, sizet
len, long mtype, int flag);

 The type argument lets us specify which
message we want:
 mtype == 0, the first message on the queue
 mtype > 0, the first message on the queue

whose type equals mtype.
 mtype < 0, the first message on the queue

whose type is the lowest value less or equal
to the absolute value of mtype.

 42

Tehran

Polytechnic

University

Message Queue (cont.)

 int msgctl (int msgid, int cmd, struct
msgid_ds *buf);

 The msgctl function performs various
operations in a queue.

 43

Tehran

Polytechnic

University

Shared memory

 Server Client

Pipe, FIFO,
message

Input
file

Output
file

kernel

 44

Tehran

Polytechnic

University

Shared memory (cont.)

 Server Client

Kernel

Shared memory

Input
file

Output
file

 45

Tehran

Polytechnic

University

Shared memory (cont.)

 int shmget (key_t key, int size, int flag);
 A shared memory segment is created,

or an existing one is accessed with the
shmget system call.

 46

Tehran

Polytechnic

University

Shared memory (cont.)

 Char *shmat (int shmid, char *shmaddr,
int shmfalg);

 The shmget dose not provide access to
the segment for the calling process.

 We must attach the shared memory
segment by calling the shmat system
call.

 47

Tehran

Polytechnic

University

Shared memory (cont.)

 int shmdt (char *shmaddr);
 When a process is finished with a

shared memory segment, it detaches
the segment by calling the shmdt
system call.

 This call dose not delete the shared
memory segment.

 48

Tehran

Polytechnic

University

Shared memory (cont.)

 int shmctl (int shmid, int cmd, struct
shmid_ds *buf);

 The msgctl function performs various
operations in a shared memory
segment.

 49

Tehran

Polytechnic

University

Semaphore
 Semaphores are a synchronization

primitive.
 To obtain a shared resource:

 Test the semaphore that controls the
resource.

 If the value is positive the process can use
the resource. The process decrements the
value by 1.

 If the value is 0, the process goes to sleep
until the value is greater than 0.

 50

Tehran

Polytechnic

University

Semaphore (cont.)

 int semget (key_t key, int nsems, int
flag);

 This function get a semaphore ID.

 int semctl (int semid, int semnum, int
cmd, union semun arg);

 The semctl function performs various
operations in a semaphore.

 51

Tehran

Polytechnic

University

Semaphore (cont.)

 int semop (int semid, struct sembuf
*semop, size_t nops);

 Struct sembuf
 {

ushort sem_num;
short sem_op;
shoet sem_flag;

}

 52

Tehran

Polytechnic

University

Semaphore (cont.)

 Each particular operation is specified by
a sem_op value:
 sem_op > 0, this correspond to the release of

resources. The sem_op value is added to the
current value;

 sem_op == 0, the caller wants to wait until
the semaphore’s value become zero.

 sem_op < 0, this correspond to the allocation
od resources. The caller wants to wait until
the value become greater or equal the
absolute value of sem_op. then the absolute
value of sem_op is subtracted from the
current value.

 53

Tehran

Polytechnic

University

Question?

