
Deadlocks

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 1 / 61



Motivation

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 2 / 61



Motivation

I Multiprogramming environment: several processes compete for a
finite number of resources.

I A process requests resources: if the resources are not available at
that time, the process enters a waiting state.

I What if the requests resources are held by other waiting processes?

I This situation is called a deadlock.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 3 / 61



Motivation

I Multiprogramming environment: several processes compete for a
finite number of resources.

I A process requests resources: if the resources are not available at
that time, the process enters a waiting state.

I What if the requests resources are held by other waiting processes?

I This situation is called a deadlock.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 3 / 61



Motivation

I Multiprogramming environment: several processes compete for a
finite number of resources.

I A process requests resources: if the resources are not available at
that time, the process enters a waiting state.

I What if the requests resources are held by other waiting processes?

I This situation is called a deadlock.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 3 / 61



Motivation

I Multiprogramming environment: several processes compete for a
finite number of resources.

I A process requests resources: if the resources are not available at
that time, the process enters a waiting state.

I What if the requests resources are held by other waiting processes?

I This situation is called a deadlock.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 3 / 61



Deadlocks

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 4 / 61



System Model

I System consists of resources: R1,R2, · · · ,Rm

I Resource types: CPU cycles, memory space, I/O devices

I Each resource type Ri has Wi instances.

I Each process utilizes a resource as follows:
• Request
• Use
• Release

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 5 / 61



System Model

I System consists of resources: R1,R2, · · · ,Rm

I Resource types: CPU cycles, memory space, I/O devices

I Each resource type Ri has Wi instances.

I Each process utilizes a resource as follows:
• Request
• Use
• Release

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 5 / 61



System Model

I System consists of resources: R1,R2, · · · ,Rm

I Resource types: CPU cycles, memory space, I/O devices

I Each resource type Ri has Wi instances.

I Each process utilizes a resource as follows:
• Request
• Use
• Release

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 5 / 61



System Model

I System consists of resources: R1,R2, · · · ,Rm

I Resource types: CPU cycles, memory space, I/O devices

I Each resource type Ri has Wi instances.

I Each process utilizes a resource as follows:
• Request
• Use
• Release

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 5 / 61



Deadlock Characterization (1/3)

I Deadlock can arise if four conditions hold simultaneously:
• Mutual exclusion
• Hold and wait
• No preemption
• Circular wait

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 6 / 61



Deadlock Characterization (2/3)

I Mutual exclusion
• Only one process at a time can use a resource.

I Hold and wait
• A process holding at least one resource is waiting to acquire

additional resources held by other processes.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 7 / 61



Deadlock Characterization (2/3)

I Mutual exclusion
• Only one process at a time can use a resource.

I Hold and wait
• A process holding at least one resource is waiting to acquire

additional resources held by other processes.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 7 / 61



Deadlock Characterization (3/3)

I No preemption
• A resource can be released only voluntarily by the process holding

it, after that process has completed its task.

I Circular wait
• A set processes: {P0,P1, · · · ,Pn}
• P0 is waiting for a resource that is held by P1

• P1 is waiting for a resource that is held by P2

• ...
• Pn is waiting for a resource that is held by P0

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 8 / 61



Deadlock Characterization (3/3)

I No preemption
• A resource can be released only voluntarily by the process holding

it, after that process has completed its task.

I Circular wait
• A set processes: {P0,P1, · · · ,Pn}
• P0 is waiting for a resource that is held by P1

• P1 is waiting for a resource that is held by P2

• ...
• Pn is waiting for a resource that is held by P0

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 8 / 61



Deadlock Example (1/2)

/* Create and initialize the mutex locks */

pthread_mutex_t first_mutex;

pthread_mutex_t second_mutex;

pthread_mutex_init(&first_mutex, NULL);

pthread_mutex_init(&second_mutex, NULL);

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 9 / 61



Deadlock Example (2/2)

/* thread one runs in this function */

void *do_work_one(void *param) {

pthread_mutex_lock(&first mutex);

pthread_mutex_lock(&second mutex);

// do some work

pthread_mutex_unlock(&second mutex);

pthread_mutex_unlock(&first mutex);

pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param) {

pthread_mutex_lock(&second mutex);

pthread_mutex_lock(&first mutex);

// do some work

pthread_mutex_unlock(&first mutex);

pthread_mutex_unlock(&second mutex);

pthread_exit(0);

}

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 10 / 61



Resource-Allocation Graph

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 11 / 61



Resource-Allocation Graph (1/2)

I A set of vertices V and a set of edges E .

I Vertices
• All the processes in the system: P = P1,P2, · · · ,Pn

• All resource types in the system: R = R1,R2, · · · ,Rm

I Edges
• Request edge: directed edge Pi → Rj

• Assignment edge: directed edge Rj → Pi

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 12 / 61



Resource-Allocation Graph (1/2)

I A set of vertices V and a set of edges E .

I Vertices
• All the processes in the system: P = P1,P2, · · · ,Pn

• All resource types in the system: R = R1,R2, · · · ,Rm

I Edges
• Request edge: directed edge Pi → Rj

• Assignment edge: directed edge Rj → Pi

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 12 / 61



Resource-Allocation Graph (1/2)

I A set of vertices V and a set of edges E .

I Vertices
• All the processes in the system: P = P1,P2, · · · ,Pn

• All resource types in the system: R = R1,R2, · · · ,Rm

I Edges
• Request edge: directed edge Pi → Rj

• Assignment edge: directed edge Rj → Pi

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 12 / 61



Resource-Allocation Graph (2/2)

I Process (vertices)

I Resource type with 4 instances (vertices)

I Pi requests instance of Rj (edge)

I Pi is holding an instance of Rj (edge)

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 13 / 61



Resource-Allocation Graph (2/2)

I Process (vertices)

I Resource type with 4 instances (vertices)

I Pi requests instance of Rj (edge)

I Pi is holding an instance of Rj (edge)

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 13 / 61



Resource-Allocation Graph (2/2)

I Process (vertices)

I Resource type with 4 instances (vertices)

I Pi requests instance of Rj (edge)

I Pi is holding an instance of Rj (edge)

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 13 / 61



Resource-Allocation Graph (2/2)

I Process (vertices)

I Resource type with 4 instances (vertices)

I Pi requests instance of Rj (edge)

I Pi is holding an instance of Rj (edge)

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 13 / 61



Resource-Allocation Graph Example (1/3)

I Example of a resource allocation graph.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 14 / 61



Resource-Allocation Graph Example (2/3)

I Resource allocation graph with a deadlock.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 15 / 61



Resource-Allocation Graph Example (3/3)

I Resource allocation graph with a cycle but no deadlock.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 16 / 61



Basic Facts

I If graph contains no cycles
• No deadlock

I If graph contains a cycle
• If only one instance per resource type, then deadlock.
• If several instances per resource type, possibility of deadlock.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 17 / 61



Basic Facts

I If graph contains no cycles
• No deadlock

I If graph contains a cycle
• If only one instance per resource type, then deadlock.
• If several instances per resource type, possibility of deadlock.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 17 / 61



Methods for Handling Deadlocks

I Ensure that the system will never enter a deadlock state:
• Deadlock prevention
• Deadlock avoidance

I Allow the system to enter a deadlock state and then recover.

I Ignore the problem and pretend that deadlocks never occur in the
system; used by most operating systems.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 18 / 61



Methods for Handling Deadlocks

I Ensure that the system will never enter a deadlock state:
• Deadlock prevention
• Deadlock avoidance

I Allow the system to enter a deadlock state and then recover.

I Ignore the problem and pretend that deadlocks never occur in the
system; used by most operating systems.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 18 / 61



Methods for Handling Deadlocks

I Ensure that the system will never enter a deadlock state:
• Deadlock prevention
• Deadlock avoidance

I Allow the system to enter a deadlock state and then recover.

I Ignore the problem and pretend that deadlocks never occur in the
system; used by most operating systems.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 18 / 61



Deadlock Prevention

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 19 / 61



Deadlock Prevention (1/3)

I Deadlock can arise if four conditions hold simultaneously:
• Mutual exclusion
• Hold and wait
• No preemption
• Circular wait

I Restrain the ways request can be made.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 20 / 61



Deadlock Prevention (1/3)

I Deadlock can arise if four conditions hold simultaneously:
• Mutual exclusion
• Hold and wait
• No preemption
• Circular wait

I Restrain the ways request can be made.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 20 / 61



Deadlock Prevention (2/3)

I Mutual exclusion
• Not required for sharable resources, e.g., read-only files.
• Must hold for non-sharable resources.

I Hold and wait
• Must guarantee that whenever a process requests a resource, it does

not hold any other processes.

• Solution 1: require a process to request and be allocated all its
resources before it begins execution.

• Solution 2: allows a process to request resources only when it has
none.

• Low resource utilization
• Starvation possible

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 21 / 61



Deadlock Prevention (2/3)

I Mutual exclusion
• Not required for sharable resources, e.g., read-only files.
• Must hold for non-sharable resources.

I Hold and wait
• Must guarantee that whenever a process requests a resource, it does

not hold any other processes.

• Solution 1: require a process to request and be allocated all its
resources before it begins execution.

• Solution 2: allows a process to request resources only when it has
none.

• Low resource utilization
• Starvation possible

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 21 / 61



Deadlock Prevention (2/3)

I Mutual exclusion
• Not required for sharable resources, e.g., read-only files.
• Must hold for non-sharable resources.

I Hold and wait
• Must guarantee that whenever a process requests a resource, it does

not hold any other processes.
• Solution 1: require a process to request and be allocated all its

resources before it begins execution.

• Solution 2: allows a process to request resources only when it has
none.

• Low resource utilization
• Starvation possible

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 21 / 61



Deadlock Prevention (2/3)

I Mutual exclusion
• Not required for sharable resources, e.g., read-only files.
• Must hold for non-sharable resources.

I Hold and wait
• Must guarantee that whenever a process requests a resource, it does

not hold any other processes.
• Solution 1: require a process to request and be allocated all its

resources before it begins execution.
• Solution 2: allows a process to request resources only when it has

none.

• Low resource utilization
• Starvation possible

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 21 / 61



Deadlock Prevention (2/3)

I Mutual exclusion
• Not required for sharable resources, e.g., read-only files.
• Must hold for non-sharable resources.

I Hold and wait
• Must guarantee that whenever a process requests a resource, it does

not hold any other processes.
• Solution 1: require a process to request and be allocated all its

resources before it begins execution.
• Solution 2: allows a process to request resources only when it has

none.
• Low resource utilization
• Starvation possible

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 21 / 61



Deadlock Prevention (3/3)

I No preemption

• If a process that is holding some resources, requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released.

• Preempted resources are added to the list of resources for which the
process is waiting.

• Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

I Circular wait
• Impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 22 / 61



Deadlock Prevention (3/3)

I No preemption
• If a process that is holding some resources, requests another

resource that cannot be immediately allocated to it, then all
resources currently being held are released.

• Preempted resources are added to the list of resources for which the
process is waiting.

• Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

I Circular wait
• Impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 22 / 61



Deadlock Prevention (3/3)

I No preemption
• If a process that is holding some resources, requests another

resource that cannot be immediately allocated to it, then all
resources currently being held are released.

• Preempted resources are added to the list of resources for which the
process is waiting.

• Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

I Circular wait
• Impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 22 / 61



Deadlock Prevention (3/3)

I No preemption
• If a process that is holding some resources, requests another

resource that cannot be immediately allocated to it, then all
resources currently being held are released.

• Preempted resources are added to the list of resources for which the
process is waiting.

• Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

I Circular wait
• Impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 22 / 61



Deadlock Prevention (3/3)

I No preemption
• If a process that is holding some resources, requests another

resource that cannot be immediately allocated to it, then all
resources currently being held are released.

• Preempted resources are added to the list of resources for which the
process is waiting.

• Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

I Circular wait
• Impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 22 / 61



Deadlock Example with Lock Ordering

I Lock ordering does not guarantee deadlock prevention if locks can
be acquired dynamically.

void transaction(Account from, Account to, double amount) {

mutex lock1, lock2;

lock1 = get_lock(from);

lock2 = get_lock(to);

acquire(lock1);

acquire(lock2);

withdraw(from, amount);

deposit(to, amount);

release(lock2);

release(lock1);

}

transaction(checking_account, savings_account, 25);

transaction(savings_account, checking_account, 50);

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 23 / 61



Deadlock Avoidance

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 24 / 61



Deadlock Avoidance

I Requires that the system has some additional a priori information
available.

• The maximum number of resources of each type that it may need.

I The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

I Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 25 / 61



Deadlock Avoidance

I Requires that the system has some additional a priori information
available.

• The maximum number of resources of each type that it may need.

I The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

I Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 25 / 61



Deadlock Avoidance

I Requires that the system has some additional a priori information
available.

• The maximum number of resources of each type that it may need.

I The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition.

I Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 25 / 61



Safe State (1/2)

I When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state.

I Safe state: there exists a sequence 〈P1,P2, · · · ,Pn〉 of all the
processes in the systems such that for each Pi , the resources that
Pi can still request be satisfied by
currently available resources + resources held by all the Pj , with
j < i .

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 26 / 61



Safe State (1/2)

I When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state.

I Safe state: there exists a sequence 〈P1,P2, · · · ,Pn〉 of all the
processes in the systems such that for each Pi , the resources that
Pi can still request be satisfied by
currently available resources + resources held by all the Pj , with
j < i .

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 26 / 61



Safe State (2/2)

I If Pi resource needs are not immediately available, then Pi can
wait until all Pj have finished.

I When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.

I When Pi terminates, Pi+1 can obtain its needed resources, and so
on.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 27 / 61



Safe State (2/2)

I If Pi resource needs are not immediately available, then Pi can
wait until all Pj have finished.

I When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.

I When Pi terminates, Pi+1 can obtain its needed resources, and so
on.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 27 / 61



Safe State (2/2)

I If Pi resource needs are not immediately available, then Pi can
wait until all Pj have finished.

I When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.

I When Pi terminates, Pi+1 can obtain its needed resources, and so
on.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 27 / 61



Basic Facts

I If a system is in the safe state
• No deadlock

I If a system is in the unsafe state
• Possibility of deadlock

I Avoidance
• Ensure that a system will never enter an unsafe state.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 28 / 61



Basic Facts

I If a system is in the safe state
• No deadlock

I If a system is in the unsafe state
• Possibility of deadlock

I Avoidance
• Ensure that a system will never enter an unsafe state.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 28 / 61



Basic Facts

I If a system is in the safe state
• No deadlock

I If a system is in the unsafe state
• Possibility of deadlock

I Avoidance
• Ensure that a system will never enter an unsafe state.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 28 / 61



Safe Mode Example (1/2)

I 3 processes: P0 through P2

I 1 resource type:
• A (12 instances)

I Snapshot at time T0

I Safe mode sequence?

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 29 / 61



Safe Mode Example (1/2)

I 3 processes: P0 through P2

I 1 resource type:
• A (12 instances)

I Snapshot at time T0

I Safe mode sequence?

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 29 / 61



Safe Mode Example (1/2)

I 3 processes: P0 through P2

I 1 resource type:
• A (12 instances)

I Snapshot at time T0

I Safe mode sequence? 〈P1,P0,P2〉

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 29 / 61



Safe Mode Example (2/2)

I 3 processes: P0 through P2

I 1 resource type:
• A (12 instances)

I Snapshot at time T0

I Suppose that, at time T1, process P2 requests and is allocated one
more resource.

I Safe mode sequence?

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 30 / 61



Safe Mode Example (2/2)

I 3 processes: P0 through P2

I 1 resource type:
• A (12 instances)

I Snapshot at time T0

I Suppose that, at time T1, process P2 requests and is allocated one
more resource.

I Safe mode sequence?

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 30 / 61



Safe Mode Example (2/2)

I 3 processes: P0 through P2

I 1 resource type:
• A (12 instances)

I Snapshot at time T0

I Suppose that, at time T1, process P2 requests and is allocated one
more resource.

I Safe mode sequence?

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 30 / 61



Safe Mode Example (2/2)

I 3 processes: P0 through P2

I 1 resource type:
• A (12 instances)

I Snapshot at time T0

I Suppose that, at time T1, process P2 requests and is allocated one
more resource.

I Safe mode sequence? Not safe

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 30 / 61



Avoidance Algorithms

I Single instance of a resource type
• Use a resource-allocation graph

I Multiple instances of a resource type
• Use the banker’s algorithm

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 31 / 61



Resource-Allocation Graph
Algorithm

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 32 / 61



Resource-Allocation Graph Scheme

I Claim edge Pi → Rj : indicates that process Pj may request
resource Rj ; represented by a dashed line

I Claim edge converts to request edge when a process requests a
resource.

I Request edge converted to an assignment edge when the resource
is allocated to the process.

I When a resource is released by a process, assignment edge
reconverts to a claim edge.

I Resources must be claimed a priori in the system.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 33 / 61



Resource-Allocation Graph Scheme

I Claim edge Pi → Rj : indicates that process Pj may request
resource Rj ; represented by a dashed line

I Claim edge converts to request edge when a process requests a
resource.

I Request edge converted to an assignment edge when the resource
is allocated to the process.

I When a resource is released by a process, assignment edge
reconverts to a claim edge.

I Resources must be claimed a priori in the system.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 33 / 61



Resource-Allocation Graph Scheme

I Claim edge Pi → Rj : indicates that process Pj may request
resource Rj ; represented by a dashed line

I Claim edge converts to request edge when a process requests a
resource.

I Request edge converted to an assignment edge when the resource
is allocated to the process.

I When a resource is released by a process, assignment edge
reconverts to a claim edge.

I Resources must be claimed a priori in the system.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 33 / 61



Resource-Allocation Graph Scheme

I Claim edge Pi → Rj : indicates that process Pj may request
resource Rj ; represented by a dashed line

I Claim edge converts to request edge when a process requests a
resource.

I Request edge converted to an assignment edge when the resource
is allocated to the process.

I When a resource is released by a process, assignment edge
reconverts to a claim edge.

I Resources must be claimed a priori in the system.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 33 / 61



Resource-Allocation Graph Scheme

I Claim edge Pi → Rj : indicates that process Pj may request
resource Rj ; represented by a dashed line

I Claim edge converts to request edge when a process requests a
resource.

I Request edge converted to an assignment edge when the resource
is allocated to the process.

I When a resource is released by a process, assignment edge
reconverts to a claim edge.

I Resources must be claimed a priori in the system.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 33 / 61



Resource-Allocation Graph

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 34 / 61



Unsafe State In Resource-Allocation Graph

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 35 / 61



Resource-Allocation Graph Algorithm

I Suppose that process Pi requests a resource Rj .

I The request can be granted only if converting the request edge to
an assignment edge does not result in the formation of a cycle in
the resource allocation graph.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 36 / 61



Banker’s Algorithm

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 37 / 61



Banker’s Algorithm

I Multiple instances

I Each process must a priori claim of the maximum use.

I When a process requests a resource it may have to wait.

I When a process gets all its resources, it must return them in a
finite amount of time.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 38 / 61



Banker’s Algorithm

I Multiple instances

I Each process must a priori claim of the maximum use.

I When a process requests a resource it may have to wait.

I When a process gets all its resources, it must return them in a
finite amount of time.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 38 / 61



Banker’s Algorithm

I Multiple instances

I Each process must a priori claim of the maximum use.

I When a process requests a resource it may have to wait.

I When a process gets all its resources, it must return them in a
finite amount of time.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 38 / 61



Banker’s Algorithm

I Multiple instances

I Each process must a priori claim of the maximum use.

I When a process requests a resource it may have to wait.

I When a process gets all its resources, it must return them in a
finite amount of time.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 38 / 61



Data Structures for Banker’s Algorithm

I n = number of processes, and m = number of resources types

I Available: vector of length m.
• If Available[j ] = k, there are k instances of resource type Rj

available.

I Max : n ×m matrix.
• If Max [i , j ] = k, then process Pi may request at most k instances of

resource type Rj .

I Allocation: n ×m matrix.
• If Allocation[i , j ] = k then Pi is currently allocated k instances of
Rj .

I Need : n ×m matrix.
• If Need [i , j ] = k, then Pi may need k more instances of Rj to

complete its task Need [i , j ] = Max [i , j ]− Allocation[i , j ]

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 39 / 61



Data Structures for Banker’s Algorithm

I n = number of processes, and m = number of resources types

I Available: vector of length m.
• If Available[j ] = k , there are k instances of resource type Rj

available.

I Max : n ×m matrix.
• If Max [i , j ] = k, then process Pi may request at most k instances of

resource type Rj .

I Allocation: n ×m matrix.
• If Allocation[i , j ] = k then Pi is currently allocated k instances of
Rj .

I Need : n ×m matrix.
• If Need [i , j ] = k, then Pi may need k more instances of Rj to

complete its task Need [i , j ] = Max [i , j ]− Allocation[i , j ]

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 39 / 61



Data Structures for Banker’s Algorithm

I n = number of processes, and m = number of resources types

I Available: vector of length m.
• If Available[j ] = k , there are k instances of resource type Rj

available.

I Max : n ×m matrix.
• If Max [i , j ] = k , then process Pi may request at most k instances of

resource type Rj .

I Allocation: n ×m matrix.
• If Allocation[i , j ] = k then Pi is currently allocated k instances of
Rj .

I Need : n ×m matrix.
• If Need [i , j ] = k, then Pi may need k more instances of Rj to

complete its task Need [i , j ] = Max [i , j ]− Allocation[i , j ]

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 39 / 61



Data Structures for Banker’s Algorithm

I n = number of processes, and m = number of resources types

I Available: vector of length m.
• If Available[j ] = k , there are k instances of resource type Rj

available.

I Max : n ×m matrix.
• If Max [i , j ] = k , then process Pi may request at most k instances of

resource type Rj .

I Allocation: n ×m matrix.
• If Allocation[i , j ] = k then Pi is currently allocated k instances of
Rj .

I Need : n ×m matrix.
• If Need [i , j ] = k, then Pi may need k more instances of Rj to

complete its task Need [i , j ] = Max [i , j ]− Allocation[i , j ]

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 39 / 61



Data Structures for Banker’s Algorithm

I n = number of processes, and m = number of resources types

I Available: vector of length m.
• If Available[j ] = k , there are k instances of resource type Rj

available.

I Max : n ×m matrix.
• If Max [i , j ] = k , then process Pi may request at most k instances of

resource type Rj .

I Allocation: n ×m matrix.
• If Allocation[i , j ] = k then Pi is currently allocated k instances of
Rj .

I Need : n ×m matrix.
• If Need [i , j ] = k, then Pi may need k more instances of Rj to

complete its task Need [i , j ] = Max [i , j ]− Allocation[i , j ]

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 39 / 61



Safety Algorithm

1 Let Work and Finish be vectors of length m and n, respectively.
Initialize:
Work = Available
Finish[i ] = false for i = 0, 1, · · · n − 1

2 Find an i such that both:
1. Finish[i ] = false
2. Needi ≤Work
If no such i exists, go to step 4.

3 Work = Work + Allocationi
Finish[i ] = true
Go to step 2

4 If Finish[i ] == true for all i , then the system is in a safe state.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 40 / 61



Safety Algorithm

1 Let Work and Finish be vectors of length m and n, respectively.
Initialize:
Work = Available
Finish[i ] = false for i = 0, 1, · · · n − 1

2 Find an i such that both:
1. Finish[i ] = false
2. Needi ≤Work
If no such i exists, go to step 4.

3 Work = Work + Allocationi
Finish[i ] = true
Go to step 2

4 If Finish[i ] == true for all i , then the system is in a safe state.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 40 / 61



Safety Algorithm

1 Let Work and Finish be vectors of length m and n, respectively.
Initialize:
Work = Available
Finish[i ] = false for i = 0, 1, · · · n − 1

2 Find an i such that both:
1. Finish[i ] = false
2. Needi ≤Work
If no such i exists, go to step 4.

3 Work = Work + Allocationi
Finish[i ] = true
Go to step 2

4 If Finish[i ] == true for all i , then the system is in a safe state.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 40 / 61



Safety Algorithm

1 Let Work and Finish be vectors of length m and n, respectively.
Initialize:
Work = Available
Finish[i ] = false for i = 0, 1, · · · n − 1

2 Find an i such that both:
1. Finish[i ] = false
2. Needi ≤Work
If no such i exists, go to step 4.

3 Work = Work + Allocationi
Finish[i ] = true
Go to step 2

4 If Finish[i ] == true for all i , then the system is in a safe state.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 40 / 61



Resource-Request Algorithm for Process Pi (1/2)

I Requesti = request vector for process Pi . If Requesti [j ] = k , then
process Pi wants k instances of resource type Rj .

I 1. If Requesti ≤ Needi , go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim.

I 2. If Requesti ≤ Available, go to step 3. Otherwise Pi must wait,
since resources are not available.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 41 / 61



Resource-Request Algorithm for Process Pi (2/2)

I 3. Pretend to allocate requested resources to Pi by modifying the
state as follows:
Available = Available − Requesti
Allocationi = Allocationi + Requesti
Needi = Needi − Requesti

• If safe: the resources are allocated to Pi

• If unsafe: Pi must wait, and the old resource-allocation state is
restored

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 42 / 61



Banker’s Algorithm Example (1/2)

I 5 processes: P0 through P4

I 3 resource types:
• A (10 instances), B (5 instances), and C (7 instances)

I Snapshot at time T0

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 43 / 61



Banker’s Algorithm Example (2/2)

I The content of the matrix Need is defined to be Max − Allocation

I Is the system safe?

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 44 / 61



Banker’s Algorithm Example (2/2)

I The content of the matrix Need is defined to be Max − Allocation

I Is the system safe?

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 44 / 61



Banker’s Algorithm Example (2/2)

I The content of the matrix Need is defined to be Max − Allocation

I Is the system safe? 〈P1,P3,P4,P2,P0〉 satisfies safety criteria.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 44 / 61



Safety Algorithm Example

I P1 Request (1, 0, 2)

I Check that Request ≤ Available: (1, 0, 2) ≤ (3, 3, 2)⇒ true

I Executing safety algorithm shows that sequence
〈P1,P3,P4,P0,P2〉 satisfies safety requirement.

I Can request for (3, 3, 0) by P4 be granted?

I Can request for (0, 2, 0) by P0 be granted?

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 45 / 61



Deadlock Detection

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 46 / 61



Deadlock Detection

I Allow system to enter deadlock state

I Detection algorithm

I Recovery scheme

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 47 / 61



Single Instance of Each Resource Type

I Maintain wait-for graph.
• Nodes are processes.
• Pi → Pj if Pi is waiting for Pj .

I Periodically invoke an algorithm that searches for a cycle in the
graph.

I If there is a cycle, there exists a deadlock.

I An algorithm to detect a cycle in a graph requires an O(n2)
operations, where n is the number of vertices in the graph.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 48 / 61



Single Instance of Each Resource Type

I Maintain wait-for graph.
• Nodes are processes.
• Pi → Pj if Pi is waiting for Pj .

I Periodically invoke an algorithm that searches for a cycle in the
graph.

I If there is a cycle, there exists a deadlock.

I An algorithm to detect a cycle in a graph requires an O(n2)
operations, where n is the number of vertices in the graph.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 48 / 61



Single Instance of Each Resource Type

I Maintain wait-for graph.
• Nodes are processes.
• Pi → Pj if Pi is waiting for Pj .

I Periodically invoke an algorithm that searches for a cycle in the
graph.

I If there is a cycle, there exists a deadlock.

I An algorithm to detect a cycle in a graph requires an O(n2)
operations, where n is the number of vertices in the graph.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 48 / 61



Single Instance of Each Resource Type

I Maintain wait-for graph.
• Nodes are processes.
• Pi → Pj if Pi is waiting for Pj .

I Periodically invoke an algorithm that searches for a cycle in the
graph.

I If there is a cycle, there exists a deadlock.

I An algorithm to detect a cycle in a graph requires an O(n2)
operations, where n is the number of vertices in the graph.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 48 / 61



Resource-Allocation Graph and Wait-for Graph

Resource-allocation graph Corresponding Wait-for graph

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 49 / 61



Data Structures for Deadlock Detection

I Available: vector of length m, indicates the number of available
resources of each type.

I Allocation: n ×m matrix, defines the number of resources of each
type currently allocated to each process.

I Request: n ×m matrix, indicates the current request of each
process.

• If Request[i , j ] = k, then Pi requesting k more instances of resource
type Rj .

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 50 / 61



Data Structures for Deadlock Detection

I Available: vector of length m, indicates the number of available
resources of each type.

I Allocation: n ×m matrix, defines the number of resources of each
type currently allocated to each process.

I Request: n ×m matrix, indicates the current request of each
process.

• If Request[i , j ] = k, then Pi requesting k more instances of resource
type Rj .

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 50 / 61



Data Structures for Deadlock Detection

I Available: vector of length m, indicates the number of available
resources of each type.

I Allocation: n ×m matrix, defines the number of resources of each
type currently allocated to each process.

I Request: n ×m matrix, indicates the current request of each
process.

• If Request[i , j ] = k , then Pi requesting k more instances of resource
type Rj .

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 50 / 61



Detection Algorithm (1/2)

I 1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:
a. Work = Available
b. For i = 1, 2, · · · , n, if Allocationi 6= 0, then Finish[i ] = false;
otherwise, Finish[i ] = true

I 2. Find an index i such that both:
a. Finish[i ] == false
b. Requesti ≤Work

I If no such i exists, go to step 4

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 51 / 61



Detection Algorithm (2/2)

I 3. Work = Work + Allocationi
Finish[i ] = true
go to step 2

I 4. If Finish[i ] == false, for some i , 1 ≤ i ≤ n, then the system is
in deadlock state. Moreover, if Finish[i ] == false, then Pi is
deadlocked.

I Algorithm requires an order of O(m × n2) operations to detect
whether the system is in deadlocked state.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 52 / 61



Detection Algorithm Example (1/2)

I 5 processes: P0 through P4

I 3 resource types:
• A (7 instances), B (2 instances), and C (6 instances)

I Snapshot at time T0

I Deadlock?

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 53 / 61



Detection Algorithm Example (1/2)

I 5 processes: P0 through P4

I 3 resource types:
• A (7 instances), B (2 instances), and C (6 instances)

I Snapshot at time T0

I Deadlock?

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 53 / 61



Detection Algorithm Example (1/2)

I 5 processes: P0 through P4

I 3 resource types:
• A (7 instances), B (2 instances), and C (6 instances)

I Snapshot at time T0

I Deadlock? Sequence 〈P0,P2,P3,P1,P4〉 will result in
Finish[i ] = true for all i

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 53 / 61



Detection Algorithm Example (2/2)

I P2 requests an additional instance of type C

I Can reclaim resources held by process P0, but insufficient resources
to fulfill other processes; requests

I Deadlock exists, consisting of processes P1, P2, P3, and P4

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 54 / 61



Recovery From Deadlock

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 55 / 61



Recovery from Deadlock

I Process termination

I Resource preemption

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 56 / 61



Process Termination

I Abort all deadlocked processes.

I Abort one process at a time until the deadlock cycle is eliminated

I In which order should we choose to abort?
1 Priority of the process.
2 How long process has computed, and how much longer to

completion.
3 Resources the process has used.
4 Resources process needs to complete.
5 How many processes will need to be terminated.
6 Is process interactive or batch.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 57 / 61



Process Termination

I Abort all deadlocked processes.

I Abort one process at a time until the deadlock cycle is eliminated

I In which order should we choose to abort?
1 Priority of the process.
2 How long process has computed, and how much longer to

completion.
3 Resources the process has used.
4 Resources process needs to complete.
5 How many processes will need to be terminated.
6 Is process interactive or batch.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 57 / 61



Process Termination

I Abort all deadlocked processes.

I Abort one process at a time until the deadlock cycle is eliminated

I In which order should we choose to abort?
1 Priority of the process.
2 How long process has computed, and how much longer to

completion.
3 Resources the process has used.
4 Resources process needs to complete.
5 How many processes will need to be terminated.
6 Is process interactive or batch.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 57 / 61



Resource Preemption

I Selecting a victim: minimize cost

I Rollback: return to some safe state, restart process for that state.

I Starvation: same process may always be picked as victim, include
number of rollback in cost factor.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 58 / 61



Summary

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 59 / 61



Summary

I Deadlock

I Four simultaneous conditions: mutual exclusion, hold and wait, no
preemption, circular wait

I Deadlock prevention:

I Deadlock avoidance: resource-allocation algorithm, banker’s algo-
rithm

I Deadlock detection: Wait-for graph

I Deadlock recovery: process termination, resource preemption

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 60 / 61



Summary

I Deadlock

I Four simultaneous conditions: mutual exclusion, hold and wait, no
preemption, circular wait

I Deadlock prevention:

I Deadlock avoidance: resource-allocation algorithm, banker’s algo-
rithm

I Deadlock detection: Wait-for graph

I Deadlock recovery: process termination, resource preemption

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 60 / 61



Summary

I Deadlock

I Four simultaneous conditions: mutual exclusion, hold and wait, no
preemption, circular wait

I Deadlock prevention:

I Deadlock avoidance: resource-allocation algorithm, banker’s algo-
rithm

I Deadlock detection: Wait-for graph

I Deadlock recovery: process termination, resource preemption

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 60 / 61



Summary

I Deadlock

I Four simultaneous conditions: mutual exclusion, hold and wait, no
preemption, circular wait

I Deadlock prevention:

I Deadlock avoidance: resource-allocation algorithm, banker’s algo-
rithm

I Deadlock detection: Wait-for graph

I Deadlock recovery: process termination, resource preemption

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 60 / 61



Summary

I Deadlock

I Four simultaneous conditions: mutual exclusion, hold and wait, no
preemption, circular wait

I Deadlock prevention:

I Deadlock avoidance: resource-allocation algorithm, banker’s algo-
rithm

I Deadlock detection: Wait-for graph

I Deadlock recovery: process termination, resource preemption

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 60 / 61



Summary

I Deadlock

I Four simultaneous conditions: mutual exclusion, hold and wait, no
preemption, circular wait

I Deadlock prevention:

I Deadlock avoidance: resource-allocation algorithm, banker’s algo-
rithm

I Deadlock detection: Wait-for graph

I Deadlock recovery: process termination, resource preemption

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 60 / 61



Questions?

Acknowledgements

Some slides were derived from Avi Silberschatz slides.

Amir H. Payberah (Tehran Polytechnic) Deadlocks 1393/8/3 61 / 61


