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L
Motivation

» The file system resides permanently on secondary storage.

» How to

e structure file use

¢ allocate disk space

e recover free space

e track the locations of data

« interface other parts of the OS to secondary storage
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L
File-System Structure

» Disk provides in-place rewrite and random access
 1/0O transfers performed in blocks of sectors (usually 512 bytes)

» File system resides on secondary storage

e User interface to storage, mapping logical to physical
e Efficient and convenient access to disk

» File structure

e Logical storage unit
e Collection of related information



INNSS———
File-System Design Problems

» How the file system should look to the user?



INNSS———
File-System Design Problems

» How the file system should look to the user?
¢ Defining a file and its attributes
e The operations allowed on a file
e The directory structure for organizing files



INNSS———
File-System Design Problems

» How the file system should look to the user?

¢ Defining a file and its attributes
e The operations allowed on a file
e The directory structure for organizing files

» Algorithms and data structures to map the logical file system onto
the physical secondary-storage devices.
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File System Layers (1/6)

» Different levels

» Each level uses the features of lower
levels to create new features for use
by higher levels.

» Reducing complexity and redundancy,
but adds overhead and can decrease
performance.

application programs

logical file system

’

file-organization module

.

basic file system

Y

1/O control

¢

devices
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File System Layers (2/6)

application programs

» Device drivers manage |/O devices

at the I/O control layer. logical file system
» Translates high-level commands to file-organization module
low-level hardware-specific instructions. i

basic file system

¢

1/O control

Y

devices
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File System Layers (3/6)

application programs

v

logical file system

’

file-organization module

.

basic file system

¢

1/O control

¢

devices

» Basic file system translates given command
like retrieve block 123 to device driver.
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File System Layers (3/6)

application programs

v

logical file system

’

file-organization module

» Basic file system translates given command
like retrieve block 123 to device driver.

» Also manages memory buffers and

caches (allocation, freeing, replacement) R
¢ Buffers hold data in transit basic file system
e Caches hold frequently used data ﬂ,
I/0 control
devices
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application programs

» File organization understands files, logical

address, and physical blocks. .
logical file system

.

file-organization module

.

basic file system
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File System Layers (4/6)

application programs
» File organization understands files, logical

address, and physical blocks. .
logical file system

.

» Translates logical block number to physical file-organization module
block number. i

basic file system

¢

1/O control

¢

devices
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File System Layers (4/6)

application programs

> File organization understands files, logical

address, and physical blocks. .
logical file system

.

» Translates logical block number to physical L
file-organization module
block number. R

) ) basic file system
» Manages free space and disk allocation. ﬂ,

1/O control

¢

devices
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File System Layers (5/6)

» Logical file system manages metadata

information.

application programs

¢

logical file system

v

file-organization module

.

basic file system

’

|/O control

"

devices
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File System Layers (5/6)

application programs

» Logical file system manages metadata R
information.
logical file system
» Translates file name into file number, file ﬂ'
handle, location by maintaining file file-organization module
control blocks (inodes in Unix) R

basic file system

’

|/O control

"

devices
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File System Layers (5/6)

application programs

» Logical file system manages metadata ﬂ
information.
logical file system
» Translates file name into file number, file ﬂ
handle, location by maintaining file file-organization module
control blocks (inodes in Unix) ﬂ
basic file system
» Directory management H,
I/0 control
» Protection H,
devices
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I,
File System Layers (6/6)

» Many file systems, sometimes many within an OS

» Each with its own format
e CD-ROM: ISO 9660
e Unix: UFS, FFS
e Windows: FAT, FAT32, NTFS
e Linux: more than 40 types, with extended file system (ext2, ext3,

ext4)
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INNSS———
File-System Implementation

» Based on several on-disk and in-memory structures.

» On-disk
» Boot control block (per volume)
» Volume control block (per volume)
* Directory structure (per file system)
* File control block (per file)

» In-memory
¢ Mount table
e Directory structure cache
» The open-file table (system-wide and per process)
e Buffers of the file-system blocks



On-Disk File System Structures (1/2)

» Boot control block contains information needed by system to boot
OS from that volume.

|
Boot | Super | inode | Block:
Block | Block | List | List |

[ S —— |
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On-Disk File System Structures (1/2)

» Boot control block contains information needed by system to boot

OS from that volume.

e Needed if volume contains OS, usually first block of volume.
e In UFS, it is called boot block, and in NTFS partition boot sector.

Boot
Block

Amir H. Payberah (Tehran Polytechnic)
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[ N —_— |
File System Implementation 1393/9/8 15 / 57



On-Disk File System Structures (1/2)

» Boot control block contains information needed by system to boot

OS from that volume.

e Needed if volume contains OS, usually first block of volume.
e In UFS, it is called boot block, and in NTFS partition boot sector.

» Volume control block contains volume details.
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On-Disk File System Structures (1/2)

» Boot control block contains information needed by system to boot

OS from that volume.

e Needed if volume contains OS, usually first block of volume.
e In UFS, it is called boot block, and in NTFS partition boot sector.

» Volume control block contains volume details.
o Total num. of blocks, num. of free blocks, block size, free block

pointers or array

e In UFS, it is called super block, and in NTFS master file table.

Boot
Block
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On-Disk File System Structures (2/2)

» Directory structure organizes the files.

e In UFS, this includes file names and associated inode numbers.
e In NTFS, it is stored in the master file table.
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On-Disk File System Structures (2/2)

» Directory structure organizes the files.

e In UFS, this includes file names and associated inode numbers.
e In NTFS, it is stored in the master file table.

» File control block contains many details about the file.

* In UFS, inode number, permissions, size, dates.
e In NFTS stores into in master file table.

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks
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» Mount table contains information about each mounted volume.
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In-Memory File System Structures

» Mount table contains information about each mounted volume.

> Directory structure cache holds the directory information of recently
accessed directories.

» System-wide open-file table contains a copy of the FCB of each open
file.

» Per-process open-file table contains a pointer to the appropriate
entry in the system-wide open-file table.
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In-Memory File System Structures

» Mount table contains information about each mounted volume.

> Directory structure cache holds the directory information of recently
accessed directories.

» System-wide open-file table contains a copy of the FCB of each open
file.

» Per-process open-file table contains a pointer to the appropriate
entry in the system-wide open-file table.

» Buffers hold file-system blocks when they are being read from disk
or written to disk.

~ Amir H. Payberah (Tehran Polytechnic) ~ File System Implementation 1303/9/8 1757
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L
Create a File

» A program calls the logical file system.

» The logical file system knows the format of the directory structures,
and allocates a new FCB.

» The system, then, reads the appropriate directory into memory, up-
dates it with the new file name and FCB, and writes it back to the
disk.



Open a File

» The file must be opened.

e The open() passes a file name to the logical file system.

open (file name)

O

LI

directory structure

directory structure

file-control block

user space

kernel memory

secondary storage
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Open a File

» The file must be opened.
e The open() passes a file name to the logical file system.

» The open() first searches the system-wide open-file: if the file is
already in use by another process.

| directory structure
open (file name) D
directory structure file-control block
user space kernel memory secondary storage




.
Open a File

» The file must be opened.
e The open() passes a file name to the logical file system.

» The open() first searches the system-wide open-file: if the file is
already in use by another process.
e If yes: a per-process open-file table entry is created.
] 00
L0

o

irectory structure

.

open (file name) D
CiechonjSiichs file-control block
kernel memory secondary storage

user space
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.
Open a File

» The file must be opened.
e The open() passes a file name to the logical file system.

» The open() first searches the system-wide open-file: if the file is

already in use by another process.
e If yes: a per-process open-file table entry is created.
 If no: the directory structure is searched for the given file name:
once the file is found, the FCB is copied into a system-wide
open-file table in memory.

|
0o

L]
L]

irectory structure

o

.

open (file name) D
directory structure file-control block
kernel memory secondary storage

user space
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Open a File

» The file must be opened.
e The open() passes a file name to the logical file system.

» The open() first searches the system-wide open-file: if the file is
already in use by another process.

e If yes: a per-process open-file table entry is created.

 If no: the directory structure is searched for the given file name:
once the file is found, the FCB is copied into a system-wide
open-file table in memory.

» This table stores the FCB as well as the number of processes that
have the file open.

| directory structure
open (file name) D
directory structure file-control block
user space kernel memory secondary storage
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Read From a File

» The open() returns a pointer to the appropriate entry in the per-
process file-system table.

» All file operations are then performed via this pointer.

» This pointer is called file descriptor in Unix and file handle in Win-
dows.

N — ]
| | data blocks
read (index) —— \-_D
per-process system-wide file-control block
open-file table open-file table
user space kernel memory secondary storage
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Close a File

» When a process closes the file:

e The per-process table entry is removed.
e The system-wide entry’s open count is decremented.



o
Close a File

» When a process closes the file:

e The per-process table entry is removed.
e The system-wide entry’s open count is decremented.

» When all users that have opened the file close it, any updated meta-
data is copied back to the disk-based directory structure, and the
system-wide open-file table entry is removed.
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Partitions and Mounting (1/2)

» Partition can be a volume containing a file system or raw.
e Raw partition: just a sequence of blocks with no file system.

» Boot block points to boot volume or boot loader.
* Boot loader: knows enough about the file-system structure to be
able to find and load the kernel and start it executing.
e Dual-boot that allows to install multiple OS on a single system.
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» Root partition contains the OS
e Mounted at boot time
e Other partitions can hold other OSes, other file systems, or be raw
e Other partitions can mount automatically or manually



BN
Partitions and Mounting (2/2)

» Root partition contains the OS

* Mounted at boot time
e Other partitions can hold other OSes, other file systems, or be raw
e Other partitions can mount automatically or manually

» At mount time, file system consistency checked.

e |s all metadata correct? if not, fix it, try again, if yes, add to mount
table, allow access
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Virtual File Systems (1/2)

» Virtual File Systems (VFS) on Unix provide an object-oriented way
of implementing file systems.

» VFS allows the same system call interface (the API) to be used for
different types of file systems.

» The API is to the VFS interface, rather than any specific type of

file system.

VFS interface

‘ local file systam

I
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local file system ‘
type 2

remote file system
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Virtual File Systems (2/2)

» VFS layer serves two important functions:

@ It separates file-system-generic operations from their implementa-
tion, and allows transparent access to different types of file systems
mounted locally.

@ It provides a mechanism for uniquely representing a file throughout
a network.

» The VFS is based on a structure, called a vnode.

e Contains a numerical designator for a network-wide unique file.
» Unix inodes are unique within only a single file system.
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Virtual File Systems (2/2)

» VFS layer serves two important functions:
@ It separates file-system-generic operations from their implementa-
tion, and allows transparent access to different types of file systems

mounted locally.
@ It provides a mechanism for uniquely representing a file throughout

a network.

» The VFS is based on a structure, called a vnode.
e Contains a numerical designator for a network-wide unique file.
e Unix inodes are unique within only a single file system.
* The kernel maintains one vnode structure for each active node.
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I,
VFS in Linux (1/2)

» The four main object types defined by the Linux VFS are:

e The inode object: represents an individual file
e The file object: represents an open file
e The super block object: represents an entire file system

e The dentry object: represents an individual directory entry
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» VFS defines a set of operations on the objects that must be imple-
mented.

» Every object has a pointer to a function table.

¢ Function table has addresses of routines to implement that function
on that object.
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VFS in Linux (2/2)

» VFS defines a set of operations on the objects that must be imple-
mented.

» Every object has a pointer to a function table.

¢ Function table has addresses of routines to implement that function
on that object.

¢ For example:
int open(...): open a file
int close(...): close an already-open file
ssize_t read(...): read from a file
ssize_t write(...): write to a file
int mmap(...): memory-map a file
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Directory Implementation - Linear List

v

Linear list of file names with pointer to the data blocks.

v

Simple to program.

v

Time-consuming to execute.

Linear search time.

v

v

Could keep ordered alphabetically via linked list or use B+ tree:
binary search, but heavy
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Directory Implementation - Hash Table

Hash Table: linear list with hash data structure

v

v

Decreases directory search time

Collisions: situations where two file names hash to the same location

v

v

Chained-overflow method.
e Each hash entry can be a linked list instead of an individual value.
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o
Allocation Methods

» How disk blocks are allocated to files?

» Methods:
e Contiguous allocation
e Linked allocation
e Indexed allocation



Contiguous Allocation
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Contiguous Allocation (1/2)

» Contiguous allocation: each file occupies set of contiguous blocks.

e Best performance in most cases

e Simple: only starting location (block number) and length (number
of blocks) are required.

e Supports both sequential and direct access.

» Allocation strategies like contiguous memory allocation:
e First fit
e Best fit
e Worst fit



Contiguous Allocation (2/2)

/\ directory
v file  start length
count
o] 1] 2] 3] count 0 2
f tr 14 3
4[] 5[] e[ ] 7] mail 19 6
SD 9D10|:|11|:| list 28 4
f 6 2
\12D1SD14D15D
16[_]17[_118[ ]19[ ]
mail
20 J21[ J22[ ]23[ ]
24[ 25 J2e[ 127[ ]
list
28[ ]29[ ]30[ ]31[]
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performance



BN
Contiguous Allocation Problems

v

Finding space for file

v

External fragmentation

v

Need for compaction (fragmentation) off-line or on-line: lose of
performance

v

Knowing file size
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INNSS———
Extent-Based Systems

» A modified contiguous allocation scheme.
e E.g., Veritas file system

» Extent-based file systems allocate disk blocks in extents.

» An extent is a contiguous block of disks.

» Extents are allocated for file allocation.
« A file consists of one or more extents.
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I,
Linked Allocation (1/2)

» Linked allocation: each file is a linked list of blocks.

e Each block contains pointer to next block.
e File ends at null pointer.

» No external fragmentation, no compaction.

» Free space management system called when new block needed.
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directory
file  start end
jeep 9 25

1213114/ 115
17118 119[]
20 J21[J22[ 23]

16

24[ J25F1I26[ 127[ ]
28[ 129[ 130[ I31[ ]

~
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o
Linked Allocation Problems

» Locating a block can take many I/Os and disk seeks.



o
Linked Allocation Problems

» Locating a block can take many I/Os and disk seeks.

» Reliability can be a problem.



o
Linked Allocation Problems

» Locating a block can take many |/Os and disk seeks.

» Reliability can be a problem.

» The space required for the pointers.

o Efficiency can be improved by clustering blocks into groups but
increases internal fragmentation.



File-Allocation Table (FAT)

» Beginning of volume has a table, indexed by block number.

» Much like a linked list, but faster on disk and cacheable.

directory entry
[ test | eee [ 217
name start block

p17[ 618
339 ]
618 339

number of disk blocks -1

FAT
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to its data blocks.
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Indexed Allocation (1/2)

Indexed allocation: each file has its own index block(s) of pointers
to its data blocks.

v

Need index table

v

v

Random access

» Dynamic access without external fragmentation, but have overhead
of index block



Indexed Allocation (2/2)

/_A_\\ directory
e—— file index block
oJ 10 200 3] leep e
|
4[] 5[] 70

20 J21[ ]22[A23
24[ J25[ 26 127 ]

28[ J29[ |30[ 131[]
p— g
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L
Indexed Allocation Problems

» Wasted space: overhead of the index blocks.

» For example, even with a file of only one or two blocks, we need an
an entire index block.
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o
Index Block Size

» How large the index block should be?

» Keep the index block as small as possible.
¢ We need a mechanism to hold pointers for large files.

» Mechanisms for this purpose include the following:
¢ Linked scheme
o Multi-level index
e Combined scheme
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» Linked scheme: link blocks of index table (no limit on size)



o
Linked Scheme

» Linked scheme: link blocks of index table (no limit on size)

» For example, an index block might contain a small header giving the
name of the file and a set of the first 100 disk-block addresses.

» The next address is null or is a pointer to another index block.



o
Multi-Level Index

» Two-level index

» A first-level index block to point to a set of second-level index blocks,
which in turn point to the file blocks.

» Could be continued to a third or fourth level.



Combined Scheme
» Combine scheme: used in Unix/Linux FS

» The first 12 pointers point to direct blocks
e The data for small files do not need a separate index block.

» The next 3 pointers point to indirect blocks.

e Single indirect

 Double indirect mode
. . . owners (2
e Triple indirect — ( )(3)
imestamps
- 2 data
size block count
—{data |
_

direct blocks

single indirect —

double indirect _|

triple indirect
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Best method depends on file access type.

v

Contiguous is great for sequential and random.

v

Linked is good for sequential, not random.

v

Indexed is more complex

* Single block access could require 2 index block reads then data
block read
e Clustering can help improve throughput, reduce CPU overhead



Summary
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FS layers: device, I/O control, basic FS, file-organization, logical
FS, application
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FS implementation:

e On-disk structures: boot control block, volume control block,
directory structure, and file control block

e In-memory structures: mount table, directory structure, open-file
tables, and buffers

v

Virtual file system (VFS)

v

Directory implementation: linear list, and hash table
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» FS layers: device, 1/O control, basic FS, file-organization, logical
FS, application

» FS implementation:
e On-disk structures: boot control block, volume control block,

directory structure, and file control block
e In-memory structures: mount table, directory structure, open-file
tables, and buffers
» Virtual file system (VFS)

» Directory implementation: linear list, and hash table

» Allocation methods: contiguous allocation, linked allocation, and
indexed allocation
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Questions?

Some slides were derived from Avi Silberschatz slides. '




