
File System Implementation (Part I)

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 1 / 57



Motivation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 2 / 57



Motivation

I The file system resides permanently on secondary storage.

I How to
• structure file use
• allocate disk space
• recover free space
• track the locations of data
• interface other parts of the OS to secondary storage

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 3 / 57



File System Structure

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 4 / 57



File-System Structure

I Disk provides in-place rewrite and random access
• I/O transfers performed in blocks of sectors (usually 512 bytes)

I File system resides on secondary storage
• User interface to storage, mapping logical to physical
• Efficient and convenient access to disk

I File structure
• Logical storage unit
• Collection of related information

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 5 / 57



File-System Structure

I Disk provides in-place rewrite and random access
• I/O transfers performed in blocks of sectors (usually 512 bytes)

I File system resides on secondary storage
• User interface to storage, mapping logical to physical
• Efficient and convenient access to disk

I File structure
• Logical storage unit
• Collection of related information

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 5 / 57



File-System Structure

I Disk provides in-place rewrite and random access
• I/O transfers performed in blocks of sectors (usually 512 bytes)

I File system resides on secondary storage
• User interface to storage, mapping logical to physical
• Efficient and convenient access to disk

I File structure
• Logical storage unit
• Collection of related information

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 5 / 57



File-System Design Problems

I How the file system should look to the user?

• Defining a file and its attributes
• The operations allowed on a file
• The directory structure for organizing files

I Algorithms and data structures to map the logical file system onto
the physical secondary-storage devices.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 6 / 57



File-System Design Problems

I How the file system should look to the user?
• Defining a file and its attributes
• The operations allowed on a file
• The directory structure for organizing files

I Algorithms and data structures to map the logical file system onto
the physical secondary-storage devices.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 6 / 57



File-System Design Problems

I How the file system should look to the user?
• Defining a file and its attributes
• The operations allowed on a file
• The directory structure for organizing files

I Algorithms and data structures to map the logical file system onto
the physical secondary-storage devices.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 6 / 57



File System Layers (1/6)

I Different levels

I Each level uses the features of lower
levels to create new features for use
by higher levels.

I Reducing complexity and redundancy,
but adds overhead and can decrease
performance.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 7 / 57



File System Layers (2/6)

I Device drivers manage I/O devices
at the I/O control layer.

I Translates high-level commands to
low-level hardware-specific instructions.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 8 / 57



File System Layers (3/6)

I Basic file system translates given command
like retrieve block 123 to device driver.

I Also manages memory buffers and
caches (allocation, freeing, replacement)

• Buffers hold data in transit
• Caches hold frequently used data

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 9 / 57



File System Layers (3/6)

I Basic file system translates given command
like retrieve block 123 to device driver.

I Also manages memory buffers and
caches (allocation, freeing, replacement)

• Buffers hold data in transit
• Caches hold frequently used data

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 9 / 57



File System Layers (4/6)

I File organization understands files, logical
address, and physical blocks.

I Translates logical block number to physical
block number.

I Manages free space and disk allocation.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 10 / 57



File System Layers (4/6)

I File organization understands files, logical
address, and physical blocks.

I Translates logical block number to physical
block number.

I Manages free space and disk allocation.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 10 / 57



File System Layers (4/6)

I File organization understands files, logical
address, and physical blocks.

I Translates logical block number to physical
block number.

I Manages free space and disk allocation.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 10 / 57



File System Layers (5/6)

I Logical file system manages metadata
information.

I Translates file name into file number, file
handle, location by maintaining file
control blocks (inodes in Unix)

I Directory management

I Protection

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 11 / 57



File System Layers (5/6)

I Logical file system manages metadata
information.

I Translates file name into file number, file
handle, location by maintaining file
control blocks (inodes in Unix)

I Directory management

I Protection

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 11 / 57



File System Layers (5/6)

I Logical file system manages metadata
information.

I Translates file name into file number, file
handle, location by maintaining file
control blocks (inodes in Unix)

I Directory management

I Protection

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 11 / 57



File System Layers (6/6)

I Many file systems, sometimes many within an OS

I Each with its own format
• CD-ROM: ISO 9660
• Unix: UFS, FFS
• Windows: FAT, FAT32, NTFS
• Linux: more than 40 types, with extended file system (ext2, ext3,

ext4)

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 12 / 57



File System Implementation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 13 / 57



File-System Implementation

I Based on several on-disk and in-memory structures.

I On-disk
• Boot control block (per volume)
• Volume control block (per volume)
• Directory structure (per file system)
• File control block (per file)

I In-memory
• Mount table
• Directory structure cache
• The open-file table (system-wide and per process)
• Buffers of the file-system blocks

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 14 / 57



File-System Implementation

I Based on several on-disk and in-memory structures.

I On-disk
• Boot control block (per volume)
• Volume control block (per volume)
• Directory structure (per file system)
• File control block (per file)

I In-memory
• Mount table
• Directory structure cache
• The open-file table (system-wide and per process)
• Buffers of the file-system blocks

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 14 / 57



File-System Implementation

I Based on several on-disk and in-memory structures.

I On-disk
• Boot control block (per volume)
• Volume control block (per volume)
• Directory structure (per file system)
• File control block (per file)

I In-memory
• Mount table
• Directory structure cache
• The open-file table (system-wide and per process)
• Buffers of the file-system blocks

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 14 / 57



On-Disk File System Structures (1/2)

I Boot control block contains information needed by system to boot
OS from that volume.

• Needed if volume contains OS, usually first block of volume.
• In UFS, it is called boot block, and in NTFS partition boot sector.

I Volume control block contains volume details.

• Total num. of blocks, num. of free blocks, block size, free block
pointers or array

• In UFS, it is called super block, and in NTFS master file table.

UFS on-disk structures

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 15 / 57



On-Disk File System Structures (1/2)

I Boot control block contains information needed by system to boot
OS from that volume.

• Needed if volume contains OS, usually first block of volume.
• In UFS, it is called boot block, and in NTFS partition boot sector.

I Volume control block contains volume details.

• Total num. of blocks, num. of free blocks, block size, free block
pointers or array

• In UFS, it is called super block, and in NTFS master file table.

UFS on-disk structures

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 15 / 57



On-Disk File System Structures (1/2)

I Boot control block contains information needed by system to boot
OS from that volume.

• Needed if volume contains OS, usually first block of volume.
• In UFS, it is called boot block, and in NTFS partition boot sector.

I Volume control block contains volume details.

• Total num. of blocks, num. of free blocks, block size, free block
pointers or array

• In UFS, it is called super block, and in NTFS master file table.

UFS on-disk structures

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 15 / 57



On-Disk File System Structures (1/2)

I Boot control block contains information needed by system to boot
OS from that volume.

• Needed if volume contains OS, usually first block of volume.
• In UFS, it is called boot block, and in NTFS partition boot sector.

I Volume control block contains volume details.
• Total num. of blocks, num. of free blocks, block size, free block

pointers or array
• In UFS, it is called super block, and in NTFS master file table.

UFS on-disk structures

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 15 / 57



On-Disk File System Structures (2/2)

I Directory structure organizes the files.
• In UFS, this includes file names and associated inode numbers.
• In NTFS, it is stored in the master file table.

I File control block contains many details about the file.
• In UFS, inode number, permissions, size, dates.
• In NFTS stores into in master file table.

File Control Block (FCB)

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 16 / 57



On-Disk File System Structures (2/2)

I Directory structure organizes the files.
• In UFS, this includes file names and associated inode numbers.
• In NTFS, it is stored in the master file table.

I File control block contains many details about the file.
• In UFS, inode number, permissions, size, dates.
• In NFTS stores into in master file table.

File Control Block (FCB)

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 16 / 57



In-Memory File System Structures

I Mount table contains information about each mounted volume.

I Directory structure cache holds the directory information of recently
accessed directories.

I System-wide open-file table contains a copy of the FCB of each open
file.

I Per-process open-file table contains a pointer to the appropriate
entry in the system-wide open-file table.

I Buffers hold file-system blocks when they are being read from disk
or written to disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 17 / 57



In-Memory File System Structures

I Mount table contains information about each mounted volume.

I Directory structure cache holds the directory information of recently
accessed directories.

I System-wide open-file table contains a copy of the FCB of each open
file.

I Per-process open-file table contains a pointer to the appropriate
entry in the system-wide open-file table.

I Buffers hold file-system blocks when they are being read from disk
or written to disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 17 / 57



In-Memory File System Structures

I Mount table contains information about each mounted volume.

I Directory structure cache holds the directory information of recently
accessed directories.

I System-wide open-file table contains a copy of the FCB of each open
file.

I Per-process open-file table contains a pointer to the appropriate
entry in the system-wide open-file table.

I Buffers hold file-system blocks when they are being read from disk
or written to disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 17 / 57



In-Memory File System Structures

I Mount table contains information about each mounted volume.

I Directory structure cache holds the directory information of recently
accessed directories.

I System-wide open-file table contains a copy of the FCB of each open
file.

I Per-process open-file table contains a pointer to the appropriate
entry in the system-wide open-file table.

I Buffers hold file-system blocks when they are being read from disk
or written to disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 17 / 57



In-Memory File System Structures

I Mount table contains information about each mounted volume.

I Directory structure cache holds the directory information of recently
accessed directories.

I System-wide open-file table contains a copy of the FCB of each open
file.

I Per-process open-file table contains a pointer to the appropriate
entry in the system-wide open-file table.

I Buffers hold file-system blocks when they are being read from disk
or written to disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 17 / 57



Create a File

I A program calls the logical file system.

I The logical file system knows the format of the directory structures,
and allocates a new FCB.

I The system, then, reads the appropriate directory into memory, up-
dates it with the new file name and FCB, and writes it back to the
disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 18 / 57



Create a File

I A program calls the logical file system.

I The logical file system knows the format of the directory structures,
and allocates a new FCB.

I The system, then, reads the appropriate directory into memory, up-
dates it with the new file name and FCB, and writes it back to the
disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 18 / 57



Create a File

I A program calls the logical file system.

I The logical file system knows the format of the directory structures,
and allocates a new FCB.

I The system, then, reads the appropriate directory into memory, up-
dates it with the new file name and FCB, and writes it back to the
disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 18 / 57



Open a File

I The file must be opened.
• The open() passes a file name to the logical file system.

I The open() first searches the system-wide open-file: if the file is
already in use by another process.

• If yes: a per-process open-file table entry is created.
• If no: the directory structure is searched for the given file name:

once the file is found, the FCB is copied into a system-wide
open-file table in memory.

I This table stores the FCB as well as the number of processes that
have the file open.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 19 / 57



Open a File

I The file must be opened.
• The open() passes a file name to the logical file system.

I The open() first searches the system-wide open-file: if the file is
already in use by another process.

• If yes: a per-process open-file table entry is created.
• If no: the directory structure is searched for the given file name:

once the file is found, the FCB is copied into a system-wide
open-file table in memory.

I This table stores the FCB as well as the number of processes that
have the file open.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 19 / 57



Open a File

I The file must be opened.
• The open() passes a file name to the logical file system.

I The open() first searches the system-wide open-file: if the file is
already in use by another process.

• If yes: a per-process open-file table entry is created.

• If no: the directory structure is searched for the given file name:
once the file is found, the FCB is copied into a system-wide
open-file table in memory.

I This table stores the FCB as well as the number of processes that
have the file open.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 19 / 57



Open a File

I The file must be opened.
• The open() passes a file name to the logical file system.

I The open() first searches the system-wide open-file: if the file is
already in use by another process.

• If yes: a per-process open-file table entry is created.
• If no: the directory structure is searched for the given file name:

once the file is found, the FCB is copied into a system-wide
open-file table in memory.

I This table stores the FCB as well as the number of processes that
have the file open.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 19 / 57



Open a File

I The file must be opened.
• The open() passes a file name to the logical file system.

I The open() first searches the system-wide open-file: if the file is
already in use by another process.

• If yes: a per-process open-file table entry is created.
• If no: the directory structure is searched for the given file name:

once the file is found, the FCB is copied into a system-wide
open-file table in memory.

I This table stores the FCB as well as the number of processes that
have the file open.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 19 / 57



Read From a File

I The open() returns a pointer to the appropriate entry in the per-
process file-system table.

I All file operations are then performed via this pointer.

I This pointer is called file descriptor in Unix and file handle in Win-
dows.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 20 / 57



Close a File

I When a process closes the file:
• The per-process table entry is removed.
• The system-wide entry’s open count is decremented.

I When all users that have opened the file close it, any updated meta-
data is copied back to the disk-based directory structure, and the
system-wide open-file table entry is removed.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 21 / 57



Close a File

I When a process closes the file:
• The per-process table entry is removed.
• The system-wide entry’s open count is decremented.

I When all users that have opened the file close it, any updated meta-
data is copied back to the disk-based directory structure, and the
system-wide open-file table entry is removed.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 21 / 57



Partitions and Mounting (1/2)

I Partition can be a volume containing a file system or raw.
• Raw partition: just a sequence of blocks with no file system.

I Boot block points to boot volume or boot loader.
• Boot loader: knows enough about the file-system structure to be

able to find and load the kernel and start it executing.
• Dual-boot that allows to install multiple OS on a single system.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 22 / 57



Partitions and Mounting (1/2)

I Partition can be a volume containing a file system or raw.
• Raw partition: just a sequence of blocks with no file system.

I Boot block points to boot volume or boot loader.
• Boot loader: knows enough about the file-system structure to be

able to find and load the kernel and start it executing.
• Dual-boot that allows to install multiple OS on a single system.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 22 / 57



Partitions and Mounting (2/2)

I Root partition contains the OS
• Mounted at boot time
• Other partitions can hold other OSes, other file systems, or be raw
• Other partitions can mount automatically or manually

I At mount time, file system consistency checked.
• Is all metadata correct? if not, fix it, try again, if yes, add to mount

table, allow access

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 23 / 57



Partitions and Mounting (2/2)

I Root partition contains the OS
• Mounted at boot time
• Other partitions can hold other OSes, other file systems, or be raw
• Other partitions can mount automatically or manually

I At mount time, file system consistency checked.
• Is all metadata correct? if not, fix it, try again, if yes, add to mount

table, allow access

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 23 / 57



Virtual File Systems

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 24 / 57



Virtual File Systems (1/2)

I Virtual File Systems (VFS) on Unix provide an object-oriented way
of implementing file systems.

I VFS allows the same system call interface (the API) to be used for
different types of file systems.

I The API is to the VFS interface, rather than any specific type of
file system.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 25 / 57



Virtual File Systems (1/2)

I Virtual File Systems (VFS) on Unix provide an object-oriented way
of implementing file systems.

I VFS allows the same system call interface (the API) to be used for
different types of file systems.

I The API is to the VFS interface, rather than any specific type of
file system.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 25 / 57



Virtual File Systems (1/2)

I Virtual File Systems (VFS) on Unix provide an object-oriented way
of implementing file systems.

I VFS allows the same system call interface (the API) to be used for
different types of file systems.

I The API is to the VFS interface, rather than any specific type of
file system.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 25 / 57



Virtual File Systems (2/2)

I VFS layer serves two important functions:

1 It separates file-system-generic operations from their implementa-
tion, and allows transparent access to different types of file systems
mounted locally.

2 It provides a mechanism for uniquely representing a file throughout
a network.

I The VFS is based on a structure, called a vnode.

• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 26 / 57



Virtual File Systems (2/2)

I VFS layer serves two important functions:
1 It separates file-system-generic operations from their implementa-

tion, and allows transparent access to different types of file systems
mounted locally.

2 It provides a mechanism for uniquely representing a file throughout
a network.

I The VFS is based on a structure, called a vnode.

• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 26 / 57



Virtual File Systems (2/2)

I VFS layer serves two important functions:
1 It separates file-system-generic operations from their implementa-

tion, and allows transparent access to different types of file systems
mounted locally.

2 It provides a mechanism for uniquely representing a file throughout
a network.

I The VFS is based on a structure, called a vnode.

• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 26 / 57



Virtual File Systems (2/2)

I VFS layer serves two important functions:
1 It separates file-system-generic operations from their implementa-

tion, and allows transparent access to different types of file systems
mounted locally.

2 It provides a mechanism for uniquely representing a file throughout
a network.

I The VFS is based on a structure, called a vnode.

• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 26 / 57



Virtual File Systems (2/2)

I VFS layer serves two important functions:
1 It separates file-system-generic operations from their implementa-

tion, and allows transparent access to different types of file systems
mounted locally.

2 It provides a mechanism for uniquely representing a file throughout
a network.

I The VFS is based on a structure, called a vnode.
• Contains a numerical designator for a network-wide unique file.

• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 26 / 57



Virtual File Systems (2/2)

I VFS layer serves two important functions:
1 It separates file-system-generic operations from their implementa-

tion, and allows transparent access to different types of file systems
mounted locally.

2 It provides a mechanism for uniquely representing a file throughout
a network.

I The VFS is based on a structure, called a vnode.
• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.

• The kernel maintains one vnode structure for each active node.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 26 / 57



Virtual File Systems (2/2)

I VFS layer serves two important functions:
1 It separates file-system-generic operations from their implementa-

tion, and allows transparent access to different types of file systems
mounted locally.

2 It provides a mechanism for uniquely representing a file throughout
a network.

I The VFS is based on a structure, called a vnode.
• Contains a numerical designator for a network-wide unique file.
• Unix inodes are unique within only a single file system.
• The kernel maintains one vnode structure for each active node.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 26 / 57



Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 27 / 57



VFS in Linux (1/2)

I The four main object types defined by the Linux VFS are:

• The inode object: represents an individual file

• The file object: represents an open file

• The super block object: represents an entire file system

• The dentry object: represents an individual directory entry

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 28 / 57



VFS in Linux (1/2)

I The four main object types defined by the Linux VFS are:

• The inode object: represents an individual file

• The file object: represents an open file

• The super block object: represents an entire file system

• The dentry object: represents an individual directory entry

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 28 / 57



VFS in Linux (1/2)

I The four main object types defined by the Linux VFS are:

• The inode object: represents an individual file

• The file object: represents an open file

• The super block object: represents an entire file system

• The dentry object: represents an individual directory entry

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 28 / 57



VFS in Linux (1/2)

I The four main object types defined by the Linux VFS are:

• The inode object: represents an individual file

• The file object: represents an open file

• The super block object: represents an entire file system

• The dentry object: represents an individual directory entry

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 28 / 57



VFS in Linux (1/2)

I The four main object types defined by the Linux VFS are:

• The inode object: represents an individual file

• The file object: represents an open file

• The super block object: represents an entire file system

• The dentry object: represents an individual directory entry

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 28 / 57



VFS in Linux (2/2)

I VFS defines a set of operations on the objects that must be imple-
mented.

I Every object has a pointer to a function table.

• Function table has addresses of routines to implement that function
on that object.

• For example:
int open(...): open a file
int close(...): close an already-open file
ssize t read(...): read from a file
ssize t write(...): write to a file
int mmap(...): memory-map a file

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 29 / 57



VFS in Linux (2/2)

I VFS defines a set of operations on the objects that must be imple-
mented.

I Every object has a pointer to a function table.

• Function table has addresses of routines to implement that function
on that object.

• For example:
int open(...): open a file
int close(...): close an already-open file
ssize t read(...): read from a file
ssize t write(...): write to a file
int mmap(...): memory-map a file

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 29 / 57



VFS in Linux (2/2)

I VFS defines a set of operations on the objects that must be imple-
mented.

I Every object has a pointer to a function table.
• Function table has addresses of routines to implement that function

on that object.

• For example:
int open(...): open a file
int close(...): close an already-open file
ssize t read(...): read from a file
ssize t write(...): write to a file
int mmap(...): memory-map a file

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 29 / 57



VFS in Linux (2/2)

I VFS defines a set of operations on the objects that must be imple-
mented.

I Every object has a pointer to a function table.
• Function table has addresses of routines to implement that function

on that object.
• For example:
int open(...): open a file
int close(...): close an already-open file
ssize t read(...): read from a file
ssize t write(...): write to a file
int mmap(...): memory-map a file

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 29 / 57



Directory Implementation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 30 / 57



Directory Implementation

I Linear list

I Hash table

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 31 / 57



Directory Implementation - Linear List

I Linear list of file names with pointer to the data blocks.

I Simple to program.

I Time-consuming to execute.

I Linear search time.

I Could keep ordered alphabetically via linked list or use B+ tree:
binary search, but heavy

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 32 / 57



Directory Implementation - Linear List

I Linear list of file names with pointer to the data blocks.

I Simple to program.

I Time-consuming to execute.

I Linear search time.

I Could keep ordered alphabetically via linked list or use B+ tree:
binary search, but heavy

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 32 / 57



Directory Implementation - Linear List

I Linear list of file names with pointer to the data blocks.

I Simple to program.

I Time-consuming to execute.

I Linear search time.

I Could keep ordered alphabetically via linked list or use B+ tree:
binary search, but heavy

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 32 / 57



Directory Implementation - Linear List

I Linear list of file names with pointer to the data blocks.

I Simple to program.

I Time-consuming to execute.

I Linear search time.

I Could keep ordered alphabetically via linked list or use B+ tree:
binary search, but heavy

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 32 / 57



Directory Implementation - Linear List

I Linear list of file names with pointer to the data blocks.

I Simple to program.

I Time-consuming to execute.

I Linear search time.

I Could keep ordered alphabetically via linked list or use B+ tree:
binary search, but heavy

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 32 / 57



Directory Implementation - Hash Table

I Hash Table: linear list with hash data structure

I Decreases directory search time

I Collisions: situations where two file names hash to the same location

I Chained-overflow method.
• Each hash entry can be a linked list instead of an individual value.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 33 / 57



Directory Implementation - Hash Table

I Hash Table: linear list with hash data structure

I Decreases directory search time

I Collisions: situations where two file names hash to the same location

I Chained-overflow method.
• Each hash entry can be a linked list instead of an individual value.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 33 / 57



Directory Implementation - Hash Table

I Hash Table: linear list with hash data structure

I Decreases directory search time

I Collisions: situations where two file names hash to the same location

I Chained-overflow method.
• Each hash entry can be a linked list instead of an individual value.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 33 / 57



Directory Implementation - Hash Table

I Hash Table: linear list with hash data structure

I Decreases directory search time

I Collisions: situations where two file names hash to the same location

I Chained-overflow method.
• Each hash entry can be a linked list instead of an individual value.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 33 / 57



Allocation Methods

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 34 / 57



Allocation Methods

I How disk blocks are allocated to files?

I Methods:
• Contiguous allocation
• Linked allocation
• Indexed allocation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 35 / 57



Allocation Methods

I How disk blocks are allocated to files?

I Methods:
• Contiguous allocation
• Linked allocation
• Indexed allocation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 35 / 57



Contiguous Allocation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 36 / 57



Contiguous Allocation (1/2)

I Contiguous allocation: each file occupies set of contiguous blocks.

• Best performance in most cases
• Simple: only starting location (block number) and length (number

of blocks) are required.
• Supports both sequential and direct access.

I Allocation strategies like contiguous memory allocation:
• First fit
• Best fit
• Worst fit

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 37 / 57



Contiguous Allocation (1/2)

I Contiguous allocation: each file occupies set of contiguous blocks.
• Best performance in most cases
• Simple: only starting location (block number) and length (number

of blocks) are required.

• Supports both sequential and direct access.

I Allocation strategies like contiguous memory allocation:
• First fit
• Best fit
• Worst fit

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 37 / 57



Contiguous Allocation (1/2)

I Contiguous allocation: each file occupies set of contiguous blocks.
• Best performance in most cases
• Simple: only starting location (block number) and length (number

of blocks) are required.
• Supports both sequential and direct access.

I Allocation strategies like contiguous memory allocation:
• First fit
• Best fit
• Worst fit

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 37 / 57



Contiguous Allocation (1/2)

I Contiguous allocation: each file occupies set of contiguous blocks.
• Best performance in most cases
• Simple: only starting location (block number) and length (number

of blocks) are required.
• Supports both sequential and direct access.

I Allocation strategies like contiguous memory allocation:
• First fit
• Best fit
• Worst fit

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 37 / 57



Contiguous Allocation (2/2)

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 38 / 57



Contiguous Allocation Problems

I Finding space for file

I External fragmentation

I Need for compaction (fragmentation) off-line or on-line: lose of
performance

I Knowing file size

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 39 / 57



Contiguous Allocation Problems

I Finding space for file

I External fragmentation

I Need for compaction (fragmentation) off-line or on-line: lose of
performance

I Knowing file size

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 39 / 57



Contiguous Allocation Problems

I Finding space for file

I External fragmentation

I Need for compaction (fragmentation) off-line or on-line: lose of
performance

I Knowing file size

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 39 / 57



Contiguous Allocation Problems

I Finding space for file

I External fragmentation

I Need for compaction (fragmentation) off-line or on-line: lose of
performance

I Knowing file size

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 39 / 57



Extent-Based Systems

I A modified contiguous allocation scheme.
• E.g., Veritas file system

I Extent-based file systems allocate disk blocks in extents.

I An extent is a contiguous block of disks.
• Extents are allocated for file allocation.
• A file consists of one or more extents.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 40 / 57



Extent-Based Systems

I A modified contiguous allocation scheme.
• E.g., Veritas file system

I Extent-based file systems allocate disk blocks in extents.

I An extent is a contiguous block of disks.
• Extents are allocated for file allocation.
• A file consists of one or more extents.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 40 / 57



Extent-Based Systems

I A modified contiguous allocation scheme.
• E.g., Veritas file system

I Extent-based file systems allocate disk blocks in extents.

I An extent is a contiguous block of disks.
• Extents are allocated for file allocation.
• A file consists of one or more extents.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 40 / 57



Linked Allocation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 41 / 57



Linked Allocation (1/2)

I Linked allocation: each file is a linked list of blocks.
• Each block contains pointer to next block.
• File ends at null pointer.

I No external fragmentation, no compaction.

I Free space management system called when new block needed.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 42 / 57



Linked Allocation (1/2)

I Linked allocation: each file is a linked list of blocks.
• Each block contains pointer to next block.
• File ends at null pointer.

I No external fragmentation, no compaction.

I Free space management system called when new block needed.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 42 / 57



Linked Allocation (1/2)

I Linked allocation: each file is a linked list of blocks.
• Each block contains pointer to next block.
• File ends at null pointer.

I No external fragmentation, no compaction.

I Free space management system called when new block needed.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 42 / 57



Linked Allocation (2/2)

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 43 / 57



Linked Allocation Problems

I Locating a block can take many I/Os and disk seeks.

I Reliability can be a problem.

I The space required for the pointers.
• Efficiency can be improved by clustering blocks into groups but

increases internal fragmentation.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 44 / 57



Linked Allocation Problems

I Locating a block can take many I/Os and disk seeks.

I Reliability can be a problem.

I The space required for the pointers.
• Efficiency can be improved by clustering blocks into groups but

increases internal fragmentation.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 44 / 57



Linked Allocation Problems

I Locating a block can take many I/Os and disk seeks.

I Reliability can be a problem.

I The space required for the pointers.
• Efficiency can be improved by clustering blocks into groups but

increases internal fragmentation.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 44 / 57



File-Allocation Table (FAT)

I Beginning of volume has a table, indexed by block number.

I Much like a linked list, but faster on disk and cacheable.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 45 / 57



Indexed Allocation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 46 / 57



Indexed Allocation (1/2)

I Indexed allocation: each file has its own index block(s) of pointers
to its data blocks.

I Need index table

I Random access

I Dynamic access without external fragmentation, but have overhead
of index block

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 47 / 57



Indexed Allocation (1/2)

I Indexed allocation: each file has its own index block(s) of pointers
to its data blocks.

I Need index table

I Random access

I Dynamic access without external fragmentation, but have overhead
of index block

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 47 / 57



Indexed Allocation (1/2)

I Indexed allocation: each file has its own index block(s) of pointers
to its data blocks.

I Need index table

I Random access

I Dynamic access without external fragmentation, but have overhead
of index block

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 47 / 57



Indexed Allocation (1/2)

I Indexed allocation: each file has its own index block(s) of pointers
to its data blocks.

I Need index table

I Random access

I Dynamic access without external fragmentation, but have overhead
of index block

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 47 / 57



Indexed Allocation (2/2)

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 48 / 57



Indexed Allocation Problems

I Wasted space: overhead of the index blocks.

I For example, even with a file of only one or two blocks, we need an
an entire index block.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 49 / 57



Index Block Size

I How large the index block should be?

I Keep the index block as small as possible.
• We need a mechanism to hold pointers for large files.

I Mechanisms for this purpose include the following:
• Linked scheme
• Multi-level index
• Combined scheme

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 50 / 57



Index Block Size

I How large the index block should be?

I Keep the index block as small as possible.
• We need a mechanism to hold pointers for large files.

I Mechanisms for this purpose include the following:
• Linked scheme
• Multi-level index
• Combined scheme

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 50 / 57



Index Block Size

I How large the index block should be?

I Keep the index block as small as possible.
• We need a mechanism to hold pointers for large files.

I Mechanisms for this purpose include the following:
• Linked scheme
• Multi-level index
• Combined scheme

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 50 / 57



Linked Scheme

I Linked scheme: link blocks of index table (no limit on size)

I For example, an index block might contain a small header giving the
name of the file and a set of the first 100 disk-block addresses.

I The next address is null or is a pointer to another index block.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 51 / 57



Linked Scheme

I Linked scheme: link blocks of index table (no limit on size)

I For example, an index block might contain a small header giving the
name of the file and a set of the first 100 disk-block addresses.

I The next address is null or is a pointer to another index block.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 51 / 57



Multi-Level Index

I Two-level index

I A first-level index block to point to a set of second-level index blocks,
which in turn point to the file blocks.

I Could be continued to a third or fourth level.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 52 / 57



Combined Scheme

I Combine scheme: used in Unix/Linux FS

I The first 12 pointers point to direct blocks
• The data for small files do not need a separate index block.

I The next 3 pointers point to indirect blocks.
• Single indirect
• Double indirect
• Triple indirect

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 53 / 57



Performance

I Best method depends on file access type.

I Contiguous is great for sequential and random.

I Linked is good for sequential, not random.

I Indexed is more complex
• Single block access could require 2 index block reads then data

block read
• Clustering can help improve throughput, reduce CPU overhead

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 54 / 57



Performance

I Best method depends on file access type.

I Contiguous is great for sequential and random.

I Linked is good for sequential, not random.

I Indexed is more complex
• Single block access could require 2 index block reads then data

block read
• Clustering can help improve throughput, reduce CPU overhead

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 54 / 57



Performance

I Best method depends on file access type.

I Contiguous is great for sequential and random.

I Linked is good for sequential, not random.

I Indexed is more complex
• Single block access could require 2 index block reads then data

block read
• Clustering can help improve throughput, reduce CPU overhead

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 54 / 57



Performance

I Best method depends on file access type.

I Contiguous is great for sequential and random.

I Linked is good for sequential, not random.

I Indexed is more complex
• Single block access could require 2 index block reads then data

block read
• Clustering can help improve throughput, reduce CPU overhead

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 54 / 57



Summary

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 55 / 57



Summary

I FS layers: device, I/O control, basic FS, file-organization, logical
FS, application

I FS implementation:
• On-disk structures: boot control block, volume control block,

directory structure, and file control block
• In-memory structures: mount table, directory structure, open-file

tables, and buffers

I Virtual file system (VFS)

I Directory implementation: linear list, and hash table

I Allocation methods: contiguous allocation, linked allocation, and
indexed allocation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 56 / 57



Summary

I FS layers: device, I/O control, basic FS, file-organization, logical
FS, application

I FS implementation:
• On-disk structures: boot control block, volume control block,

directory structure, and file control block
• In-memory structures: mount table, directory structure, open-file

tables, and buffers

I Virtual file system (VFS)

I Directory implementation: linear list, and hash table

I Allocation methods: contiguous allocation, linked allocation, and
indexed allocation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 56 / 57



Summary

I FS layers: device, I/O control, basic FS, file-organization, logical
FS, application

I FS implementation:
• On-disk structures: boot control block, volume control block,

directory structure, and file control block
• In-memory structures: mount table, directory structure, open-file

tables, and buffers

I Virtual file system (VFS)

I Directory implementation: linear list, and hash table

I Allocation methods: contiguous allocation, linked allocation, and
indexed allocation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 56 / 57



Summary

I FS layers: device, I/O control, basic FS, file-organization, logical
FS, application

I FS implementation:
• On-disk structures: boot control block, volume control block,

directory structure, and file control block
• In-memory structures: mount table, directory structure, open-file

tables, and buffers

I Virtual file system (VFS)

I Directory implementation: linear list, and hash table

I Allocation methods: contiguous allocation, linked allocation, and
indexed allocation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 56 / 57



Summary

I FS layers: device, I/O control, basic FS, file-organization, logical
FS, application

I FS implementation:
• On-disk structures: boot control block, volume control block,

directory structure, and file control block
• In-memory structures: mount table, directory structure, open-file

tables, and buffers

I Virtual file system (VFS)

I Directory implementation: linear list, and hash table

I Allocation methods: contiguous allocation, linked allocation, and
indexed allocation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 56 / 57



Questions?

Acknowledgements

Some slides were derived from Avi Silberschatz slides.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 57 / 57


