File System Implementation (Part I)

Amir H. Payberah

amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

AMIRKABIR UNIVERSITY
OF TECHNOLOGY

Motivation

L
Motivation

» The file system resides permanently on secondary storage.

» How to

e structure file use

¢ allocate disk space

e recover free space

e track the locations of data

« interface other parts of the OS to secondary storage

File System Structure

INNSS———
File-System Structure

» Disk provides in-place rewrite and random access
* 1/0 transfers performed in blocks of sectors (usually 512 bytes)

INNSS———
File-System Structure

» Disk provides in-place rewrite and random access
 1/0O transfers performed in blocks of sectors (usually 512 bytes)

» File system resides on secondary storage

e User interface to storage, mapping logical to physical
e Efficient and convenient access to disk

L
File-System Structure

» Disk provides in-place rewrite and random access
 1/0O transfers performed in blocks of sectors (usually 512 bytes)

» File system resides on secondary storage

e User interface to storage, mapping logical to physical
e Efficient and convenient access to disk

» File structure

e Logical storage unit
e Collection of related information

INNSS———
File-System Design Problems

» How the file system should look to the user?

INNSS———
File-System Design Problems

» How the file system should look to the user?
¢ Defining a file and its attributes
e The operations allowed on a file
e The directory structure for organizing files

INNSS———
File-System Design Problems

» How the file system should look to the user?

¢ Defining a file and its attributes
e The operations allowed on a file
e The directory structure for organizing files

» Algorithms and data structures to map the logical file system onto
the physical secondary-storage devices.

-
File System Layers (1/6)

» Different levels

» Each level uses the features of lower
levels to create new features for use
by higher levels.

» Reducing complexity and redundancy,
but adds overhead and can decrease
performance.

application programs

logical file system

’

file-organization module

.

basic file system

Y

1/O control

¢

devices

 Amic H. Payberah (Tehran Polytechnic) | File System Implementation ez T

N
File System Layers (2/6)

application programs

» Device drivers manage |/O devices

at the I/O control layer. logical file system
» Translates high-level commands to file-organization module
low-level hardware-specific instructions. i

basic file system

¢

1/O control

Y

devices

I,
File System Layers (3/6)

application programs

v

logical file system

’

file-organization module

.

basic file system

¢

1/O control

¢

devices

» Basic file system translates given command
like retrieve block 123 to device driver.

-
File System Layers (3/6)

application programs

v

logical file system

’

file-organization module

» Basic file system translates given command
like retrieve block 123 to device driver.

» Also manages memory buffers and

caches (allocation, freeing, replacement) R
¢ Buffers hold data in transit basic file system
e Caches hold frequently used data ﬂ,
I/0 control
devices

 Amic H. Payberah (Tehran Polytechnic) | File System Implementation BTN G

I,
File System Layers (4/6)

application programs

» File organization understands files, logical

address, and physical blocks. .
logical file system

.

file-organization module

.

basic file system

¢

1/O control

¢

devices

N
File System Layers (4/6)

application programs
» File organization understands files, logical

address, and physical blocks. .
logical file system

.

» Translates logical block number to physical file-organization module
block number. i

basic file system

¢

1/O control

¢

devices

-
File System Layers (4/6)

application programs

> File organization understands files, logical

address, and physical blocks. .
logical file system

.

» Translates logical block number to physical L
file-organization module
block number. R

)) basic file system
» Manages free space and disk allocation. ﬂ,

1/O control

¢

devices

 Amic H. Payberah (Tehran Polytechnic) | File System Implementation TR

File System Layers (5/6)

» Logical file system manages metadata

information.

application programs

¢

logical file system

v

file-organization module

.

basic file system

’

|/O control

"

devices

-
File System Layers (5/6)

application programs

» Logical file system manages metadata R
information.
logical file system
» Translates file name into file number, file ﬂ'
handle, location by maintaining file file-organization module
control blocks (inodes in Unix) R

basic file system

’

|/O control

"

devices

 Amic H. Payberah (Tehran Polytechnic) | File System Implementation a3 1S

-
File System Layers (5/6)

application programs

» Logical file system manages metadata ﬂ
information.
logical file system
» Translates file name into file number, file ﬂ
handle, location by maintaining file file-organization module
control blocks (inodes in Unix) ﬂ
basic file system
» Directory management H,
I/0 control
» Protection H,
devices

 Amic H. Payberah (Tehran Polytechnic) | File System Implementation eseE i1 /s

I,
File System Layers (6/6)

» Many file systems, sometimes many within an OS

» Each with its own format
e CD-ROM: ISO 9660
e Unix: UFS, FFS
e Windows: FAT, FAT32, NTFS
e Linux: more than 40 types, with extended file system (ext2, ext3,

ext4)

File System Implementation

INNSS———
File-System Implementation

» Based on several on-disk and in-memory structures.

INNSS———
File-System Implementation

» Based on several on-disk and in-memory structures.

» On-disk
» Boot control block (per volume)
» Volume control block (per volume)
* Directory structure (per file system)
* File control block (per file)

INNSS———
File-System Implementation

» Based on several on-disk and in-memory structures.

» On-disk
» Boot control block (per volume)
» Volume control block (per volume)
* Directory structure (per file system)
* File control block (per file)

» In-memory
¢ Mount table
e Directory structure cache
» The open-file table (system-wide and per process)
e Buffers of the file-system blocks

On-Disk File System Structures (1/2)

» Boot control block contains information needed by system to boot
OS from that volume.

|
Boot | Super | inode | Block:
Block | Block | List | List |

[S —— |

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 15 / 57

On-Disk File System Structures (1/2)

» Boot control block contains information needed by system to boot

OS from that volume.

e Needed if volume contains OS, usually first block of volume.
e In UFS, it is called boot block, and in NTFS partition boot sector.

Boot
Block

Amir H. Payberah (Tehran Polytechnic)

[_r -—-=-
Super | inode | Block :
Block | List t List ,
[N —_— |
File System Implementation 1393/9/8 15 / 57

On-Disk File System Structures (1/2)

» Boot control block contains information needed by system to boot

OS from that volume.

e Needed if volume contains OS, usually first block of volume.
e In UFS, it is called boot block, and in NTFS partition boot sector.

» Volume control block contains volume details.

Boot
Block

Amir H. Payberah (Tehran Polytechnic)

[_r -—-=-
Super | inode | Block :
Block | List t List ,
[N —_— |
File System Implementation 1393/9/8 15 / 57

On-Disk File System Structures (1/2)

» Boot control block contains information needed by system to boot

OS from that volume.

e Needed if volume contains OS, usually first block of volume.
e In UFS, it is called boot block, and in NTFS partition boot sector.

» Volume control block contains volume details.
o Total num. of blocks, num. of free blocks, block size, free block

pointers or array

e In UFS, it is called super block, and in NTFS master file table.

Boot
Block

Amir H. Payberah (Tehran Polytechnic)

[_r -—-=-
Super | inode | Block :
Block | List t List ,
[N —_— |
File System Implementation 1393/9/8 15 / 57

BN
On-Disk File System Structures (2/2)

» Directory structure organizes the files.

e In UFS, this includes file names and associated inode numbers.
e In NTFS, it is stored in the master file table.

N
On-Disk File System Structures (2/2)

» Directory structure organizes the files.

e In UFS, this includes file names and associated inode numbers.
e In NTFS, it is stored in the master file table.

» File control block contains many details about the file.

* In UFS, inode number, permissions, size, dates.
e In NFTS stores into in master file table.

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

 Amic H. Payberah (Tebran Polytechnic) | File System Implementation TR

INNSS———
In-Memory File System Structures

» Mount table contains information about each mounted volume.

INNSS———
In-Memory File System Structures

» Mount table contains information about each mounted volume.

» Directory structure cache holds the directory information of recently
accessed directories.

In-Memory File System Structures

» Mount table contains information about each mounted volume.

» Directory structure cache holds the directory information of recently
accessed directories.

» System-wide open-file table contains a copy of the FCB of each open
file.

-
In-Memory File System Structures

» Mount table contains information about each mounted volume.

> Directory structure cache holds the directory information of recently
accessed directories.

» System-wide open-file table contains a copy of the FCB of each open
file.

» Per-process open-file table contains a pointer to the appropriate
entry in the system-wide open-file table.

~ Amir H. Payberah (Tehran Polytechnic) ~ File System Implementation 1303/9/8 1757

-
In-Memory File System Structures

» Mount table contains information about each mounted volume.

> Directory structure cache holds the directory information of recently
accessed directories.

» System-wide open-file table contains a copy of the FCB of each open
file.

» Per-process open-file table contains a pointer to the appropriate
entry in the system-wide open-file table.

» Buffers hold file-system blocks when they are being read from disk
or written to disk.

~ Amir H. Payberah (Tehran Polytechnic) ~ File System Implementation 1303/9/8 1757

L
Create a File

» A program calls the logical file system.

L
Create a File

» A program calls the logical file system.

» The logical file system knows the format of the directory structures,
and allocates a new FCB.

L
Create a File

» A program calls the logical file system.

» The logical file system knows the format of the directory structures,
and allocates a new FCB.

» The system, then, reads the appropriate directory into memory, up-
dates it with the new file name and FCB, and writes it back to the
disk.

Open a File

» The file must be opened.

e The open() passes a file name to the logical file system.

open (file name)

O

LI

directory structure

directory structure

file-control block

user space

kernel memory

secondary storage

NS
Open a File

» The file must be opened.
e The open() passes a file name to the logical file system.

» The open() first searches the system-wide open-file: if the file is
already in use by another process.

| directory structure
open (file name) D
directory structure file-control block
user space kernel memory secondary storage

.
Open a File

» The file must be opened.
e The open() passes a file name to the logical file system.

» The open() first searches the system-wide open-file: if the file is
already in use by another process.
e If yes: a per-process open-file table entry is created.
] 00
L0

o

irectory structure

.

open (file name) D
CiechonjSiichs file-control block
kernel memory secondary storage

user space

 Aric H. Payberah (Tebran Polytechnic) | File System Implementation Y

.
Open a File

» The file must be opened.
e The open() passes a file name to the logical file system.

» The open() first searches the system-wide open-file: if the file is

already in use by another process.
e If yes: a per-process open-file table entry is created.
 If no: the directory structure is searched for the given file name:
once the file is found, the FCB is copied into a system-wide
open-file table in memory.

|
0o

L]
L]

irectory structure

o

.

open (file name) D
directory structure file-control block
kernel memory secondary storage

user space

 Aric H. Payberah (Tebran Polytechnic) | File System Implementation Y

.
Open a File

» The file must be opened.
e The open() passes a file name to the logical file system.

» The open() first searches the system-wide open-file: if the file is
already in use by another process.

e If yes: a per-process open-file table entry is created.

 If no: the directory structure is searched for the given file name:
once the file is found, the FCB is copied into a system-wide
open-file table in memory.

» This table stores the FCB as well as the number of processes that
have the file open.

| directory structure
open (file name) D
directory structure file-control block
user space kernel memory secondary storage

 Aric H. Payberah (Tebran Polytechnic) | File System Implementation Y

R
Read From a File

» The open() returns a pointer to the appropriate entry in the per-
process file-system table.

» All file operations are then performed via this pointer.

» This pointer is called file descriptor in Unix and file handle in Win-
dows.

N —]
| | data blocks
read (index) —— \-_D
per-process system-wide file-control block
open-file table open-file table
user space kernel memory secondary storage

 Aric H. Payberah (Tebran Polytechnic) | File System Implementation Y

o
Close a File

» When a process closes the file:

e The per-process table entry is removed.
e The system-wide entry’s open count is decremented.

o
Close a File

» When a process closes the file:

e The per-process table entry is removed.
e The system-wide entry’s open count is decremented.

» When all users that have opened the file close it, any updated meta-
data is copied back to the disk-based directory structure, and the
system-wide open-file table entry is removed.

.
Partitions and Mounting (1/2)

» Partition can be a volume containing a file system or raw.
e Raw partition: just a sequence of blocks with no file system.

BN
Partitions and Mounting (1/2)

» Partition can be a volume containing a file system or raw.
e Raw partition: just a sequence of blocks with no file system.

» Boot block points to boot volume or boot loader.
* Boot loader: knows enough about the file-system structure to be
able to find and load the kernel and start it executing.
e Dual-boot that allows to install multiple OS on a single system.

.
Partitions and Mounting (2/2)

» Root partition contains the OS
e Mounted at boot time
e Other partitions can hold other OSes, other file systems, or be raw
e Other partitions can mount automatically or manually

BN
Partitions and Mounting (2/2)

» Root partition contains the OS

* Mounted at boot time
e Other partitions can hold other OSes, other file systems, or be raw
e Other partitions can mount automatically or manually

» At mount time, file system consistency checked.

e |s all metadata correct? if not, fix it, try again, if yes, add to mount
table, allow access

Virtual File Systems

BN
Virtual File Systems (1/2)

» Virtual File Systems (VFS) on Unix provide an object-oriented way
of implementing file systems.

BN
Virtual File Systems (1/2)

» Virtual File Systems (VFS) on Unix provide an object-oriented way
of implementing file systems.

» VFS allows the same system call interface (the API) to be used for
different types of file systems.

N
Virtual File Systems (1/2)

» Virtual File Systems (VFS) on Unix provide an object-oriented way
of implementing file systems.

» VFS allows the same system call interface (the API) to be used for
different types of file systems.

» The API is to the VFS interface, rather than any specific type of

file system.

VFS interface

‘ local file systam

I

 Amic H. Payberah (Tehran Polytechnic) | File System Implementation RO 25

local file system ‘
type 2

remote file system
type 1

BN
Virtual File Systems (2/2)

» VFS layer serves two important functions:

BN
Virtual File Systems (2/2)

» VFS layer serves two important functions:
@ It separates file-system-generic operations from their implementa-
tion, and allows transparent access to different types of file systems
mounted locally.

Virtual File Systems (2/2)

» VFS layer serves two important functions:

@ It separates file-system-generic operations from their implementa-
tion, and allows transparent access to different types of file systems
mounted locally.

@ It provides a mechanism for uniquely representing a file throughout
a network.

Virtual File Systems (2/2)

» VFS layer serves two important functions:

@ It separates file-system-generic operations from their implementa-
tion, and allows transparent access to different types of file systems
mounted locally.

@ It provides a mechanism for uniquely representing a file throughout
a network.

» The VFS is based on a structure, called a vnode.

Virtual File Systems (2/2)

» VFS layer serves two important functions:

@ It separates file-system-generic operations from their implementa-

tion, and allows transparent access to different types of file systems
mounted locally.

@ It provides a mechanism for uniquely representing a file throughout
a network.

» The VFS is based on a structure, called a vnode.

¢ Contains a numerical designator for a network-wide unique file.

N
Virtual File Systems (2/2)

» VFS layer serves two important functions:

@ It separates file-system-generic operations from their implementa-
tion, and allows transparent access to different types of file systems
mounted locally.

@ It provides a mechanism for uniquely representing a file throughout
a network.

» The VFS is based on a structure, called a vnode.

e Contains a numerical designator for a network-wide unique file.
» Unix inodes are unique within only a single file system.

 Amir H. Payberah (Tehran Polytechnic) | File System Implementation T

N
Virtual File Systems (2/2)

» VFS layer serves two important functions:
@ It separates file-system-generic operations from their implementa-
tion, and allows transparent access to different types of file systems

mounted locally.
@ It provides a mechanism for uniquely representing a file throughout

a network.

» The VFS is based on a structure, called a vnode.
e Contains a numerical designator for a network-wide unique file.
e Unix inodes are unique within only a single file system.
* The kernel maintains one vnode structure for each active node.

 Amir H. Payberah (Tehran Polytechnic) | File System Implementation T

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 27 / 57

I,
VFS in Linux (1/2)

» The four main object types defined by the Linux VFS are:

I,
VFS in Linux (1/2)

» The four main object types defined by the Linux VFS are:

e The inode object: represents an individual file

I,
VFS in Linux (1/2)

» The four main object types defined by the Linux VFS are:

e The inode object: represents an individual file

e The file object: represents an open file

I,
VFS in Linux (1/2)

» The four main object types defined by the Linux VFS are:
e The inode object: represents an individual file
e The file object: represents an open file

e The super block object: represents an entire file system

I,
VFS in Linux (1/2)

» The four main object types defined by the Linux VFS are:

e The inode object: represents an individual file
e The file object: represents an open file
e The super block object: represents an entire file system

e The dentry object: represents an individual directory entry

I,
VFS in Linux (2/2)

» VFS defines a set of operations on the objects that must be imple-
mented.

I,
VFS in Linux (2/2)

» VFS defines a set of operations on the objects that must be imple-
mented.

» Every object has a pointer to a function table.

I,
VFS in Linux (2/2)

» VFS defines a set of operations on the objects that must be imple-
mented.

» Every object has a pointer to a function table.

¢ Function table has addresses of routines to implement that function
on that object.

BN
VFS in Linux (2/2)

» VFS defines a set of operations on the objects that must be imple-
mented.

» Every object has a pointer to a function table.

¢ Function table has addresses of routines to implement that function
on that object.

¢ For example:
int open(...): open a file
int close(...): close an already-open file
ssize_t read(...): read from a file
ssize_t write(...): write to a file
int mmap(...): memory-map a file

Directory Implementation

BN
Directory Implementation

» Linear list

» Hash table

BN
Directory Implementation - Linear List

» Linear list of file names with pointer to the data blocks.

BN
Directory Implementation - Linear List

» Linear list of file names with pointer to the data blocks.

» Simple to program.

BN
Directory Implementation - Linear List

» Linear list of file names with pointer to the data blocks.
» Simple to program.

» Time-consuming to execute.

BN
Directory Implementation - Linear List

v

Linear list of file names with pointer to the data blocks.

v

Simple to program.

v

Time-consuming to execute.

Linear search time.

v

BN
Directory Implementation - Linear List

v

Linear list of file names with pointer to the data blocks.

v

Simple to program.

v

Time-consuming to execute.

Linear search time.

v

v

Could keep ordered alphabetically via linked list or use B+ tree:
binary search, but heavy

BN
Directory Implementation - Hash Table

» Hash Table: linear list with hash data structure

BN
Directory Implementation - Hash Table

» Hash Table: linear list with hash data structure

» Decreases directory search time

BN
Directory Implementation - Hash Table

» Hash Table: linear list with hash data structure
» Decreases directory search time

» Collisions: situations where two file names hash to the same location

BN
Directory Implementation - Hash Table

Hash Table: linear list with hash data structure

v

v

Decreases directory search time

Collisions: situations where two file names hash to the same location

v

v

Chained-overflow method.
e Each hash entry can be a linked list instead of an individual value.

Allocation Methods

o
Allocation Methods

» How disk blocks are allocated to files?

o
Allocation Methods

» How disk blocks are allocated to files?

» Methods:
e Contiguous allocation
e Linked allocation
e Indexed allocation

Contiguous Allocation

I
Contiguous Allocation (1/2)

» Contiguous allocation: each file occupies set of contiguous blocks.

I
Contiguous Allocation (1/2)

» Contiguous allocation: each file occupies set of contiguous blocks.
e Best performance in most cases
e Simple: only starting location (block number) and length (number
of blocks) are required.

I
Contiguous Allocation (1/2)

» Contiguous allocation: each file occupies set of contiguous blocks.

e Best performance in most cases

e Simple: only starting location (block number) and length (number
of blocks) are required.

e Supports both sequential and direct access.

BN
Contiguous Allocation (1/2)

» Contiguous allocation: each file occupies set of contiguous blocks.

e Best performance in most cases

e Simple: only starting location (block number) and length (number
of blocks) are required.

e Supports both sequential and direct access.

» Allocation strategies like contiguous memory allocation:
e First fit
e Best fit
e Worst fit

Contiguous Allocation (2/2)

/\ directory
v file start length
count
o] 1] 2] 3] count 0 2
f tr 14 3
4[] 5[] e[] 7] mail 19 6
SD 9D10|:|11|:| list 28 4
f 6 2
\12D1SD14D15D
16[_]17[_118[]19[]
mail
20 J21[J22[]23[]
24[25 J2e[127[]
list
28[]29[]30[]31[]

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 38 / 57

BN
Contiguous Allocation Problems

» Finding space for file

BN
Contiguous Allocation Problems

» Finding space for file

» External fragmentation

BN
Contiguous Allocation Problems

» Finding space for file
» External fragmentation

» Need for compaction (fragmentation) off-line or on-line: lose of
performance

BN
Contiguous Allocation Problems

v

Finding space for file

v

External fragmentation

v

Need for compaction (fragmentation) off-line or on-line: lose of
performance

v

Knowing file size

INNSS———
Extent-Based Systems

» A modified contiguous allocation scheme.
e E.g., Veritas file system

INNSS———
Extent-Based Systems

» A modified contiguous allocation scheme.
e E.g., Veritas file system

» Extent-based file systems allocate disk blocks in extents.

INNSS———
Extent-Based Systems

» A modified contiguous allocation scheme.
e E.g., Veritas file system

» Extent-based file systems allocate disk blocks in extents.

» An extent is a contiguous block of disks.

» Extents are allocated for file allocation.
« A file consists of one or more extents.

Linked Allocation

I,
Linked Allocation (1/2)

» Linked allocation: each file is a linked list of blocks.

e Each block contains pointer to next block.
e File ends at null pointer.

I,
Linked Allocation (1/2)

» Linked allocation: each file is a linked list of blocks.

e Each block contains pointer to next block.
e File ends at null pointer.

» No external fragmentation, no compaction.

I,
Linked Allocation (1/2)

» Linked allocation: each file is a linked list of blocks.

e Each block contains pointer to next block.
e File ends at null pointer.

» No external fragmentation, no compaction.

» Free space management system called when new block needed.

Amir H. Payberah (Tehran Polytechnic)

Linked Allocation (2/2)

directory
file start end
jeep 9 25

1213114/ 115
17118 119[]
20 J21[J22[23]

16

24[J25F1I26[127[]
28[129[130[I31[]

~

File System Implementation

1393/9/8

43 / 57

o
Linked Allocation Problems

» Locating a block can take many I/Os and disk seeks.

o
Linked Allocation Problems

» Locating a block can take many I/Os and disk seeks.

» Reliability can be a problem.

o
Linked Allocation Problems

» Locating a block can take many |/Os and disk seeks.

» Reliability can be a problem.

» The space required for the pointers.

o Efficiency can be improved by clustering blocks into groups but
increases internal fragmentation.

File-Allocation Table (FAT)

» Beginning of volume has a table, indexed by block number.

» Much like a linked list, but faster on disk and cacheable.

directory entry
[test | eee [217
name start block

p17[618
339]
618 339

number of disk blocks -1

FAT

Indexed Allocation

I
Indexed Allocation (1/2)

» Indexed allocation: each file has its own index block(s) of pointers
to its data blocks.

I
Indexed Allocation (1/2)

» Indexed allocation: each file has its own index block(s) of pointers
to its data blocks.

» Need index table

I
Indexed Allocation (1/2)

» Indexed allocation: each file has its own index block(s) of pointers
to its data blocks.

» Need index table

» Random access

I
Indexed Allocation (1/2)

Indexed allocation: each file has its own index block(s) of pointers
to its data blocks.

v

Need index table

v

v

Random access

» Dynamic access without external fragmentation, but have overhead
of index block

Indexed Allocation (2/2)

/_A_\\ directory
e—— file index block
oJ 10 200 3] leep e
|
4[] 5[] 70

20 J21[]22[A23
24[J25[26 127]

28[J29[|30[131[]
p— g

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/8 48 / 57

L
Indexed Allocation Problems

» Wasted space: overhead of the index blocks.

» For example, even with a file of only one or two blocks, we need an
an entire index block.

o
Index Block Size

» How large the index block should be?

o
Index Block Size

» How large the index block should be?

» Keep the index block as small as possible.
¢ We need a mechanism to hold pointers for large files.

o
Index Block Size

» How large the index block should be?

» Keep the index block as small as possible.
¢ We need a mechanism to hold pointers for large files.

» Mechanisms for this purpose include the following:
¢ Linked scheme
o Multi-level index
e Combined scheme

o
Linked Scheme

» Linked scheme: link blocks of index table (no limit on size)

o
Linked Scheme

» Linked scheme: link blocks of index table (no limit on size)

» For example, an index block might contain a small header giving the
name of the file and a set of the first 100 disk-block addresses.

» The next address is null or is a pointer to another index block.

o
Multi-Level Index

» Two-level index

» A first-level index block to point to a set of second-level index blocks,
which in turn point to the file blocks.

» Could be continued to a third or fourth level.

Combined Scheme
» Combine scheme: used in Unix/Linux FS

» The first 12 pointers point to direct blocks
e The data for small files do not need a separate index block.

» The next 3 pointers point to indirect blocks.

e Single indirect

 Double indirect mode
. . . owners (2
e Triple indirect — ()(3)
imestamps
- 2 data
size block count
—{data |
_

direct blocks

single indirect —

double indirect _|

triple indirect

Amir H. Payberah (Tehran Polytechnic) File System Implementation

L
Performance

» Best method depends on file access type.

L
Performance

» Best method depends on file access type.

» Contiguous is great for sequential and random.

L
Performance

» Best method depends on file access type.
» Contiguous is great for sequential and random.

» Linked is good for sequential, not random.

L
Performance

v

Best method depends on file access type.

v

Contiguous is great for sequential and random.

v

Linked is good for sequential, not random.

v

Indexed is more complex

* Single block access could require 2 index block reads then data
block read
e Clustering can help improve throughput, reduce CPU overhead

Summary

INNSS———
Summary

» FS layers: device, 1/O control, basic FS, file-organization, logical
FS, application

Summary

» FS layers: device, 1/O control, basic FS, file-organization, logical
FS, application

» FS implementation:
e On-disk structures: boot control block, volume control block,
directory structure, and file control block
¢ In-memory structures: mount table, directory structure, open-file
tables, and buffers

L
Summary

» FS layers: device, 1/O control, basic FS, file-organization, logical
FS, application

» FS implementation:
e On-disk structures: boot control block, volume control block,
directory structure, and file control block
¢ In-memory structures: mount table, directory structure, open-file
tables, and buffers

» Virtual file system (VFS)

-
Summary

v

FS layers: device, I/O control, basic FS, file-organization, logical
FS, application

v

FS implementation:

e On-disk structures: boot control block, volume control block,
directory structure, and file control block

e In-memory structures: mount table, directory structure, open-file
tables, and buffers

v

Virtual file system (VFS)

v

Directory implementation: linear list, and hash table

 Amic H. Payberah (Tehran Polytechnic) | File System Implementation T

-
Summary

» FS layers: device, 1/O control, basic FS, file-organization, logical
FS, application

» FS implementation:
e On-disk structures: boot control block, volume control block,

directory structure, and file control block
e In-memory structures: mount table, directory structure, open-file
tables, and buffers
» Virtual file system (VFS)

» Directory implementation: linear list, and hash table

» Allocation methods: contiguous allocation, linked allocation, and
indexed allocation

 Amic H. Payberah (Tehran Polytechnic) | File System Implementation T

Questions?

Some slides were derived from Avi Silberschatz slides. '

