
File System Implementation (Part II)

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 1 / 51



Reminder

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 2 / 51



File System Layers

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 3 / 51



File-System Implementation

I Based on several on-disk and in-memory structures.

I On-disk
• Boot control block (per volume)
• Volume control block (per volume)
• Directory structure (per file system)
• File control block (per file)

I In-memory
• Mount table
• Directory structure
• The open-file table (system-wide and per process)
• Buffers of the file-system blocks

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 4 / 51



Virtual File Systems (VFS)

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 5 / 51



Directory Implementation

I Linear list

I Hash table

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 6 / 51



Allocation Methods

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 7 / 51



Free Space Management

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 8 / 51



Free-Space Management (1/2)

I File system maintains free-space list to track available blocks.

I To create a file, OS searches the free-space list for the required
amount of space and allocates that space to the new file.

• This space is then removed from the free-space list.

I When a file is deleted, its disk space is added to the free-space list.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 9 / 51



Free-Space Management (1/2)

I File system maintains free-space list to track available blocks.

I To create a file, OS searches the free-space list for the required
amount of space and allocates that space to the new file.

• This space is then removed from the free-space list.

I When a file is deleted, its disk space is added to the free-space list.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 9 / 51



Free-Space Management (1/2)

I File system maintains free-space list to track available blocks.

I To create a file, OS searches the free-space list for the required
amount of space and allocates that space to the new file.

• This space is then removed from the free-space list.

I When a file is deleted, its disk space is added to the free-space list.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 9 / 51



Free-Space Management (2/2)

I Possible techniques:
• Bit vector
• Linked list
• Grouping
• Counting
• Space maps

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 10 / 51



Bit Vector

I Bit vector or bit map (n blocks)

I bit[i] = 1: block i is free
bit[i] = 0: block i is occupied

I Block number calculation to find the location of the first free block:
(# of bits per word) × (# of 0-value words) + offset of first 1 bit

I Inefficient unless the entire vector is kept in main memory.

I Easy to get contiguous files.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 11 / 51



Bit Vector

I Bit vector or bit map (n blocks)

I bit[i] = 1: block i is free
bit[i] = 0: block i is occupied

I Block number calculation to find the location of the first free block:
(# of bits per word) × (# of 0-value words) + offset of first 1 bit

I Inefficient unless the entire vector is kept in main memory.

I Easy to get contiguous files.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 11 / 51



Bit Vector

I Bit vector or bit map (n blocks)

I bit[i] = 1: block i is free
bit[i] = 0: block i is occupied

I Block number calculation to find the location of the first free block:
(# of bits per word) × (# of 0-value words) + offset of first 1 bit

I Inefficient unless the entire vector is kept in main memory.

I Easy to get contiguous files.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 11 / 51



Bit Vector

I Bit vector or bit map (n blocks)

I bit[i] = 1: block i is free
bit[i] = 0: block i is occupied

I Block number calculation to find the location of the first free block:
(# of bits per word) × (# of 0-value words) + offset of first 1 bit

I Inefficient unless the entire vector is kept in main memory.

I Easy to get contiguous files.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 11 / 51



Linked List

I Linked list (free-list)
• Cannot get contiguous space easily
• No waste of space
• No need to traverse the entire list

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 12 / 51



Grouping

I A modified version of the linked list approach

I It stores the addresses of n free blocks in the first free block.

I The first n − 1 of these blocks are actually free.

I The last block contains the addresses of another n free blocks, and
so on.

I Easy to get contiguous files.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 13 / 51



Grouping

I A modified version of the linked list approach

I It stores the addresses of n free blocks in the first free block.

I The first n − 1 of these blocks are actually free.

I The last block contains the addresses of another n free blocks, and
so on.

I Easy to get contiguous files.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 13 / 51



Grouping

I A modified version of the linked list approach

I It stores the addresses of n free blocks in the first free block.

I The first n − 1 of these blocks are actually free.

I The last block contains the addresses of another n free blocks, and
so on.

I Easy to get contiguous files.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 13 / 51



Grouping

I A modified version of the linked list approach

I It stores the addresses of n free blocks in the first free block.

I The first n − 1 of these blocks are actually free.

I The last block contains the addresses of another n free blocks, and
so on.

I Easy to get contiguous files.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 13 / 51



Grouping

I A modified version of the linked list approach

I It stores the addresses of n free blocks in the first free block.

I The first n − 1 of these blocks are actually free.

I The last block contains the addresses of another n free blocks, and
so on.

I Easy to get contiguous files.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 13 / 51



Counting

I Because space is frequently contiguously used and freed, with
contiguous-allocation allocation, extents, or clustering.

I Keep address of first free block and count of following free blocks.

I Free space list then has entries containing addresses and counts.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 14 / 51



Counting

I Because space is frequently contiguously used and freed, with
contiguous-allocation allocation, extents, or clustering.

I Keep address of first free block and count of following free blocks.

I Free space list then has entries containing addresses and counts.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 14 / 51



Counting

I Because space is frequently contiguously used and freed, with
contiguous-allocation allocation, extents, or clustering.

I Keep address of first free block and count of following free blocks.

I Free space list then has entries containing addresses and counts.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 14 / 51



Space Map

I Used in ZFS

I Consider meta-data I/O on very large file systems: full data struc-
tures like bit maps cannot fit in memory

I Divides device space into metaslab units and manages metaslabs.
• A volume can contain hundreds of metaslabs.

I Each metaslab has associated space map: uses counting algorithm

I Rather than write counting structures to disk, it uses log-structured
file-system techniques to record them.

I Metaslab activity → load space map into memory in balanced-tree
structure

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 15 / 51



Space Map

I Used in ZFS

I Consider meta-data I/O on very large file systems: full data struc-
tures like bit maps cannot fit in memory

I Divides device space into metaslab units and manages metaslabs.
• A volume can contain hundreds of metaslabs.

I Each metaslab has associated space map: uses counting algorithm

I Rather than write counting structures to disk, it uses log-structured
file-system techniques to record them.

I Metaslab activity → load space map into memory in balanced-tree
structure

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 15 / 51



Space Map

I Used in ZFS

I Consider meta-data I/O on very large file systems: full data struc-
tures like bit maps cannot fit in memory

I Divides device space into metaslab units and manages metaslabs.
• A volume can contain hundreds of metaslabs.

I Each metaslab has associated space map: uses counting algorithm

I Rather than write counting structures to disk, it uses log-structured
file-system techniques to record them.

I Metaslab activity → load space map into memory in balanced-tree
structure

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 15 / 51



Space Map

I Used in ZFS

I Consider meta-data I/O on very large file systems: full data struc-
tures like bit maps cannot fit in memory

I Divides device space into metaslab units and manages metaslabs.
• A volume can contain hundreds of metaslabs.

I Each metaslab has associated space map: uses counting algorithm

I Rather than write counting structures to disk, it uses log-structured
file-system techniques to record them.

I Metaslab activity → load space map into memory in balanced-tree
structure

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 15 / 51



Space Map

I Used in ZFS

I Consider meta-data I/O on very large file systems: full data struc-
tures like bit maps cannot fit in memory

I Divides device space into metaslab units and manages metaslabs.
• A volume can contain hundreds of metaslabs.

I Each metaslab has associated space map: uses counting algorithm

I Rather than write counting structures to disk, it uses log-structured
file-system techniques to record them.

I Metaslab activity → load space map into memory in balanced-tree
structure

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 15 / 51



Space Map

I Used in ZFS

I Consider meta-data I/O on very large file systems: full data struc-
tures like bit maps cannot fit in memory

I Divides device space into metaslab units and manages metaslabs.
• A volume can contain hundreds of metaslabs.

I Each metaslab has associated space map: uses counting algorithm

I Rather than write counting structures to disk, it uses log-structured
file-system techniques to record them.

I Metaslab activity → load space map into memory in balanced-tree
structure

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 15 / 51



Efficiency and Performance

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 16 / 51



Efficiency and Performance

I Disks are the major bottleneck in system performance.

I A variety of techniques used to improve the efficiency and perfor-
mance of secondary storage.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 17 / 51



Efficiency (1/2)

I Efficiency dependent on disk allocation and directory algorithms.

I Pre-allocation or as-needed allocation of metadata structures.

• E.g., Unix inodes are pre-allocated on a volume.
• Even an empty disk has a percentage of its space lost to inodes.
• It improves the file system’s performance, but consumes disk space.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 18 / 51



Efficiency (1/2)

I Efficiency dependent on disk allocation and directory algorithms.

I Pre-allocation or as-needed allocation of metadata structures.

• E.g., Unix inodes are pre-allocated on a volume.
• Even an empty disk has a percentage of its space lost to inodes.
• It improves the file system’s performance, but consumes disk space.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 18 / 51



Efficiency (1/2)

I Efficiency dependent on disk allocation and directory algorithms.

I Pre-allocation or as-needed allocation of metadata structures.
• E.g., Unix inodes are pre-allocated on a volume.

• Even an empty disk has a percentage of its space lost to inodes.
• It improves the file system’s performance, but consumes disk space.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 18 / 51



Efficiency (1/2)

I Efficiency dependent on disk allocation and directory algorithms.

I Pre-allocation or as-needed allocation of metadata structures.
• E.g., Unix inodes are pre-allocated on a volume.
• Even an empty disk has a percentage of its space lost to inodes.

• It improves the file system’s performance, but consumes disk space.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 18 / 51



Efficiency (1/2)

I Efficiency dependent on disk allocation and directory algorithms.

I Pre-allocation or as-needed allocation of metadata structures.
• E.g., Unix inodes are pre-allocated on a volume.
• Even an empty disk has a percentage of its space lost to inodes.
• It improves the file system’s performance, but consumes disk space.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 18 / 51



Efficiency (2/2)

I Types of data kept in file’s directory entry.

• E.g., ”last write date” is recorded for some files.
• Updating this information is inefficient for frequently accessed files.
• Benefit against its performance cost?

I Fixed-size or varying-size data structures.

• E.g., Fix length process table: no more process after the process
table becomes full

• Make them dynamic.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 19 / 51



Efficiency (2/2)

I Types of data kept in file’s directory entry.
• E.g., ”last write date” is recorded for some files.

• Updating this information is inefficient for frequently accessed files.
• Benefit against its performance cost?

I Fixed-size or varying-size data structures.

• E.g., Fix length process table: no more process after the process
table becomes full

• Make them dynamic.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 19 / 51



Efficiency (2/2)

I Types of data kept in file’s directory entry.
• E.g., ”last write date” is recorded for some files.
• Updating this information is inefficient for frequently accessed files.

• Benefit against its performance cost?

I Fixed-size or varying-size data structures.

• E.g., Fix length process table: no more process after the process
table becomes full

• Make them dynamic.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 19 / 51



Efficiency (2/2)

I Types of data kept in file’s directory entry.
• E.g., ”last write date” is recorded for some files.
• Updating this information is inefficient for frequently accessed files.
• Benefit against its performance cost?

I Fixed-size or varying-size data structures.

• E.g., Fix length process table: no more process after the process
table becomes full

• Make them dynamic.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 19 / 51



Efficiency (2/2)

I Types of data kept in file’s directory entry.
• E.g., ”last write date” is recorded for some files.
• Updating this information is inefficient for frequently accessed files.
• Benefit against its performance cost?

I Fixed-size or varying-size data structures.

• E.g., Fix length process table: no more process after the process
table becomes full

• Make them dynamic.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 19 / 51



Efficiency (2/2)

I Types of data kept in file’s directory entry.
• E.g., ”last write date” is recorded for some files.
• Updating this information is inefficient for frequently accessed files.
• Benefit against its performance cost?

I Fixed-size or varying-size data structures.
• E.g., Fix length process table: no more process after the process

table becomes full

• Make them dynamic.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 19 / 51



Efficiency (2/2)

I Types of data kept in file’s directory entry.
• E.g., ”last write date” is recorded for some files.
• Updating this information is inefficient for frequently accessed files.
• Benefit against its performance cost?

I Fixed-size or varying-size data structures.
• E.g., Fix length process table: no more process after the process

table becomes full
• Make them dynamic.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 19 / 51



Performance

I Techniques to improve the file system performance:
• Unified buffer cache
• Optimizing sequential access
• Synchronous and asynchronous writes

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 20 / 51



Unified Buffer Cache (1/4)

I Buffer cache
• Separate section of main memory for frequently used blocks.

I Page cache

• Cache file data as pages rather than as file-system blocks.
• More efficient: accesses interface with virtual memory rather than

the file system.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 21 / 51



Unified Buffer Cache (1/4)

I Buffer cache
• Separate section of main memory for frequently used blocks.

I Page cache

• Cache file data as pages rather than as file-system blocks.
• More efficient: accesses interface with virtual memory rather than

the file system.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 21 / 51



Unified Buffer Cache (1/4)

I Buffer cache
• Separate section of main memory for frequently used blocks.

I Page cache
• Cache file data as pages rather than as file-system blocks.

• More efficient: accesses interface with virtual memory rather than
the file system.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 21 / 51



Unified Buffer Cache (1/4)

I Buffer cache
• Separate section of main memory for frequently used blocks.

I Page cache
• Cache file data as pages rather than as file-system blocks.
• More efficient: accesses interface with virtual memory rather than

the file system.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 21 / 51



Unified Buffer Cache (2/4)

I Consider the two alternatives for opening and accessing a file:

• Memory mapping
• The standard system calls read() and write()

I Without a unified buffer cache:

• The read() and write() go through
the buffer cache.

• The memory-mapping call, requires
using two caches: the page cache and
the buffer cache.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 22 / 51



Unified Buffer Cache (2/4)

I Consider the two alternatives for opening and accessing a file:
• Memory mapping
• The standard system calls read() and write()

I Without a unified buffer cache:

• The read() and write() go through
the buffer cache.

• The memory-mapping call, requires
using two caches: the page cache and
the buffer cache.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 22 / 51



Unified Buffer Cache (2/4)

I Consider the two alternatives for opening and accessing a file:
• Memory mapping
• The standard system calls read() and write()

I Without a unified buffer cache:

• The read() and write() go through
the buffer cache.

• The memory-mapping call, requires
using two caches: the page cache and
the buffer cache.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 22 / 51



Unified Buffer Cache (2/4)

I Consider the two alternatives for opening and accessing a file:
• Memory mapping
• The standard system calls read() and write()

I Without a unified buffer cache:
• The read() and write() go through

the buffer cache.

• The memory-mapping call, requires
using two caches: the page cache and
the buffer cache.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 22 / 51



Unified Buffer Cache (2/4)

I Consider the two alternatives for opening and accessing a file:
• Memory mapping
• The standard system calls read() and write()

I Without a unified buffer cache:
• The read() and write() go through

the buffer cache.
• The memory-mapping call, requires

using two caches: the page cache and
the buffer cache.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 22 / 51



Unified Buffer Cache (3/4)

I Virtual memory does not interface with the buffer cache.

• The contents of the file in the buffer cache must be copied into the
page cache: double caching

• Waste of memory, CPU and I/O cycles
• Inconsistency

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 23 / 51



Unified Buffer Cache (3/4)

I Virtual memory does not interface with the buffer cache.
• The contents of the file in the buffer cache must be copied into the

page cache: double caching

• Waste of memory, CPU and I/O cycles
• Inconsistency

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 23 / 51



Unified Buffer Cache (3/4)

I Virtual memory does not interface with the buffer cache.
• The contents of the file in the buffer cache must be copied into the

page cache: double caching
• Waste of memory, CPU and I/O cycles

• Inconsistency

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 23 / 51



Unified Buffer Cache (3/4)

I Virtual memory does not interface with the buffer cache.
• The contents of the file in the buffer cache must be copied into the

page cache: double caching
• Waste of memory, CPU and I/O cycles
• Inconsistency

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 23 / 51



Unified Buffer Cache (4/4)

I With unified buffer cache.

I Both memory mapping and the read() and write() use the same
page cache.

I LRU for block or page replacement.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 24 / 51



Optimizing Sequential Access

I Optimizing page replacement in page cache for a file being read or
written sequentially.

• The most recently used page will be used last, or perhaps never
again.

I Free-behind: removes a page from the buffer as soon as the next
page is requested.

I Read-ahead: a requested page and several subsequent pages are
read and cached.

• Retrieving these data from the disk in one transfer and caching
them saves time.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 25 / 51



Optimizing Sequential Access

I Optimizing page replacement in page cache for a file being read or
written sequentially.

• The most recently used page will be used last, or perhaps never
again.

I Free-behind: removes a page from the buffer as soon as the next
page is requested.

I Read-ahead: a requested page and several subsequent pages are
read and cached.

• Retrieving these data from the disk in one transfer and caching
them saves time.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 25 / 51



Optimizing Sequential Access

I Optimizing page replacement in page cache for a file being read or
written sequentially.

• The most recently used page will be used last, or perhaps never
again.

I Free-behind: removes a page from the buffer as soon as the next
page is requested.

I Read-ahead: a requested page and several subsequent pages are
read and cached.

• Retrieving these data from the disk in one transfer and caching
them saves time.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 25 / 51



Optimizing Sequential Access

I Optimizing page replacement in page cache for a file being read or
written sequentially.

• The most recently used page will be used last, or perhaps never
again.

I Free-behind: removes a page from the buffer as soon as the next
page is requested.

I Read-ahead: a requested page and several subsequent pages are
read and cached.

• Retrieving these data from the disk in one transfer and caching
them saves time.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 25 / 51



Synchronous and Asynchronous Writes

I Synchronous writes sometimes requested by applications or needed
by OS.

• No buffering/caching: writes must hit disk before acknowledgement.

I Asynchronous writes more common, buffer-able, faster.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 26 / 51



Recovery

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 27 / 51



Recovery

I A system crash can cause inconsistencies among on-disk file-system
data structures.

• E.g., directory structures, free-block pointers, and free FCB
pointers.

• For example, the free FCB count might indicate that an FCB had
been allocated, but the directory structure might not point to the
FCB.

I Methods to deal with corruption:
• Consistency checking
• Log-structured file systems
• Backup and restore

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 28 / 51



Recovery

I A system crash can cause inconsistencies among on-disk file-system
data structures.

• E.g., directory structures, free-block pointers, and free FCB
pointers.

• For example, the free FCB count might indicate that an FCB had
been allocated, but the directory structure might not point to the
FCB.

I Methods to deal with corruption:
• Consistency checking
• Log-structured file systems
• Backup and restore

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 28 / 51



Recovery

I A system crash can cause inconsistencies among on-disk file-system
data structures.

• E.g., directory structures, free-block pointers, and free FCB
pointers.

• For example, the free FCB count might indicate that an FCB had
been allocated, but the directory structure might not point to the
FCB.

I Methods to deal with corruption:
• Consistency checking
• Log-structured file systems
• Backup and restore

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 28 / 51



Consistency Checking

I To detect a problem, OS scans of all the metadata on each file
system to confirm or deny the consistency of the system.

I Consistency checking: compares data in directory structure with
data blocks on disk, and tries to fix inconsistencies.

I Can be slow and sometimes fails.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 29 / 51



Consistency Checking

I To detect a problem, OS scans of all the metadata on each file
system to confirm or deny the consistency of the system.

I Consistency checking: compares data in directory structure with
data blocks on disk, and tries to fix inconsistencies.

I Can be slow and sometimes fails.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 29 / 51



Consistency Checking

I To detect a problem, OS scans of all the metadata on each file
system to confirm or deny the consistency of the system.

I Consistency checking: compares data in directory structure with
data blocks on disk, and tries to fix inconsistencies.

I Can be slow and sometimes fails.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 29 / 51



Log Structured File Systems (1/2)

I Transaction: a set of operations for performing a specific task.

I Log structured (or journaling) file systems record each metadata
update to the file system as a transaction.

I All transactions are written to a log.

• A transaction is considered committed, once it is written to the log.
• Sometimes to a separate device or section of disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 30 / 51



Log Structured File Systems (1/2)

I Transaction: a set of operations for performing a specific task.

I Log structured (or journaling) file systems record each metadata
update to the file system as a transaction.

I All transactions are written to a log.

• A transaction is considered committed, once it is written to the log.
• Sometimes to a separate device or section of disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 30 / 51



Log Structured File Systems (1/2)

I Transaction: a set of operations for performing a specific task.

I Log structured (or journaling) file systems record each metadata
update to the file system as a transaction.

I All transactions are written to a log.

• A transaction is considered committed, once it is written to the log.
• Sometimes to a separate device or section of disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 30 / 51



Log Structured File Systems (1/2)

I Transaction: a set of operations for performing a specific task.

I Log structured (or journaling) file systems record each metadata
update to the file system as a transaction.

I All transactions are written to a log.
• A transaction is considered committed, once it is written to the log.

• Sometimes to a separate device or section of disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 30 / 51



Log Structured File Systems (1/2)

I Transaction: a set of operations for performing a specific task.

I Log structured (or journaling) file systems record each metadata
update to the file system as a transaction.

I All transactions are written to a log.
• A transaction is considered committed, once it is written to the log.
• Sometimes to a separate device or section of disk.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 30 / 51



Log Structured File Systems (2/2)

I The transactions in the log are asynchronously written to the file
system structures.

• When the file system structures are modified, the transaction is
removed from the log.

I If the file system crashes, all remaining transactions in the log must
still be performed.

I Faster recovery from crash, removes chance of inconsistency of
metadata.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 31 / 51



Log Structured File Systems (2/2)

I The transactions in the log are asynchronously written to the file
system structures.

• When the file system structures are modified, the transaction is
removed from the log.

I If the file system crashes, all remaining transactions in the log must
still be performed.

I Faster recovery from crash, removes chance of inconsistency of
metadata.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 31 / 51



Log Structured File Systems (2/2)

I The transactions in the log are asynchronously written to the file
system structures.

• When the file system structures are modified, the transaction is
removed from the log.

I If the file system crashes, all remaining transactions in the log must
still be performed.

I Faster recovery from crash, removes chance of inconsistency of
metadata.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 31 / 51



Log Structured File Systems (2/2)

I The transactions in the log are asynchronously written to the file
system structures.

• When the file system structures are modified, the transaction is
removed from the log.

I If the file system crashes, all remaining transactions in the log must
still be performed.

I Faster recovery from crash, removes chance of inconsistency of
metadata.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 31 / 51



Backup and Restore (1/2)

I Back up data from disk to another storage device, such as a mag-
netic tape or other hard disk.

I Recovery from the loss of an individual file, or of an entire disk, may
then be a matter of restoring the data from backup.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 32 / 51



Backup and Restore (2/2)

I A typical backup schedule:

• Day 1. full backup: copy all files from the disk to a backup medium.

• Day 2. incremental backup: copy all files changed since day 1 to
another medium.

• Day 3. incremental backup: copy all files changed since day 2 to
another medium.

• ...

• Day N. incremental backup: copy all files changed since day N-1 to
another medium. Then go back to day 1.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 33 / 51



NFS

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 34 / 51



The Network File System (1/2)

I An implementation and a specification of a software system for ac-
cessing remote files across LANs or WANs.

I NFS views a set of interconnected workstations as a set of indepen-
dent machines with independent file systems.

I The goal is to allow some degree of sharing among these file systems
in a transparent manner.

I Sharing is based on a client-server relationship: either TCP or
UDP/IP.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 35 / 51



The Network File System (1/2)

I An implementation and a specification of a software system for ac-
cessing remote files across LANs or WANs.

I NFS views a set of interconnected workstations as a set of indepen-
dent machines with independent file systems.

I The goal is to allow some degree of sharing among these file systems
in a transparent manner.

I Sharing is based on a client-server relationship: either TCP or
UDP/IP.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 35 / 51



The Network File System (1/2)

I An implementation and a specification of a software system for ac-
cessing remote files across LANs or WANs.

I NFS views a set of interconnected workstations as a set of indepen-
dent machines with independent file systems.

I The goal is to allow some degree of sharing among these file systems
in a transparent manner.

I Sharing is based on a client-server relationship: either TCP or
UDP/IP.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 35 / 51



The Network File System (1/2)

I An implementation and a specification of a software system for ac-
cessing remote files across LANs or WANs.

I NFS views a set of interconnected workstations as a set of indepen-
dent machines with independent file systems.

I The goal is to allow some degree of sharing among these file systems
in a transparent manner.

I Sharing is based on a client-server relationship: either TCP or
UDP/IP.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 35 / 51



The Network File System (2/2)

I A remote directory is mounted over a local file system directory.

• The mounted directory looks like an integral subtree of the local file
system.

• It replaces the subtree descending from the local directory.

I Specification of the remote directory for the mount operation is
non-transparent.

• The host name of the remote directory has to be provided.
• Files in the remote directory can then be accessed in a transparent

manner.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 36 / 51



The Network File System (2/2)

I A remote directory is mounted over a local file system directory.
• The mounted directory looks like an integral subtree of the local file

system.

• It replaces the subtree descending from the local directory.

I Specification of the remote directory for the mount operation is
non-transparent.

• The host name of the remote directory has to be provided.
• Files in the remote directory can then be accessed in a transparent

manner.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 36 / 51



The Network File System (2/2)

I A remote directory is mounted over a local file system directory.
• The mounted directory looks like an integral subtree of the local file

system.
• It replaces the subtree descending from the local directory.

I Specification of the remote directory for the mount operation is
non-transparent.

• The host name of the remote directory has to be provided.
• Files in the remote directory can then be accessed in a transparent

manner.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 36 / 51



The Network File System (2/2)

I A remote directory is mounted over a local file system directory.
• The mounted directory looks like an integral subtree of the local file

system.
• It replaces the subtree descending from the local directory.

I Specification of the remote directory for the mount operation is
non-transparent.

• The host name of the remote directory has to be provided.
• Files in the remote directory can then be accessed in a transparent

manner.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 36 / 51



The Network File System (2/2)

I A remote directory is mounted over a local file system directory.
• The mounted directory looks like an integral subtree of the local file

system.
• It replaces the subtree descending from the local directory.

I Specification of the remote directory for the mount operation is
non-transparent.

• The host name of the remote directory has to be provided.

• Files in the remote directory can then be accessed in a transparent
manner.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 36 / 51



The Network File System (2/2)

I A remote directory is mounted over a local file system directory.
• The mounted directory looks like an integral subtree of the local file

system.
• It replaces the subtree descending from the local directory.

I Specification of the remote directory for the mount operation is
non-transparent.

• The host name of the remote directory has to be provided.
• Files in the remote directory can then be accessed in a transparent

manner.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 36 / 51



NFS Mount (1/3)

I Three independent file systems of machines named U, S1, and S2.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 37 / 51



NFS Mount (2/3)

I Mounting S1:/usr/shared over U:/usr/local.
mount -t nfs S1:/usr/shared /usr/local

I U can access any file within the dir1 using /usr/local/dir1.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 38 / 51



NFS Mount (3/3)

I Cascading: mount a file system over another file system that is
remotely mounted.

I Mounting S2:/usr/dir2 over U:/usr/local/dir1, which is al-
ready remotely mounted from S1.
mount -t nfs S2:/usr/dir2 /usr/local/dir1

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 39 / 51



NFS Mount Protocol (1/2)

I Establishes initial logical connection between server and client.

I Mount operation includes name of remote directory to be mounted
and name of server machine storing it.

I Mount request is mapped to corresponding RPC and forwarded to
mount server.

I Export list: specifies local file systems that server exports for mount-
ing, along with names of machines that are permitted to mount
them.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 40 / 51



NFS Mount Protocol (1/2)

I Establishes initial logical connection between server and client.

I Mount operation includes name of remote directory to be mounted
and name of server machine storing it.

I Mount request is mapped to corresponding RPC and forwarded to
mount server.

I Export list: specifies local file systems that server exports for mount-
ing, along with names of machines that are permitted to mount
them.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 40 / 51



NFS Mount Protocol (1/2)

I Establishes initial logical connection between server and client.

I Mount operation includes name of remote directory to be mounted
and name of server machine storing it.

I Mount request is mapped to corresponding RPC and forwarded to
mount server.

I Export list: specifies local file systems that server exports for mount-
ing, along with names of machines that are permitted to mount
them.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 40 / 51



NFS Mount Protocol (1/2)

I Establishes initial logical connection between server and client.

I Mount operation includes name of remote directory to be mounted
and name of server machine storing it.

I Mount request is mapped to corresponding RPC and forwarded to
mount server.

I Export list: specifies local file systems that server exports for mount-
ing, along with names of machines that are permitted to mount
them.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 40 / 51



NFS Mount Protocol (2/2)

I Following a mount request that conforms to its export list, the server
returns a file handle (a key for further accesses).

I File handle: a file-system identifier and an inode number to identify
the mounted directory within the exported file system.

I The mount operation changes only the user’s view and does not
affect the server side.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 41 / 51



NFS Mount Protocol (2/2)

I Following a mount request that conforms to its export list, the server
returns a file handle (a key for further accesses).

I File handle: a file-system identifier and an inode number to identify
the mounted directory within the exported file system.

I The mount operation changes only the user’s view and does not
affect the server side.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 41 / 51



NFS Mount Protocol (2/2)

I Following a mount request that conforms to its export list, the server
returns a file handle (a key for further accesses).

I File handle: a file-system identifier and an inode number to identify
the mounted directory within the exported file system.

I The mount operation changes only the user’s view and does not
affect the server side.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 41 / 51



NFS Protocol (1/2)

I Provides a set of RPCs for remote file operations.

I The procedures support the following operations:
• Searching for a file within a directory
• Reading a set of directory entries
• Manipulating links and directories
• Accessing file attributes
• Reading and writing files

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 42 / 51



NFS Protocol (2/2)

I NFS servers are stateless; each request has to provide a full set of
arguments.

• NFS V4 is just coming available: very different, stateful

I Modified data must be committed to the server’s disk before results
are returned to the client.

I The NFS protocol does not provide concurrency-control mecha-
nisms.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 43 / 51



NFS Protocol (2/2)

I NFS servers are stateless; each request has to provide a full set of
arguments.

• NFS V4 is just coming available: very different, stateful

I Modified data must be committed to the server’s disk before results
are returned to the client.

I The NFS protocol does not provide concurrency-control mecha-
nisms.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 43 / 51



NFS Protocol (2/2)

I NFS servers are stateless; each request has to provide a full set of
arguments.

• NFS V4 is just coming available: very different, stateful

I Modified data must be committed to the server’s disk before results
are returned to the client.

I The NFS protocol does not provide concurrency-control mecha-
nisms.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 43 / 51



Schematic View of NFS Architecture

I NFS is integrated into the OS via a VFS.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 44 / 51



Three Major Layers of NFS Architecture

I Unix file-system interface
• Based on the open, read, write, and close calls, and file descriptors.

I Virtual File System (VFS) layer
• Distinguishes local files from remote ones, and local files are further

distinguished according to their file-system types.
• Calls the NFS protocol procedures for remote requests.

I NFS service layer
• Implements the NFS protocol.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 45 / 51



Three Major Layers of NFS Architecture

I Unix file-system interface
• Based on the open, read, write, and close calls, and file descriptors.

I Virtual File System (VFS) layer
• Distinguishes local files from remote ones, and local files are further

distinguished according to their file-system types.
• Calls the NFS protocol procedures for remote requests.

I NFS service layer
• Implements the NFS protocol.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 45 / 51



Three Major Layers of NFS Architecture

I Unix file-system interface
• Based on the open, read, write, and close calls, and file descriptors.

I Virtual File System (VFS) layer
• Distinguishes local files from remote ones, and local files are further

distinguished according to their file-system types.
• Calls the NFS protocol procedures for remote requests.

I NFS service layer
• Implements the NFS protocol.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 45 / 51



NFS Path-Name Translation

I It involves the parsing of a path name into separate components.
E.g., /usr/local/dir1/file.txt into usr, local, and dir1.

I Performs a separate NFS lookup call for every pair of component
name and directory vnode.

I To make lookup faster, a directory-name-lookup cache on the
client’s side holds the vnodes for remote directory names.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 46 / 51



NFS Path-Name Translation

I It involves the parsing of a path name into separate components.
E.g., /usr/local/dir1/file.txt into usr, local, and dir1.

I Performs a separate NFS lookup call for every pair of component
name and directory vnode.

I To make lookup faster, a directory-name-lookup cache on the
client’s side holds the vnodes for remote directory names.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 46 / 51



NFS Path-Name Translation

I It involves the parsing of a path name into separate components.
E.g., /usr/local/dir1/file.txt into usr, local, and dir1.

I Performs a separate NFS lookup call for every pair of component
name and directory vnode.

I To make lookup faster, a directory-name-lookup cache on the
client’s side holds the vnodes for remote directory names.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 46 / 51



NFS Remote Operations (1/2)

I Nearly one-to-one correspondence between regular Unix system calls
and the NFS protocol RPCs.

• Except opening and closing files.

I NFS adheres to the remote-service paradigm, but employs buffering
and caching techniques for the sake of performance.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 47 / 51



NFS Remote Operations (1/2)

I Nearly one-to-one correspondence between regular Unix system calls
and the NFS protocol RPCs.

• Except opening and closing files.

I NFS adheres to the remote-service paradigm, but employs buffering
and caching techniques for the sake of performance.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 47 / 51



NFS Remote Operations (2/2)

I File-attribute cache: the attribute cache is updated whenever new
attributes arrive from the server.

• When a file is opened, the kernel checks with the remote server
whether to fetch or revalidate the cached attributes.

• By default, discarded after 60 seconds.

I File-blocks cache
• Cached file blocks are used only if the corresponding cached

attributes are up to date.

I Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 48 / 51



NFS Remote Operations (2/2)

I File-attribute cache: the attribute cache is updated whenever new
attributes arrive from the server.

• When a file is opened, the kernel checks with the remote server
whether to fetch or revalidate the cached attributes.

• By default, discarded after 60 seconds.

I File-blocks cache
• Cached file blocks are used only if the corresponding cached

attributes are up to date.

I Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 48 / 51



NFS Remote Operations (2/2)

I File-attribute cache: the attribute cache is updated whenever new
attributes arrive from the server.

• When a file is opened, the kernel checks with the remote server
whether to fetch or revalidate the cached attributes.

• By default, discarded after 60 seconds.

I File-blocks cache
• Cached file blocks are used only if the corresponding cached

attributes are up to date.

I Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 48 / 51



Summary

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 49 / 51



Summary

I Free space management: bit vector, linked list, grouping, counting,
space maps

I Efficiency: pre-allocated vs. as-needed allocation structures, types
of data, fixed-size vs. varying size structures

I Performance: unified buffer cache, optimizing sequential access,
synchronous and asynchronous writes

I Recovery: consistency checking, log-structured FS, backup and re-
store

I NFS: mount protocol, path-name translation, remote operation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 50 / 51



Summary

I Free space management: bit vector, linked list, grouping, counting,
space maps

I Efficiency: pre-allocated vs. as-needed allocation structures, types
of data, fixed-size vs. varying size structures

I Performance: unified buffer cache, optimizing sequential access,
synchronous and asynchronous writes

I Recovery: consistency checking, log-structured FS, backup and re-
store

I NFS: mount protocol, path-name translation, remote operation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 50 / 51



Summary

I Free space management: bit vector, linked list, grouping, counting,
space maps

I Efficiency: pre-allocated vs. as-needed allocation structures, types
of data, fixed-size vs. varying size structures

I Performance: unified buffer cache, optimizing sequential access,
synchronous and asynchronous writes

I Recovery: consistency checking, log-structured FS, backup and re-
store

I NFS: mount protocol, path-name translation, remote operation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 50 / 51



Summary

I Free space management: bit vector, linked list, grouping, counting,
space maps

I Efficiency: pre-allocated vs. as-needed allocation structures, types
of data, fixed-size vs. varying size structures

I Performance: unified buffer cache, optimizing sequential access,
synchronous and asynchronous writes

I Recovery: consistency checking, log-structured FS, backup and re-
store

I NFS: mount protocol, path-name translation, remote operation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 50 / 51



Summary

I Free space management: bit vector, linked list, grouping, counting,
space maps

I Efficiency: pre-allocated vs. as-needed allocation structures, types
of data, fixed-size vs. varying size structures

I Performance: unified buffer cache, optimizing sequential access,
synchronous and asynchronous writes

I Recovery: consistency checking, log-structured FS, backup and re-
store

I NFS: mount protocol, path-name translation, remote operation

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 50 / 51



Questions?

Acknowledgements

Some slides were derived from Avi Silberschatz slides.

Amir H. Payberah (Tehran Polytechnic) File System Implementation 1393/9/10 51 / 51


