I/O Systems

Amir H. Payberah

amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

AMIRKABIR UNIVERSITY
OF TECHNOLOGY

Motivation

L
Overview

» |/O management is a major component of OS design and operation.

e Important aspect of computer operation
* 1/O devices vary greatly

e Various methods to control them

¢ Performance management

e New types of devices frequent

L
Overview

» |/O management is a major component of OS design and operation.

e Important aspect of computer operation
* 1/O devices vary greatly

e Various methods to control them

¢ Performance management

e New types of devices frequent

» Ports, busses, device controllers connect to various devices.

L
Overview

» |/O management is a major component of OS design and operation.

e Important aspect of computer operation
* 1/O devices vary greatly

e Various methods to control them

¢ Performance management

e New types of devices frequent

» Ports, busses, device controllers connect to various devices.

» Device drivers encapsulate device details.
» Present uniform device-access interface to I/O subsystem.

1/O Hardware

B
|/O Hardware

» Incredible variety of 1/O devices
e Storage, e.g., disks, tapes
e Transmission, e.g., network connections, bluetooth
e Human-interface, e.g., screen, keyboard, mouse, audio in and out

B
|/O Hardware

» Incredible variety of 1/O devices

e Storage, e.g., disks, tapes
e Transmission, e.g., network connections, bluetooth
e Human-interface, e.g., screen, keyboard, mouse, audio in and out

» We only need to understand how the devices are attached and how
the software can control the hardware.

I
Common Concepts in 1/O Hardware

» Common concepts: signals from 1/0O devices interface with com-
puter.

I
Common Concepts in 1/O Hardware

» Common concepts: signals from 1/0O devices interface with com-
puter.

» Port: connection point for device

I
Common Concepts in 1/O Hardware

» Common concepts: signals from 1/0O devices interface with com-
puter.

» Port: connection point for device

» Bus: set of wires and a protocol that specifies a set of messages
that can be sent on the wires.

N
Common Concepts in 1/O Hardware

» Common concepts: signals from 1/0O devices interface with com-
puter.

v

Port: connection point for device

v

Bus: set of wires and a protocol that specifies a set of messages
that can be sent on the wires.

Controller: a collection of electronics that can operate a port, a bus,
or a device.
¢ Sometimes integrated and sometimes separate circuit board (host
adapter)
» Contains processor, microcode, private memory, bus controller, etc

v

© Amir H. Payberah (Tehran Polytechnic) 1/O Systems RO 65

Bus

» PCl bus: connects the processor-memory subsystem to fast devices.

» Expansion bus: connects relatively slow devices.

monitor processor

| —

cache ‘

@
@
sl
@b

SCSI bus

controller

graphics bridge/memory
controller

SCSI controller

I PClbus

IDE disk controller

expansion bus
interface

@ @
@) @D

Amir H. Payberah (Tehran Polytechnic)

O \—pexpansmn bus

parallel
port

seri al
port

1/O Systems

1393/9/15

7/57

I,
Processor/Controller Interaction

» How can the processor give commands and data to a controller to
accomplish an 1/O transfer?

Processor/Controller Interaction

» How can the processor give commands and data to a controller to
accomplish an /O transfer?

» Devices usually have registers where device driver places commands,
addresses, and data.

Processor/Controller Interaction

» How can the processor give commands and data to a controller to
accomplish an /O transfer?

» Devices usually have registers where device driver places commands,
addresses, and data.

» Processor/controller interaction:

Processor/Controller Interaction

» How can the processor give commands and data to a controller to
accomplish an /O transfer?

» Devices usually have registers where device driver places commands,
addresses, and data.

» Processor/controller interaction:

» Direct 1/0O instructions: triggers bus lines to select the proper
device and to move bits into or out of a device register.

Processor/Controller Interaction

» How can the processor give commands and data to a controller to
accomplish an /O transfer?

» Devices usually have registers where device driver places commands,
addresses, and data.

» Processor/controller interaction:

¢ Direct 1/0 instructions: triggers bus lines to select the proper
device and to move bits into or out of a device register.

* Memory-mapped |/O: device data and command registers mapped
to processor address space.

© Amir H. Payberah (Tehran Polytechnic) 1/O Systems Y

Device /0O Port Locations on PCs

I/O address range (hexadecimal) device
000-00F DMA controller
020021 interrupt controller
040-043 timer
200-20F game controller
2F8—2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

Amir H. Payberah (Tehran Polytechnic)

1/O Systems

1393/9/15

9 /57

B
|/O Port Registers

» The data-in register: read by the host to get input.

B
|/O Port Registers

» The data-in register: read by the host to get input.

» The data-out register: written by the host to send output.

|/O Port Registers

» The data-in register: read by the host to get input.
» The data-out register: written by the host to send output.

» The status register: read by the host, and indicates states.

whether the current command has completed.
whether a byte is available to be read from the data-in register.

whether a device error has occurred.

|
|/O Port Registers

» The data-in register: read by the host to get input.

» The data-out register: written by the host to send output.

» The status register: read by the host, and indicates states.

e whether the current command has completed.
e whether a byte is available to be read from the data-in register.
e whether a device error has occurred.

» The control register: written by the host to start a command or to
change the mode of a device.

* Amir H. Payberah (Tehran Polytechnic) 1/O Systems 1303/0/15 10 /57

L
Host Device Interaction

» Polling

» Interrupt

» Direct memory access (DMA)

B
Polling (1/2)

» A handshake between the host and a controller.

B
Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination. For each byte of 1/0:

B
Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination. For each byte of 1/0:
@ Host reads the busy bit from the status register until 0.

B
Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination. For each byte of 1/0:
@ Host reads the busy bit from the status register until 0.
@ Host sets the read or write bit and if write copies data into the
data-out register.

B
Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination. For each byte of 1/0:

@ Host reads the busy bit from the status register until 0.

@ Host sets the read or write bit and if write copies data into the
data-out register.

@ Host sets the command-ready bit.

B
Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination. For each byte of 1/0:

@ Host reads the busy bit from the status register until 0.

@ Host sets the read or write bit and if write copies data into the
data-out register.

@ Host sets the command-ready bit.

@ Controller sets the busy bit, executes transfer.

BN
Polling (1/2)

» A handshake between the host and a controller.

» Assume 2 bits for coordination. For each byte of 1/0:

@ Host reads the busy bit from the status register until 0.

@ Host sets the read or write bit and if write copies data into the
data-out register.

@ Host sets the command-ready bit.

@ Controller sets the busy bit, executes transfer.

@ Controller clears the busy bit, error bit, and command-ready bit
when transfer done.

B
Polling (2/2)

» Step 1 is busy-wait cycle (polling) to wait for /O from device.

¢ Reasonable if device is fast.
o But inefficient if device slow.
e CPU switches to other tasks? but if miss a cycle data

overwritten /lost.

INNSS———
Interrupts

» Polling can happen in 3 instruction cycles.
e read status, logical-and to extract status bit, and branch if not
zero.
e Inefficient, but more efficient way?

INNSS———
Interrupts

» Polling can happen in 3 instruction cycles.
e read status, logical-and to extract status bit, and branch if not
zero.
e Inefficient, but more efficient way?

» CPU interrupt-request line is triggered by |/O device.
e Checked by processor after each instruction.
» Saves state and jumps to interrupt-handler routine at a fixed
address in memory.

R ——
Interrupts

» Polling can happen in 3 instruction cycles.

e read status, logical-and to extract status bit, and branch if not
zero.
« Inefficient, but more efficient way?

» CPU interrupt-request line is triggered by |/O device.

e Checked by processor after each instruction.
e Saves state and jumps to interrupt-handler routine at a fixed
address in memory.

» Two interrupt request lines:

e Nonmaskable: reserved for events such as unrecoverable memory

errors.
e Maskable: it can be turned off by the CPU.

* Amir H. Payberah (Tehran Polytechnic) 1/O Systems R

Interrupt-Driven

1/O Cycle

—|

device driver initiates 1/0

CPU executing checks for
interrupts between instructions

'
i
i
¥

initiates 1/0

CPU receiving interrupt,
transfers control to
interrupt handler

E

input ready, output
complete, or error
generates interrupt signal

interrupt handler
processes data,
returns from interrupt

E

CPU resumes
processing of
interrupted task

Amir H. Payberah (Tehran Polytechnic)

1/O Systems

1393/9/15

INNSS———
Interrupt Vector

» The interrupt mechanism accepts an address: a number that selects
a specific interrupt-handling routine.

INNSS———
Interrupt Vector

» The interrupt mechanism accepts an address: a number that selects
a specific interrupt-handling routine.

» This address is an offset in a table called the interrupt vector.

INNSS———
Interrupt Vector

» The interrupt mechanism accepts an address: a number that selects
a specific interrupt-handling routine.

» This address is an offset in a table called the interrupt vector.

» The interrupt vector contains the memory addresses of specialized
interrupt handlers.

INNSS———
Interrupt Vector

v

The interrupt mechanism accepts an address: a number that selects
a specific interrupt-handling routine.

v

This address is an offset in a table called the interrupt vector.

v

The interrupt vector contains the memory addresses of specialized
interrupt handlers.

v

Computers have more devices than they have address elements in
the interrupt vector.

R ——
Interrupt Vector

v

The interrupt mechanism accepts an address: a number that selects
a specific interrupt-handling routine.

v

This address is an offset in a table called the interrupt vector.

v

The interrupt vector contains the memory addresses of specialized
interrupt handlers.

v

Computers have more devices than they have address elements in
the interrupt vector.

e Use interrupt chaining: each element in the interrupt vector points
to the head of a list of interrupt handlers.

 Amir H. Payberah (Tehran Polytechnicy =~ I/O Systems 1303/9/15 16/ 57

Intel Pentium Processor Event-Vector Table

vector number

description

©® N O AW = O

S e Gy
© N Ok WON-= O @

19-31
32-255

divide error

debug exception

null interrupt

breakpoint

INTO-detected overflow
bound range exception
invalid opcode

device not available

double fault

coprocessor segment overrun (reserved)
invalid task state segment
segment not present

stack fault

general protection

page fault

(Intel reserved, do not use)
floating-point error
alignment check

machine check

(Intel reserved, do not use)
maskable interrupts

Amir H. Payberah (Tehran Polytechnic)

1/O Systems

1393/9/15

17 / 57

INNSS———
Other Interrupt Usages

» Interrupt mechanism also used for exceptions.
¢ Divide by zero, terminate process, hardware error.

INNSS———
Other Interrupt Usages

» Interrupt mechanism also used for exceptions.
¢ Divide by zero, terminate process, hardware error.

» Page fault executes when memory access error.

INNSS———
Other Interrupt Usages

» Interrupt mechanism also used for exceptions.
¢ Divide by zero, terminate process, hardware error.

» Page fault executes when memory access error.

» System call executes via trap to trigger kernel to execute request.

INNSS———
Other Interrupt Usages

» Interrupt mechanism also used for exceptions.
¢ Divide by zero, terminate process, hardware error.

» Page fault executes when memory access error.

v

System call executes via trap to trigger kernel to execute request.

v

Multi-CPU systems can process interrupts concurrently.

INNSS———
Other Interrupt Usages

v

Interrupt mechanism also used for exceptions.
¢ Divide by zero, terminate process, hardware error.

v

Page fault executes when memory access error.

v

System call executes via trap to trigger kernel to execute request.

v

Multi-CPU systems can process interrupts concurrently.

v

Used for time-sensitive processing, frequent, must be fast.

.
Direct Memory Access (1/2)

» Used to avoid programmed |/O (one byte at a time) for large data
movement.
» Requires Direct Memory Access (DMA) controller

» Bypasses CPU to transfer data directly between 1/O device and
memory.

» Version that is aware of virtual addresses can be even more efficient.

.
Direct Memory Access (2/2)

» OS writes DMA command block into memory.

Source and destination addresses

Read or write mode

Count of bytes

Writes location of command block to DMA controller

Bus mastering of DMA controller - grabs bus from CPU: cycle
stealing from CPU but still much more efficient

When done, interrupts to signal completion

Six Step Process to Perform DMA Transfer

1. device driver is told
to transfer disk data CPU
to buffer at address X

5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer IZECE
and decreasing C at address X
untilC =0 e —

6. when C = 0, DMA JMADUS [CPU mefnory bus — x
interrupts CPU to signal |ntetrr|.|||pt CELmamory bus memory M
transfer completion con r’ er

G i . PCI bus)

3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller
SIS

Amir H. Payberah (Tehran Polytechnic) 1/O Systems 1393/9/15

21 / 57

Application |/O Interface

NS
Application 1/O Interface

» |/0O system calls encapsulate device behaviors in generic classes.

NS
Application 1/O Interface

» |/0O system calls encapsulate device behaviors in generic classes.

» Device-driver layer hides differences among |/O controllers from ker-
nel.

NS
Application 1/O Interface

» |/0O system calls encapsulate device behaviors in generic classes.

» Device-driver layer hides differences among |/O controllers from ker-
nel.

» New devices talking already-implemented protocols need no extra
work.

INNSSS———
Application 1/O Interface

v

I/O system calls encapsulate device behaviors in generic classes.

v

Device-driver layer hides differences among |/O controllers from ker-
nel.

v

New devices talking already-implemented protocols need no extra
work.

v

Each OS has its own 1/O subsystem structures and device driver
frameworks.

A Kernel |/O Structure

kernel
o
©
2 kernel /O subsystem
3
SCsl keyboard | mouse PCI bus floppy ATAPI
device device device see device device device
driver driver driver driver driver driver
ScCsl keyboard | mouse PCI bus floppy ATAPI
device device device see device device device
° controller | controller | controller controller | controller | controller
c
¢ & 1 |
£ ATAPI
scs| floppy- | | devices
devi keyboard| | mouse see PCI bus disk (disks.
evices dri J
rives tapes,
drives)
Amir H. Payberah (Tehran Polytechnic) 1/O Systems 1393/9/15

24 / 57

BN
Characteristics of 1/O Devices (1/2)

» Devices vary in many dimensions

e Data-transfer mode: character or block

e Access method: sequential or random-access

* Transfer schedule: synchronous or asynchronous (or both)
e Sharing: sharable or dedicated

e Device speed: speed of operation

 |/O direction: read-write, read only, or write only

Characteristics of 1/O Devices (2/2)

Amir H. Payberah (Tehran Polytechnic)

aspect variation example

data-transfer mode character terminal
block disk

RS NI sequential modem
random CD-ROM
synchronous tape

EnEiE SeiEdil asynchronous keyboard

. dedicated tape

SHENT, sharable keyboard

device speed latency
seek time
transfer rate
delay between opeﬁptions
read only CD-ROM

1/0 direction write only graphics controller
read-write disk

1/O Systems

1393/9/15

26 / 57

L
Character Devices

» Character devices include keyboards, mouse, serial ports.

L
Character Devices

» Character devices include keyboards, mouse, serial ports.

» A character device transfers bytes one by one.

L
Character Devices

» Character devices include keyboards, mouse, serial ports.

» A character device transfers bytes one by one.

» Commands include get () and put ().

o
Block Devices

» Block devices include disk drives.

o
Block Devices

» Block devices include disk drives.

» Commands include read() and write() and seek() for random-
access devices.

Block Devices

» Block devices include disk drives.

» Commands include read() and write() and seek() for random-
access devices.

» Raw |/O: access a block device as a simple linear array of blocks.

o
Block Devices

» Block devices include disk drives.

» Commands include read() and write() and seek() for random-
access devices.

» Raw |/O: access a block device as a simple linear array of blocks.

» Direct 1/0: disable buffering and locking.

o
Block Devices

Block devices include disk drives.

v

» Commands include read() and write() and seek() for random-
access devices.

» Raw |/O: access a block device as a simple linear array of blocks.

» Direct 1/0: disable buffering and locking.

» Memory-mapped file access: file mapped to virtual memory and
clusters brought via demand paging.

L
Network Devices

» Varying enough from block and character to have own interface.

L
Network Devices

» Varying enough from block and character to have own interface.

» Linux, Unix, Windows and many others include socket interface.

e Separates network protocol from network operation.
¢ Includes select () functionality.

o
Clocks and Timers

» Provide current time, elapsed time, and timer (trigger operation X
at time T)

o
Clocks and Timers

» Provide current time, elapsed time, and timer (trigger operation X
at time T)

» Programmable interval timer, the hardware used for timings, and
periodic interrupts.

o
Clocks and Timers

» Provide current time, elapsed time, and timer (trigger operation X
at time T)

» Programmable interval timer, the hardware used for timings, and
periodic interrupts.

» Normal resolution about 1/60 second.

o
Clocks and Timers

v

Provide current time, elapsed time, and timer (trigger operation X
at time T)

v

Programmable interval timer, the hardware used for timings, and
periodic interrupts.

v

Normal resolution about 1/60 second.

v

Some systems provide higher-resolution timers.

L
Blocking, Nonblocking and Asynchronous 1/0

» Blocking: process suspended until 1/O completed
e Insufficient for some needs

L
Blocking, Nonblocking and Asynchronous 1/0

» Blocking: process suspended until 1/O completed
e Insufficient for some needs

» Nonblocking: |/O call returns as much as available
e User interface, data copy (buffered 1/0)

L
Blocking, Nonblocking and Asynchronous 1/0

» Blocking: process suspended until 1/O completed
e Insufficient for some needs

» Nonblocking: |/O call returns as much as available

e User interface, data copy (buffered 1/0)
e Implemented via multi-threading

I
Blocking, Nonblocking and Asynchronous 1/0

» Blocking: process suspended until 1/O completed
e Insufficient for some needs

» Nonblocking: |/O call returns as much as available

 User interface, data copy (buffered 1/0)

e Implemented via multi-threading

e select() to find if data ready then read() or write() to
transfers.

|
Blocking, Nonblocking and Asynchronous 1/0

» Blocking: process suspended until 1/O completed
* Insufficient for some needs

» Nonblocking: |/O call returns as much as available

e User interface, data copy (buffered 1/0)
e Implemented via multi-threading
e select() to find if data ready then read() or write() to

transfers.

» Asynchronous: process runs while 1/O executes
¢ 1/0 subsystem signals process when 1/O completed.

* Amir H. Payberah (Tehran Polytechnic) 1/O Systems se3ess 38

Synchronous vs. Asynchronous 1/O Methods

kernel user {

Amir H. Payberah (Tehran Polytechnic)

requesting process
waiting

requesting process

device driver

device driver

-

interrupt handler

\
tinterrupt handler
I

hardware

hardware

L— data transfer —

- - - data transfer —

THiME ——

(a)

1/O Systems

HiME ——

(b)

user

[N

kernel

1393/9/15

32 /57

I,
Vectored /0

» Vectored 1/0 allows one system call to perform multiple 1/O oper-
ations.

I,
Vectored /0

» Vectored 1/0 allows one system call to perform multiple 1/O oper-
ations.

» The scatter-gather method is better than multiple individual 1/0
calls.

I,
Vectored /0

» Vectored 1/0 allows one system call to perform multiple 1/O oper-
ations.

» The scatter-gather method is better than multiple individual 1/0
calls.

e Decreases context switching and system call overhead.

L
Vectored 1/0

» Vectored 1/0 allows one system call to perform multiple 1/O oper-
ations.

» The scatter-gather method is better than multiple individual 1/0
calls.
e Decreases context switching and system call overhead.
* Some versions provide atomicity: avoid for example worry about
multiple threads changing data as reads/writes occurring.

-
Vectored 1/0

» Vectored 1/0 allows one system call to perform multiple |/O oper-
ations.

» The scatter-gather method is better than multiple individual 1/0
calls.

e Decreases context switching and system call overhead.
e Some versions provide atomicity: avoid for example worry about
multiple threads changing data as reads/writes occurring.

» For example, Unix readve () accepts a vector of multiple buffers to
read into or write from.

 Amir H. Payberah (Tehran Polytechnicy =~ I/O Systems 1393/9/15 33 /57

Kernel 1/O Subsystem

B
Kernel 1/O Subsystem

» Kernels provide many services related to 1/0:
e Scheduling
e Buffering
e Caching
e Spooling
e Device reservation
e Error handling

I
Scheduling (1/2)

» Determine a good order in which to execute 1/0 requests.
» Some |/O request ordering via per-device queue.

» Some OSs try fairness.

I
Scheduling (2/2)

» In asynchronous |/O the kernel must be able to keep track of many
[/O requests at the same time.

Scheduling (2/2)

» In asynchronous |/O the kernel must be able to keep track of many
[/O requests at the same time.

e The OS attaches the wait queue to a device-status table.

device: keyboard

status: idle
device: laser printer request for
status: busy laser printer
device: mouse length: 1 372
status: idle
device: disk unit 1
status: idle
:':‘;'::;l';k (eiic2 request for request for __-l:
- ousy disk unit 2 disk unit 2
file: xxx file: yyy
ion: read operation: write
address: 43046 address: 03458
length: 20000 length: 500
© AmirH. Payberah (Tehran Polytechnic) 1/O Systems 1303/0/15

37 /57

Scheduling (2/2)

» In asynchronous |/O the kernel must be able to keep track of many
[/O requests at the same time.

e The OS attaches the wait queue to a device-status table.

¢ The table contains an entry for each 1/O device.

device: keyboard

status: idle
device: laser printer request for
status: busy laser printer
device: mouse length: 1 372
status: idle
device: disk unit 1
status: idle
:':‘;'::;l';k (eiic2 request for request for __-l:
- ousy disk unit 2 disk unit 2
file: xxx file: yyy
ion: read operation: write
address: 43046 address: 03458
length: 20000 length: 500
© AmirH. Payberah (Tehran Polytechnic) 1/O Systems 1303/0/15

37 /57

N
Scheduling (2/2)

» In asynchronous |/O the kernel must be able to keep track of many
[/O requests at the same time.
e The OS attaches the wait queue to a device-status table.
¢ The table contains an entry for each 1/O device.
e If the device is busy with a request, the type of request and other
parameters will be stored in the table entry for that device.

device: keyboard

status: idle
device: laser printer request for _'I_‘
status: busy laser printer
address: 38546
device: mouse length: 1372
status: idle
device: disk unit 1
status: idle
:;:;':::g‘l"zk (eiic2 ——— request for request for __-l:
- ousy disk unit 2 disk unit 2
file: xxx file: yyy
ion: read operation: write
address: 43046 address: 03458
length: 20000 length: 500

" Amir H. Payberah (Tehran Polytechnic) 1/0 Systems RO g5

BN
Buffering and Caching

» Buffering: stores data in memory while transferring between devices.

BN
Buffering and Caching

» Buffering: stores data in memory while transferring between devices.

e To cope with device speed mismatch.

BN
Buffering and Caching

» Buffering: stores data in memory while transferring between devices.

e To cope with device speed mismatch.
* To cope with device transfer size mismatch, e.g., fragmentation and
reassembly of messages

BN
Buffering and Caching

» Buffering: stores data in memory while transferring between devices.

e To cope with device speed mismatch.

* To cope with device transfer size mismatch, e.g., fragmentation and
reassembly of messages

¢ To maintain copy semantics, e.g., copy semantics

I
Buffering and Caching

» Buffering: stores data in memory while transferring between devices.

e To cope with device speed mismatch.

* To cope with device transfer size mismatch, e.g., fragmentation and
reassembly of messages

¢ To maintain copy semantics, e.g., copy semantics

» Caching: faster device holding copy of data.
e Always just a copy
e Key to performance
e Sometimes combined with buffering

INNSS———
Spooling and Device Reservation

» Spooling: a buffer that holds output for a device.
« If device can serve only one request at a time, i.e., printing

INNSS———
Spooling and Device Reservation

» Spooling: a buffer that holds output for a device.
« If device can serve only one request at a time, i.e., printing

» Device reservation: provides exclusive access to a device.

e System calls for allocation and de-allocation
e Watch out for deadlock

BN
Error Handling

» OS can recover from disk read, device unavailable, transient write
failures

BN
Error Handling

» OS can recover from disk read, device unavailable, transient write
failures

e Retry a read or write.

BN
Error Handling

» OS can recover from disk read, device unavailable, transient write
failures

e Retry a read or write.
e Track error frequencies, stop using device with increasing frequency
of retry-able errors.

BN
Error Handling

» OS can recover from disk read, device unavailable, transient write
failures
e Retry a read or write.
e Track error frequencies, stop using device with increasing frequency
of retry-able errors.

» Most return an error number or code when |/O request fails.

I
Error Handling

» OS can recover from disk read, device unavailable, transient write
failures

e Retry a read or write.
e Track error frequencies, stop using device with increasing frequency
of retry-able errors.

» Most return an error number or code when |/O request fails.

» System error logs hold problem reports.

B
|/O Protection

» User process may accidentally or purposefully attempt to disrupt
normal operation via illegal 1/O instructions.

B
|/O Protection

» User process may accidentally or purposefully attempt to disrupt
normal operation via illegal 1/O instructions.

» All 1/0 instructions defined to be privileged.

|/O Protection

» User process may accidentally or purposefully attempt to disrupt
normal operation via illegal 1/O instructions.

» All 1/0 instructions defined to be privileged.

» |/O must be performed via system calls.

B
|/O Protection

v

User process may accidentally or purposefully attempt to disrupt
normal operation via illegal I/O instructions.

v

All 1/0 instructions defined to be privileged.

v

[/O must be performed via system calls.

v

Memory-mapped and |/O port memory locations must be protected
too.

Use of a System Call to Perform |/O

'€))
2

trap to
monitor

Amir H. Payberah (Tehran Polytechnic)

¥
case n

I read |-

kystem call ned

.

1/O Systems

kernel

©)

perform 11O

®

return
to user

user
program

1393/9/15

42 / 57

L
Kernel Data Structures

» Kernel keeps state info for I/O components, including open file ta-
bles, network connections, character device state

Kernel Data Structures

» Kernel keeps state info for I/O components, including open file ta-
bles, network connections, character device state

» Many complex data structures to track buffers, memory allocation,
dirty blocks.

L
Kernel Data Structures

» Kernel keeps state info for I/O components, including open file ta-
bles, network connections, character device state

» Many complex data structures to track buffers, memory allocation,
dirty blocks.

» Some use object-oriented methods and message passing to imple-
ment 1/0

N —
Kernel Data Structures

Kernel keeps state info for |/O components, including open file ta-
bles, network connections, character device state

v

» Many complex data structures to track buffers, memory allocation,
dirty blocks.

» Some use object-oriented methods and message passing to imple-
ment 1/0

v

E.g., Windows uses message passing.
¢ Message with /O information passed from user mode into kernel.
e Message modified as it flows through to device driver and back to
process.

© Amir H. Payberah (Tehran Polytechnic) 1/O Systems se3ss 43 s

UNIX I/O Kernel Structure

system-wide open-file table

per-process
file descriptor}»{open-file table

file-system record

inode pointer

pointer to read and write functions
pointer to select function

1 pointer to ioctl function

pointer to close function

active-inode
table

user-process memory

Amir H. Payberah (Tehran Polytechnic)

4 networking (socket) record

pointer to network info

pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

network-
jnformation
table

kernel memory

1/O Systems

1393/9/15

44 / 57

Transforming 1/O Requests
to Hardware Operations

NS
|/O Requests to Hardware Operations

» Consider reading a file from disk for a process:
e Determine device holding file
¢ Translate name to device representation
e Physically read data from disk into buffer
¢ Make data available to requesting process

e Return control to process

Life Cycle of An 1/O Request

STREAMS

NN
STREAMS (1/2)

» STREAM: a full-duplex communication channel between a user-level
process and a device in Unix System V and beyond.

NN
STREAMS (1/2)

» STREAM: a full-duplex communication channel between a user-level
process and a device in Unix System V and beyond.

» A STREAM consists of:

e STREAM head: interfaces with the user process.
e Driver end: interfaces with the device.
o Zero or more STREAM modules between them.

—
STREAMS (2/2)

» Each module contains a read queue and a write queue.
» Message passing is used to communicate between queues.

» Asynchronous internally, synchronous where user process communi-
cates with stream head.

user process

i

stream head

read queue ‘ write queue
‘ [read queue ‘ write queue
1 l STREAMS
modules
‘ read queue ‘ write queue ‘
read queue ‘ write queue

driver end

 Amir H. Payberah (Tehran Polytechnicy ~~ I/O Systems 1303/9/15 50/ 57

Performance

Performance

» |/O is a major factor in system performance:
* Demands CPU to execute device driver, kernel |/O code
o Context switches due to interrupts
e Data copying

e Network traffic especially stressful

Inter-computer Communications

character
typed

terrupt
generated
I _network g

network [context|
daemon

sending system receiving system

Amir H. Payberah (Tehran Polytechnic) 1/O Systems 1393/9/15 53 / 57

BN
Improving Performance

» Reduce number of context switches

BN
Improving Performance

» Reduce number of context switches

» Reduce data copying

BN
Improving Performance

» Reduce number of context switches
» Reduce data copying

» Reduce interrupts by using large transfers, smart controllers, polling

BN
Improving Performance

Reduce number of context switches

v

\{

Reduce data copying

\{

Reduce interrupts by using large transfers, smart controllers, polling

v

Use DMA

BN
Improving Performance

Reduce number of context switches

v

\{

Reduce data copying

\{

Reduce interrupts by using large transfers, smart controllers, polling

v

Use DMA

v

Use smarter hardware devices

BN
Improving Performance

» Reduce number of context switches

» Reduce data copying

» Reduce interrupts by using large transfers, smart controllers, polling
» Use DMA

» Use smarter hardware devices

» Balance CPU, memory, bus, and |/O performance for highest
throughput

I
Improving Performance

» Reduce number of context switches

» Reduce data copying

» Reduce interrupts by using large transfers, smart controllers, polling
» Use DMA

» Use smarter hardware devices

» Balance CPU, memory, bus, and |/O performance for highest
throughput

» Move user-mode processes to kernel

Summary

INNSS———
Summary

» |/O hardware: port, bus, controller

INNSS———
Summary

» |/O hardware: port, bus, controller

» |/O port registers: data-in, data-out, status, control

INNSS———
Summary

» |/O hardware: port, bus, controller
» |/O port registers: data-in, data-out, status, control

» Host-device interaction: polling, interrupt, DMA

INNSS———
Summary

v

[/O hardware: port, bus, controller

v

I/O port registers: data-in, data-out, status, control

v

Host-device interaction: polling, interrupt, DMA

v

Devices: char, block, network

L
Summary

v

[/O hardware: port, bus, controller

v

I/O port registers: data-in, data-out, status, control

v

Host-device interaction: polling, interrupt, DMA

v

Devices: char, block, network

v

Kernel 1/0: schedulling, buffering, caching, spooling, device reser-
vation, error handling

L
Summary

v

[/O hardware: port, bus, controller

v

I/O port registers: data-in, data-out, status, control

v

Host-device interaction: polling, interrupt, DMA

v

Devices: char, block, network

v

Kernel 1/0: schedulling, buffering, caching, spooling, device reser-
vation, error handling

STREAMS

v

L
Summary

v

[/O hardware: port, bus, controller

I/O port registers: data-in, data-out, status, control
Host-device interaction: polling, interrupt, DMA
Devices: char, block, network

Kernel 1/0: schedulling, buffering, caching, spooling, device reser-
vation, error handling

STREAMS

Performance

Questions?

Some slides were derived from Avi Silberschatz slides. '

