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Overview

I I/O management is a major component of OS design and operation.

• Important aspect of computer operation
• I/O devices vary greatly
• Various methods to control them
• Performance management
• New types of devices frequent

I Ports, busses, device controllers connect to various devices.

I Device drivers encapsulate device details.
• Present uniform device-access interface to I/O subsystem.
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I/O Hardware
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I/O Hardware

I Incredible variety of I/O devices
• Storage, e.g., disks, tapes
• Transmission, e.g., network connections, bluetooth
• Human-interface, e.g., screen, keyboard, mouse, audio in and out

I We only need to understand how the devices are attached and how
the software can control the hardware.
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Common Concepts in I/O Hardware

I Common concepts: signals from I/O devices interface with com-
puter.

I Port: connection point for device

I Bus: set of wires and a protocol that specifies a set of messages
that can be sent on the wires.

I Controller: a collection of electronics that can operate a port, a bus,
or a device.

• Sometimes integrated and sometimes separate circuit board (host
adapter)

• Contains processor, microcode, private memory, bus controller, etc
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Bus

I PCI bus: connects the processor-memory subsystem to fast devices.

I Expansion bus: connects relatively slow devices.
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Processor/Controller Interaction

I How can the processor give commands and data to a controller to
accomplish an I/O transfer?

I Devices usually have registers where device driver places commands,
addresses, and data.

I Processor/controller interaction:

• Direct I/O instructions: triggers bus lines to select the proper
device and to move bits into or out of a device register.

• Memory-mapped I/O: device data and command registers mapped
to processor address space.
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Device I/O Port Locations on PCs

Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 9 / 57



I/O Port Registers

I The data-in register: read by the host to get input.

I The data-out register: written by the host to send output.

I The status register: read by the host, and indicates states.
• whether the current command has completed.
• whether a byte is available to be read from the data-in register.
• whether a device error has occurred.

I The control register: written by the host to start a command or to
change the mode of a device.
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Host Device Interaction

I Polling

I Interrupt

I Direct memory access (DMA)
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Polling (1/2)

I A handshake between the host and a controller.

I Assume 2 bits for coordination. For each byte of I/O:

1 Host reads the busy bit from the status register until 0.
2 Host sets the read or write bit and if write copies data into the

data-out register.
3 Host sets the command-ready bit.
4 Controller sets the busy bit, executes transfer.
5 Controller clears the busy bit, error bit, and command-ready bit

when transfer done.
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Polling (2/2)

I Step 1 is busy-wait cycle (polling) to wait for I/O from device.
• Reasonable if device is fast.
• But inefficient if device slow.
• CPU switches to other tasks? but if miss a cycle data

overwritten/lost.
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Interrupts

I Polling can happen in 3 instruction cycles.
• read status, logical-and to extract status bit, and branch if not

zero.
• Inefficient, but more efficient way?

I CPU interrupt-request line is triggered by I/O device.
• Checked by processor after each instruction.
• Saves state and jumps to interrupt-handler routine at a fixed

address in memory.

I Two interrupt request lines:
• Nonmaskable: reserved for events such as unrecoverable memory

errors.
• Maskable: it can be turned off by the CPU.
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Interrupt-Driven I/O Cycle
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Interrupt Vector

I The interrupt mechanism accepts an address: a number that selects
a specific interrupt-handling routine.

I This address is an offset in a table called the interrupt vector.

I The interrupt vector contains the memory addresses of specialized
interrupt handlers.

I Computers have more devices than they have address elements in
the interrupt vector.

• Use interrupt chaining: each element in the interrupt vector points
to the head of a list of interrupt handlers.
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Intel Pentium Processor Event-Vector Table
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Other Interrupt Usages

I Interrupt mechanism also used for exceptions.
• Divide by zero, terminate process, hardware error.

I Page fault executes when memory access error.

I System call executes via trap to trigger kernel to execute request.

I Multi-CPU systems can process interrupts concurrently.

I Used for time-sensitive processing, frequent, must be fast.
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Direct Memory Access (1/2)

I Used to avoid programmed I/O (one byte at a time) for large data
movement.

I Requires Direct Memory Access (DMA) controller

I Bypasses CPU to transfer data directly between I/O device and
memory.

I Version that is aware of virtual addresses can be even more efficient.
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Direct Memory Access (2/2)

I OS writes DMA command block into memory.

• Source and destination addresses

• Read or write mode

• Count of bytes

• Writes location of command block to DMA controller

• Bus mastering of DMA controller - grabs bus from CPU: cycle
stealing from CPU but still much more efficient

• When done, interrupts to signal completion
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Six Step Process to Perform DMA Transfer

Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 21 / 57



Application I/O Interface
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Application I/O Interface

I I/O system calls encapsulate device behaviors in generic classes.

I Device-driver layer hides differences among I/O controllers from ker-
nel.

I New devices talking already-implemented protocols need no extra
work.

I Each OS has its own I/O subsystem structures and device driver
frameworks.
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A Kernel I/O Structure
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Characteristics of I/O Devices (1/2)

I Devices vary in many dimensions
• Data-transfer mode: character or block
• Access method: sequential or random-access
• Transfer schedule: synchronous or asynchronous (or both)
• Sharing: sharable or dedicated
• Device speed: speed of operation
• I/O direction: read-write, read only, or write only
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Characteristics of I/O Devices (2/2)
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Character Devices

I Character devices include keyboards, mouse, serial ports.

I A character device transfers bytes one by one.

I Commands include get() and put().
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Block Devices

I Block devices include disk drives.

I Commands include read() and write() and seek() for random-
access devices.

I Raw I/O: access a block device as a simple linear array of blocks.

I Direct I/O: disable buffering and locking.

I Memory-mapped file access: file mapped to virtual memory and
clusters brought via demand paging.
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Network Devices

I Varying enough from block and character to have own interface.

I Linux, Unix, Windows and many others include socket interface.
• Separates network protocol from network operation.
• Includes select() functionality.
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Clocks and Timers

I Provide current time, elapsed time, and timer (trigger operation X
at time T)

I Programmable interval timer, the hardware used for timings, and
periodic interrupts.

I Normal resolution about 1/60 second.

I Some systems provide higher-resolution timers.
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Blocking, Nonblocking and Asynchronous I/O

I Blocking: process suspended until I/O completed
• Insufficient for some needs

I Nonblocking: I/O call returns as much as available
• User interface, data copy (buffered I/O)

• Implemented via multi-threading
• select() to find if data ready then read() or write() to

transfers.

I Asynchronous: process runs while I/O executes
• I/O subsystem signals process when I/O completed.
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Synchronous vs. Asynchronous I/O Methods
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Vectored I/O

I Vectored I/O allows one system call to perform multiple I/O oper-
ations.

I The scatter-gather method is better than multiple individual I/O
calls.

• Decreases context switching and system call overhead.
• Some versions provide atomicity: avoid for example worry about

multiple threads changing data as reads/writes occurring.

I For example, Unix readve() accepts a vector of multiple buffers to
read into or write from.
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Kernel I/O Subsystem
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Kernel I/O Subsystem

I Kernels provide many services related to I/O:
• Scheduling
• Buffering
• Caching
• Spooling
• Device reservation
• Error handling
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Scheduling (1/2)

I Determine a good order in which to execute I/O requests.

I Some I/O request ordering via per-device queue.

I Some OSs try fairness.
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Scheduling (2/2)

I In asynchronous I/O the kernel must be able to keep track of many
I/O requests at the same time.

• The OS attaches the wait queue to a device-status table.
• The table contains an entry for each I/O device.
• If the device is busy with a request, the type of request and other

parameters will be stored in the table entry for that device.
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Buffering and Caching

I Buffering: stores data in memory while transferring between devices.

• To cope with device speed mismatch.
• To cope with device transfer size mismatch, e.g., fragmentation and

reassembly of messages
• To maintain copy semantics, e.g., copy semantics

I Caching: faster device holding copy of data.
• Always just a copy
• Key to performance
• Sometimes combined with buffering
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Spooling and Device Reservation

I Spooling: a buffer that holds output for a device.
• If device can serve only one request at a time, i.e., printing

I Device reservation: provides exclusive access to a device.
• System calls for allocation and de-allocation
• Watch out for deadlock
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Error Handling

I OS can recover from disk read, device unavailable, transient write
failures

• Retry a read or write.
• Track error frequencies, stop using device with increasing frequency

of retry-able errors.

I Most return an error number or code when I/O request fails.

I System error logs hold problem reports.
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I/O Protection

I User process may accidentally or purposefully attempt to disrupt
normal operation via illegal I/O instructions.

I All I/O instructions defined to be privileged.

I I/O must be performed via system calls.

I Memory-mapped and I/O port memory locations must be protected
too.

Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 41 / 57



I/O Protection

I User process may accidentally or purposefully attempt to disrupt
normal operation via illegal I/O instructions.

I All I/O instructions defined to be privileged.

I I/O must be performed via system calls.

I Memory-mapped and I/O port memory locations must be protected
too.

Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 41 / 57



I/O Protection

I User process may accidentally or purposefully attempt to disrupt
normal operation via illegal I/O instructions.

I All I/O instructions defined to be privileged.

I I/O must be performed via system calls.

I Memory-mapped and I/O port memory locations must be protected
too.

Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 41 / 57



I/O Protection

I User process may accidentally or purposefully attempt to disrupt
normal operation via illegal I/O instructions.

I All I/O instructions defined to be privileged.

I I/O must be performed via system calls.

I Memory-mapped and I/O port memory locations must be protected
too.

Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 41 / 57



Use of a System Call to Perform I/O
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Kernel Data Structures

I Kernel keeps state info for I/O components, including open file ta-
bles, network connections, character device state

I Many complex data structures to track buffers, memory allocation,
dirty blocks.

I Some use object-oriented methods and message passing to imple-
ment I/O

I E.g., Windows uses message passing.
• Message with I/O information passed from user mode into kernel.
• Message modified as it flows through to device driver and back to

process.
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UNIX I/O Kernel Structure
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Transforming I/O Requests
to Hardware Operations
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I/O Requests to Hardware Operations

I Consider reading a file from disk for a process:

• Determine device holding file

• Translate name to device representation

• Physically read data from disk into buffer

• Make data available to requesting process

• Return control to process

Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 46 / 57



Life Cycle of An I/O Request
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STREAMS
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STREAMS (1/2)

I STREAM: a full-duplex communication channel between a user-level
process and a device in Unix System V and beyond.

I A STREAM consists of:
• STREAM head: interfaces with the user process.
• Driver end: interfaces with the device.
• Zero or more STREAM modules between them.
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STREAMS (2/2)

I Each module contains a read queue and a write queue.

I Message passing is used to communicate between queues.

I Asynchronous internally, synchronous where user process communi-
cates with stream head.
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Performance

Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 51 / 57



Performance

I I/O is a major factor in system performance:

• Demands CPU to execute device driver, kernel I/O code

• Context switches due to interrupts

• Data copying

• Network traffic especially stressful
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Inter-computer Communications
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Improving Performance

I Reduce number of context switches

I Reduce data copying

I Reduce interrupts by using large transfers, smart controllers, polling

I Use DMA

I Use smarter hardware devices

I Balance CPU, memory, bus, and I/O performance for highest
throughput

I Move user-mode processes to kernel
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Summary
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Summary

I I/O hardware: port, bus, controller

I I/O port registers: data-in, data-out, status, control

I Host-device interaction: polling, interrupt, DMA

I Devices: char, block, network

I Kernel I/O: schedulling, buffering, caching, spooling, device reser-
vation, error handling

I STREAMS

I Performance
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Questions?
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