
Main Memory (Part II)

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 1 / 50

Reminder

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 2 / 50

Reminder (1/3)

I External fragmentation vs. internal fragmentation

I Compaction: shuffle memory contents to place all free memory
together in one large block.

I Other solutions:
• Segmentation
• Paging

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 3 / 50

Reminder (2/3)

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 4 / 50

Reminder (3/3)

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 5 / 50

Paging

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 6 / 50

Paging vs. Segmentation

I Segmentation and paging, both, permit the physical address space
of a process to be noncontiguous.

I Paging avoids external fragmentation and the need for compaction,
whereas segmentation does not.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 7 / 50

Paging vs. Segmentation

I Segmentation and paging, both, permit the physical address space
of a process to be noncontiguous.

I Paging avoids external fragmentation and the need for compaction,
whereas segmentation does not.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 7 / 50

Paging (1/2)

I Physical address space of a process can be noncontiguous; process
is allocated physical memory whenever the latter is available.

• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

I Divide physical memory into fixed-sized blocks called frames.
• Size is power of 2, between 512 bytes and 16 Mbytes.

I Divide logical memory into blocks of same size called pages.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 8 / 50

Paging (1/2)

I Physical address space of a process can be noncontiguous; process
is allocated physical memory whenever the latter is available.

• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

I Divide physical memory into fixed-sized blocks called frames.
• Size is power of 2, between 512 bytes and 16 Mbytes.

I Divide logical memory into blocks of same size called pages.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 8 / 50

Paging (1/2)

I Physical address space of a process can be noncontiguous; process
is allocated physical memory whenever the latter is available.

• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

I Divide physical memory into fixed-sized blocks called frames.
• Size is power of 2, between 512 bytes and 16 Mbytes.

I Divide logical memory into blocks of same size called pages.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 8 / 50

Paging (2/2)

I Keep track of all free frames.

I To run a program of size N pages, need to find N free frames and
load program.

I Set up a page table to translate logical to physical addresses.

I Still have internal fragmentation.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 9 / 50

Paging (2/2)

I Keep track of all free frames.

I To run a program of size N pages, need to find N free frames and
load program.

I Set up a page table to translate logical to physical addresses.

I Still have internal fragmentation.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 9 / 50

Paging (2/2)

I Keep track of all free frames.

I To run a program of size N pages, need to find N free frames and
load program.

I Set up a page table to translate logical to physical addresses.

I Still have internal fragmentation.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 9 / 50

Paging (2/2)

I Keep track of all free frames.

I To run a program of size N pages, need to find N free frames and
load program.

I Set up a page table to translate logical to physical addresses.

I Still have internal fragmentation.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 9 / 50

Address Translation Scheme

I Address generated by CPU (logical address) is divided into two
parts:

I Page number (p): used as an index into a page table that contains
base address of each page in physical memory.

I Page offset (d): combined with base address to define the physical
memory address that is sent to the memory unit.

I For given logical address space 2m and page size 2n.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 10 / 50

Address Translation Scheme

I Address generated by CPU (logical address) is divided into two
parts:

I Page number (p): used as an index into a page table that contains
base address of each page in physical memory.

I Page offset (d): combined with base address to define the physical
memory address that is sent to the memory unit.

I For given logical address space 2m and page size 2n.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 10 / 50

Address Translation Scheme

I Address generated by CPU (logical address) is divided into two
parts:

I Page number (p): used as an index into a page table that contains
base address of each page in physical memory.

I Page offset (d): combined with base address to define the physical
memory address that is sent to the memory unit.

I For given logical address space 2m and page size 2n.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 10 / 50

Address Translation Scheme

I Address generated by CPU (logical address) is divided into two
parts:

I Page number (p): used as an index into a page table that contains
base address of each page in physical memory.

I Page offset (d): combined with base address to define the physical
memory address that is sent to the memory unit.

I For given logical address space 2m and page size 2n.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 10 / 50

Paging Hardware

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 11 / 50

Paging Model of Logical and Physical Memory

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 12 / 50

Paging Example

I n = 2 and m = 4, 32-byte memory and 4-byte pages

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 13 / 50

Free Frames

before allocation after allocation

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 14 / 50

Paging Example - Internal Fragmentation

I Page size = 2048 bytes

I Process size = 72766 bytes

I 72766
2048 = 35 pages + 1086 bytes

I Internal fragmentation: 2048 - 1086 = 962 bytes

I Worst case fragmentation = 1 frame - 1 byte

I On average fragmentation = 1
2 frame size

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 15 / 50

Paging Example - Internal Fragmentation

I Page size = 2048 bytes

I Process size = 72766 bytes

I 72766
2048 = 35 pages + 1086 bytes

I Internal fragmentation: 2048 - 1086 = 962 bytes

I Worst case fragmentation = 1 frame - 1 byte

I On average fragmentation = 1
2 frame size

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 15 / 50

Paging Example - Internal Fragmentation

I Page size = 2048 bytes

I Process size = 72766 bytes

I 72766
2048 = 35 pages + 1086 bytes

I Internal fragmentation: 2048 - 1086 = 962 bytes

I Worst case fragmentation = 1 frame - 1 byte

I On average fragmentation = 1
2 frame size

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 15 / 50

Paging Example - Internal Fragmentation

I Page size = 2048 bytes

I Process size = 72766 bytes

I 72766
2048 = 35 pages + 1086 bytes

I Internal fragmentation: 2048 - 1086 = 962 bytes

I Worst case fragmentation = 1 frame - 1 byte

I On average fragmentation = 1
2 frame size

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 15 / 50

Paging Example - Internal Fragmentation

I Page size = 2048 bytes

I Process size = 72766 bytes

I 72766
2048 = 35 pages + 1086 bytes

I Internal fragmentation: 2048 - 1086 = 962 bytes

I Worst case fragmentation = 1 frame - 1 byte

I On average fragmentation = 1
2 frame size

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 15 / 50

Small Page Size vs. Big Page Size

I On average fragmentation = 1
2 page size, hence, small page sizes

are desirable.

I Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

I Disk I/O is more efficient when the amount data being transferred
is larger (e.g., big pages).

I Pages typically are between 4 KB and 8 KB in size.

getconf PAGESIZE

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 16 / 50

Small Page Size vs. Big Page Size

I On average fragmentation = 1
2 page size, hence, small page sizes

are desirable.

I Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

I Disk I/O is more efficient when the amount data being transferred
is larger (e.g., big pages).

I Pages typically are between 4 KB and 8 KB in size.

getconf PAGESIZE

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 16 / 50

Small Page Size vs. Big Page Size

I On average fragmentation = 1
2 page size, hence, small page sizes

are desirable.

I Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

I Disk I/O is more efficient when the amount data being transferred
is larger (e.g., big pages).

I Pages typically are between 4 KB and 8 KB in size.

getconf PAGESIZE

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 16 / 50

Small Page Size vs. Big Page Size

I On average fragmentation = 1
2 page size, hence, small page sizes

are desirable.

I Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

I Disk I/O is more efficient when the amount data being transferred
is larger (e.g., big pages).

I Pages typically are between 4 KB and 8 KB in size.

getconf PAGESIZE

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 16 / 50

Page Table Implementation

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 17 / 50

Page Table

I Page table is kept in main memory.

I Page-table base register (PTBR) points to the page table.

I Page-table length register (PTLR) indicates size of the page table.

I In this scheme every data/instruction access requires two memory
accesses.

• One for the page table and one for the data/instruction.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 18 / 50

Page Table

I Page table is kept in main memory.

I Page-table base register (PTBR) points to the page table.

I Page-table length register (PTLR) indicates size of the page table.

I In this scheme every data/instruction access requires two memory
accesses.

• One for the page table and one for the data/instruction.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 18 / 50

Page Table

I Page table is kept in main memory.

I Page-table base register (PTBR) points to the page table.

I Page-table length register (PTLR) indicates size of the page table.

I In this scheme every data/instruction access requires two memory
accesses.

• One for the page table and one for the data/instruction.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 18 / 50

Page Table

I Page table is kept in main memory.

I Page-table base register (PTBR) points to the page table.

I Page-table length register (PTLR) indicates size of the page table.

I In this scheme every data/instruction access requires two memory
accesses.

• One for the page table and one for the data/instruction.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 18 / 50

Translation Look-aside Buffers (TLB)

I The two memory access problem can be solved by the use of a
special fast-lookup hardware cache called associative memory or
translation look-aside buffers (TLBs).

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 19 / 50

Associative Memory

I Associative memory: parallel search

I Address translation (p, d)
• If p is in associative register, get frame# out
• Otherwise, get frame# from page table in memory

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 20 / 50

Paging Hardware With TLB

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 21 / 50

Effective Access Time

I Hit ratio: percentage of times that a page number is found in the
TLB.

I Effective Access Time (EAT)
• α: memory access latency
• h: hit ratio
• EAT = h × α + (1− h)× 2α

I h = 80%, α = 100ns ⇒ EAT = 0.80× 100 + 0.20× 200 = 120ns

I h = 99%, α = 100ns ⇒ EAT = 0.99× 100 + 0.01× 200 = 101ns

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 22 / 50

Effective Access Time

I Hit ratio: percentage of times that a page number is found in the
TLB.

I Effective Access Time (EAT)
• α: memory access latency
• h: hit ratio
• EAT = h × α + (1− h)× 2α

I h = 80%, α = 100ns ⇒ EAT = 0.80× 100 + 0.20× 200 = 120ns

I h = 99%, α = 100ns ⇒ EAT = 0.99× 100 + 0.01× 200 = 101ns

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 22 / 50

Effective Access Time

I Hit ratio: percentage of times that a page number is found in the
TLB.

I Effective Access Time (EAT)
• α: memory access latency
• h: hit ratio
• EAT = h × α + (1− h)× 2α

I h = 80%, α = 100ns ⇒ EAT = 0.80× 100 + 0.20× 200 = 120ns

I h = 99%, α = 100ns ⇒ EAT = 0.99× 100 + 0.01× 200 = 101ns

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 22 / 50

Effective Access Time

I Hit ratio: percentage of times that a page number is found in the
TLB.

I Effective Access Time (EAT)
• α: memory access latency
• h: hit ratio
• EAT = h × α + (1− h)× 2α

I h = 80%, α = 100ns ⇒ EAT = 0.80× 100 + 0.20× 200 = 120ns

I h = 99%, α = 100ns ⇒ EAT = 0.99× 100 + 0.01× 200 = 101ns

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 22 / 50

More About TLB

I Some TLBs store address-space identifiers (ASIDs) in each TLB
entry

• Uniquely identifies each process to provide address-space protection
for that process.

• Otherwise, need to flush at every context switch.

I TLBs typically small (64 to 1,024 entries)

I On a TLB miss, value is loaded into the TLB for faster access next
time.

• Replacement policies must be considered.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 23 / 50

More About TLB

I Some TLBs store address-space identifiers (ASIDs) in each TLB
entry

• Uniquely identifies each process to provide address-space protection
for that process.

• Otherwise, need to flush at every context switch.

I TLBs typically small (64 to 1,024 entries)

I On a TLB miss, value is loaded into the TLB for faster access next
time.

• Replacement policies must be considered.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 23 / 50

More About TLB

I Some TLBs store address-space identifiers (ASIDs) in each TLB
entry

• Uniquely identifies each process to provide address-space protection
for that process.

• Otherwise, need to flush at every context switch.

I TLBs typically small (64 to 1,024 entries)

I On a TLB miss, value is loaded into the TLB for faster access next
time.

• Replacement policies must be considered.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 23 / 50

Memory Protection

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 24 / 50

Memory Protection

I Memory protection implemented by associating protection bit with
each frame to indicate if read-only or read-write access is allowed.

I Valid-invalid bit attached to each entry in the page table:
• Valid indicates that the associated page is in the process logical

address space, and is thus a legal page.
• Invalid indicates that the page is not in the process logical address

space.

• Or use page-table length register (PTLR).

I Any violations result in a trap to the kernel.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 25 / 50

Memory Protection

I Memory protection implemented by associating protection bit with
each frame to indicate if read-only or read-write access is allowed.

I Valid-invalid bit attached to each entry in the page table:
• Valid indicates that the associated page is in the process logical

address space, and is thus a legal page.
• Invalid indicates that the page is not in the process logical address

space.

• Or use page-table length register (PTLR).

I Any violations result in a trap to the kernel.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 25 / 50

Memory Protection

I Memory protection implemented by associating protection bit with
each frame to indicate if read-only or read-write access is allowed.

I Valid-invalid bit attached to each entry in the page table:
• Valid indicates that the associated page is in the process logical

address space, and is thus a legal page.
• Invalid indicates that the page is not in the process logical address

space.
• Or use page-table length register (PTLR).

I Any violations result in a trap to the kernel.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 25 / 50

Memory Protection

I Memory protection implemented by associating protection bit with
each frame to indicate if read-only or read-write access is allowed.

I Valid-invalid bit attached to each entry in the page table:
• Valid indicates that the associated page is in the process logical

address space, and is thus a legal page.
• Invalid indicates that the page is not in the process logical address

space.
• Or use page-table length register (PTLR).

I Any violations result in a trap to the kernel.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 25 / 50

Valid/Invalid Bit In A Page Table

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 26 / 50

Shared Pages

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 27 / 50

Shared Pages

I Shared code
• One copy of read-only (reentrant) code shared among processes

(e.g., text editors).
• Similar to multiple threads sharing the same process space.

I Private code and data
• Each process keeps a separate copy of the code and data.
• The pages for the private code and data can appear anywhere in

the logical address space.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 28 / 50

Shared Pages

I Shared code
• One copy of read-only (reentrant) code shared among processes

(e.g., text editors).
• Similar to multiple threads sharing the same process space.

I Private code and data
• Each process keeps a separate copy of the code and data.
• The pages for the private code and data can appear anywhere in

the logical address space.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 28 / 50

Shared Pages Example

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 29 / 50

Structure of the Page Table

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 30 / 50

Structure of the Page Table (1/2)

I Memory structures for paging can get huge using straight-forward
methods.

I Consider a 32-bit logical address space as on modern computers:

• Page size of 4KB = 212.
• Page table would have 1 million entries (232

212).
• If each entry is 4B: 4MB of physical address space memory for

page table alone.
• That amount of memory used to cost a lot.
• Don’t want to allocate that contiguously in main memory.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 31 / 50

Structure of the Page Table (1/2)

I Memory structures for paging can get huge using straight-forward
methods.

I Consider a 32-bit logical address space as on modern computers:

• Page size of 4KB = 212.
• Page table would have 1 million entries (232

212).
• If each entry is 4B: 4MB of physical address space memory for

page table alone.
• That amount of memory used to cost a lot.
• Don’t want to allocate that contiguously in main memory.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 31 / 50

Structure of the Page Table (1/2)

I Memory structures for paging can get huge using straight-forward
methods.

I Consider a 32-bit logical address space as on modern computers:
• Page size of 4KB = 212.

• Page table would have 1 million entries (232

212).
• If each entry is 4B: 4MB of physical address space memory for

page table alone.
• That amount of memory used to cost a lot.
• Don’t want to allocate that contiguously in main memory.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 31 / 50

Structure of the Page Table (1/2)

I Memory structures for paging can get huge using straight-forward
methods.

I Consider a 32-bit logical address space as on modern computers:
• Page size of 4KB = 212.
• Page table would have 1 million entries (232

212).

• If each entry is 4B: 4MB of physical address space memory for
page table alone.

• That amount of memory used to cost a lot.
• Don’t want to allocate that contiguously in main memory.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 31 / 50

Structure of the Page Table (1/2)

I Memory structures for paging can get huge using straight-forward
methods.

I Consider a 32-bit logical address space as on modern computers:
• Page size of 4KB = 212.
• Page table would have 1 million entries (232

212).
• If each entry is 4B: 4MB of physical address space memory for

page table alone.

• That amount of memory used to cost a lot.
• Don’t want to allocate that contiguously in main memory.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 31 / 50

Structure of the Page Table (1/2)

I Memory structures for paging can get huge using straight-forward
methods.

I Consider a 32-bit logical address space as on modern computers:
• Page size of 4KB = 212.
• Page table would have 1 million entries (232

212).
• If each entry is 4B: 4MB of physical address space memory for

page table alone.
• That amount of memory used to cost a lot.

• Don’t want to allocate that contiguously in main memory.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 31 / 50

Structure of the Page Table (1/2)

I Memory structures for paging can get huge using straight-forward
methods.

I Consider a 32-bit logical address space as on modern computers:
• Page size of 4KB = 212.
• Page table would have 1 million entries (232

212).
• If each entry is 4B: 4MB of physical address space memory for

page table alone.
• That amount of memory used to cost a lot.
• Don’t want to allocate that contiguously in main memory.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 31 / 50

Structure of the Page Table (2/2)

I Hierarchical Paging

I Hashed Page Tables

I Inverted Page Tables

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 32 / 50

Hierarchical Paging

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 33 / 50

Hierarchical Page Tables

I Break up the logical address space into multiple page tables.

I A simple technique is a two-level page table.

I We then page the page table.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 34 / 50

Two-Level Page-Table Scheme

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 35 / 50

Two-Level Paging Example

I A logical address, on 32-bit machine with 1K page size, is divided:

• A page number consisting of 22 bits.
• A page offset consisting of 10 bits.

I Since the page table is paged, the page number is divided into:
• A 12-bit page number.
• A 10-bit page offset.

I Thus, a logical address is:

I where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table.

I Known as forward-mapped page table.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 36 / 50

Two-Level Paging Example

I A logical address, on 32-bit machine with 1K page size, is divided:
• A page number consisting of 22 bits.

• A page offset consisting of 10 bits.

I Since the page table is paged, the page number is divided into:
• A 12-bit page number.
• A 10-bit page offset.

I Thus, a logical address is:

I where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table.

I Known as forward-mapped page table.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 36 / 50

Two-Level Paging Example

I A logical address, on 32-bit machine with 1K page size, is divided:
• A page number consisting of 22 bits.
• A page offset consisting of 10 bits.

I Since the page table is paged, the page number is divided into:
• A 12-bit page number.
• A 10-bit page offset.

I Thus, a logical address is:

I where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table.

I Known as forward-mapped page table.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 36 / 50

Two-Level Paging Example

I A logical address, on 32-bit machine with 1K page size, is divided:
• A page number consisting of 22 bits.
• A page offset consisting of 10 bits.

I Since the page table is paged, the page number is divided into:
• A 12-bit page number.
• A 10-bit page offset.

I Thus, a logical address is:

I where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table.

I Known as forward-mapped page table.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 36 / 50

Two-Level Paging Example

I A logical address, on 32-bit machine with 1K page size, is divided:
• A page number consisting of 22 bits.
• A page offset consisting of 10 bits.

I Since the page table is paged, the page number is divided into:
• A 12-bit page number.
• A 10-bit page offset.

I Thus, a logical address is:

I where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table.

I Known as forward-mapped page table.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 36 / 50

Two-Level Paging Example

I A logical address, on 32-bit machine with 1K page size, is divided:
• A page number consisting of 22 bits.
• A page offset consisting of 10 bits.

I Since the page table is paged, the page number is divided into:
• A 12-bit page number.
• A 10-bit page offset.

I Thus, a logical address is:

I where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table.

I Known as forward-mapped page table.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 36 / 50

Address-Translation Scheme

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 37 / 50

64-bit Logical Address Space

I Even two-level paging scheme not sufficient.

I If page size is 4KB (212)

• Then page table has 252 entries
• If two level scheme, inner page tables could be 210, 4B entries
• Outer page table has 242 entries or 244B
• Address would look like:

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 38 / 50

64-bit Logical Address Space

I Even two-level paging scheme not sufficient.

I If page size is 4KB (212)
• Then page table has 252 entries

• If two level scheme, inner page tables could be 210, 4B entries
• Outer page table has 242 entries or 244B
• Address would look like:

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 38 / 50

64-bit Logical Address Space

I Even two-level paging scheme not sufficient.

I If page size is 4KB (212)
• Then page table has 252 entries
• If two level scheme, inner page tables could be 210, 4B entries

• Outer page table has 242 entries or 244B
• Address would look like:

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 38 / 50

64-bit Logical Address Space

I Even two-level paging scheme not sufficient.

I If page size is 4KB (212)
• Then page table has 252 entries
• If two level scheme, inner page tables could be 210, 4B entries
• Outer page table has 242 entries or 244B

• Address would look like:

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 38 / 50

64-bit Logical Address Space

I Even two-level paging scheme not sufficient.

I If page size is 4KB (212)
• Then page table has 252 entries
• If two level scheme, inner page tables could be 210, 4B entries
• Outer page table has 242 entries or 244B
• Address would look like:

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 38 / 50

64-bit Logical Address Space

I Even two-level paging scheme not sufficient.

I If page size is 4KB (212)
• Then page table has 252 entries
• If two level scheme, inner page tables could be 210, 4B entries
• Outer page table has 242 entries or 244B
• Address would look like:

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 38 / 50

Three-level Paging Scheme

I One solution is to add a 2nd outer page table.

I But in the following example the 2nd outer page table is still 234

bytes in size.

I And possibly 4 memory access to get to one physical memory
location.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 39 / 50

Three-level Paging Scheme

I One solution is to add a 2nd outer page table.

I But in the following example the 2nd outer page table is still 234

bytes in size.

I And possibly 4 memory access to get to one physical memory
location.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 39 / 50

Three-level Paging Scheme

I One solution is to add a 2nd outer page table.

I But in the following example the 2nd outer page table is still 234

bytes in size.

I And possibly 4 memory access to get to one physical memory
location.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 39 / 50

Hashed Page Tables

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 40 / 50

Hashed Page Tables (1/2)

I Common in address spaces > 32 bits

I The logical page number is hashed into a page table.

I This page table contains a chain of elements hashing to the same
location.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 41 / 50

Hashed Page Tables (2/2)

I Each element contains
1 The logical page number
2 The value of the mapped page frame
3 A pointer to the next element

I Logical page numbers are compared in this chain searching for a
match.

• If a match is found, the corresponding physical frame is extracted.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 42 / 50

Hashed Page Tables (2/2)

I Each element contains
1 The logical page number
2 The value of the mapped page frame
3 A pointer to the next element

I Logical page numbers are compared in this chain searching for a
match.

• If a match is found, the corresponding physical frame is extracted.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 42 / 50

Hashed Page Table Architecture

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 43 / 50

Inverted Page Tables

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 44 / 50

Inverted Page Table (1/2)

I Rather than each process having a page table and keeping track of
all possible logical pages, track all physical pages.

I One entry for each real page of memory.

I Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns
that page.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 45 / 50

Inverted Page Table (1/2)

I Rather than each process having a page table and keeping track of
all possible logical pages, track all physical pages.

I One entry for each real page of memory.

I Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns
that page.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 45 / 50

Inverted Page Table (1/2)

I Rather than each process having a page table and keeping track of
all possible logical pages, track all physical pages.

I One entry for each real page of memory.

I Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns
that page.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 45 / 50

Inverted Page Table (2/2)

I Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs.

I Use hash table to limit the search to one, or at most a few,
page-table entries.

I But how to implement shared memory?
• One mapping of a virtual address to the shared physical address

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 46 / 50

Inverted Page Table (2/2)

I Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs.

I Use hash table to limit the search to one, or at most a few,
page-table entries.

I But how to implement shared memory?
• One mapping of a virtual address to the shared physical address

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 46 / 50

Inverted Page Table (2/2)

I Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs.

I Use hash table to limit the search to one, or at most a few,
page-table entries.

I But how to implement shared memory?
• One mapping of a virtual address to the shared physical address

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 46 / 50

Inverted Page Table Architecture

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 47 / 50

Summary

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 48 / 50

Summary

I Paging vs. Segmentation

I Physical memory: frames, Logical memory: pages

I Page table: translates logical to physical addresses

I Translation Look-aside Buffer (TLB)

I Memory protection: valid-invalid bit

I Page table structure: hierarchical paging, hashed page tables, in-
verted page tables

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 49 / 50

Summary

I Paging vs. Segmentation

I Physical memory: frames, Logical memory: pages

I Page table: translates logical to physical addresses

I Translation Look-aside Buffer (TLB)

I Memory protection: valid-invalid bit

I Page table structure: hierarchical paging, hashed page tables, in-
verted page tables

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 49 / 50

Summary

I Paging vs. Segmentation

I Physical memory: frames, Logical memory: pages

I Page table: translates logical to physical addresses

I Translation Look-aside Buffer (TLB)

I Memory protection: valid-invalid bit

I Page table structure: hierarchical paging, hashed page tables, in-
verted page tables

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 49 / 50

Summary

I Paging vs. Segmentation

I Physical memory: frames, Logical memory: pages

I Page table: translates logical to physical addresses

I Translation Look-aside Buffer (TLB)

I Memory protection: valid-invalid bit

I Page table structure: hierarchical paging, hashed page tables, in-
verted page tables

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 49 / 50

Summary

I Paging vs. Segmentation

I Physical memory: frames, Logical memory: pages

I Page table: translates logical to physical addresses

I Translation Look-aside Buffer (TLB)

I Memory protection: valid-invalid bit

I Page table structure: hierarchical paging, hashed page tables, in-
verted page tables

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 49 / 50

Summary

I Paging vs. Segmentation

I Physical memory: frames, Logical memory: pages

I Page table: translates logical to physical addresses

I Translation Look-aside Buffer (TLB)

I Memory protection: valid-invalid bit

I Page table structure: hierarchical paging, hashed page tables, in-
verted page tables

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 49 / 50

Questions?

Acknowledgements

Some slides were derived from Avi Silberschatz slides.

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 50 / 50

