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Reminder
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Reminder (1/3)

I External fragmentation vs. internal fragmentation

I Compaction: shuffle memory contents to place all free memory
together in one large block.

I Other solutions:
• Segmentation
• Paging
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Reminder (2/3)
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Reminder (3/3)
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Paging
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Paging vs. Segmentation

I Segmentation and paging, both, permit the physical address space
of a process to be noncontiguous.

I Paging avoids external fragmentation and the need for compaction,
whereas segmentation does not.
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Paging (1/2)

I Physical address space of a process can be noncontiguous; process
is allocated physical memory whenever the latter is available.

• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

I Divide physical memory into fixed-sized blocks called frames.
• Size is power of 2, between 512 bytes and 16 Mbytes.

I Divide logical memory into blocks of same size called pages.
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Paging (2/2)

I Keep track of all free frames.

I To run a program of size N pages, need to find N free frames and
load program.

I Set up a page table to translate logical to physical addresses.

I Still have internal fragmentation.
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Address Translation Scheme

I Address generated by CPU (logical address) is divided into two
parts:

I Page number (p): used as an index into a page table that contains
base address of each page in physical memory.

I Page offset (d): combined with base address to define the physical
memory address that is sent to the memory unit.

I For given logical address space 2m and page size 2n.
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Paging Hardware
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Paging Model of Logical and Physical Memory
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Paging Example

I n = 2 and m = 4, 32-byte memory and 4-byte pages
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Free Frames

before allocation after allocation
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Paging Example - Internal Fragmentation

I Page size = 2048 bytes

I Process size = 72766 bytes

I 72766
2048 = 35 pages + 1086 bytes

I Internal fragmentation: 2048 - 1086 = 962 bytes

I Worst case fragmentation = 1 frame - 1 byte

I On average fragmentation = 1
2 frame size
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Small Page Size vs. Big Page Size

I On average fragmentation = 1
2 page size, hence, small page sizes

are desirable.

I Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

I Disk I/O is more efficient when the amount data being transferred
is larger (e.g., big pages).

I Pages typically are between 4 KB and 8 KB in size.

getconf PAGESIZE

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 16 / 50



Small Page Size vs. Big Page Size

I On average fragmentation = 1
2 page size, hence, small page sizes

are desirable.

I Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

I Disk I/O is more efficient when the amount data being transferred
is larger (e.g., big pages).

I Pages typically are between 4 KB and 8 KB in size.

getconf PAGESIZE

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 16 / 50



Small Page Size vs. Big Page Size

I On average fragmentation = 1
2 page size, hence, small page sizes

are desirable.

I Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

I Disk I/O is more efficient when the amount data being transferred
is larger (e.g., big pages).

I Pages typically are between 4 KB and 8 KB in size.

getconf PAGESIZE

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 16 / 50



Small Page Size vs. Big Page Size

I On average fragmentation = 1
2 page size, hence, small page sizes

are desirable.

I Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

I Disk I/O is more efficient when the amount data being transferred
is larger (e.g., big pages).

I Pages typically are between 4 KB and 8 KB in size.

getconf PAGESIZE

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 16 / 50



Page Table Implementation
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Page Table

I Page table is kept in main memory.

I Page-table base register (PTBR) points to the page table.

I Page-table length register (PTLR) indicates size of the page table.

I In this scheme every data/instruction access requires two memory
accesses.

• One for the page table and one for the data/instruction.
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Translation Look-aside Buffers (TLB)

I The two memory access problem can be solved by the use of a
special fast-lookup hardware cache called associative memory or
translation look-aside buffers (TLBs).

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 19 / 50



Associative Memory

I Associative memory: parallel search

I Address translation (p, d)
• If p is in associative register, get frame# out
• Otherwise, get frame# from page table in memory
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Paging Hardware With TLB
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Effective Access Time

I Hit ratio: percentage of times that a page number is found in the
TLB.

I Effective Access Time (EAT)
• α: memory access latency
• h: hit ratio
• EAT = h × α + (1− h)× 2α

I h = 80%, α = 100ns ⇒ EAT = 0.80× 100 + 0.20× 200 = 120ns

I h = 99%, α = 100ns ⇒ EAT = 0.99× 100 + 0.01× 200 = 101ns
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More About TLB

I Some TLBs store address-space identifiers (ASIDs) in each TLB
entry

• Uniquely identifies each process to provide address-space protection
for that process.

• Otherwise, need to flush at every context switch.

I TLBs typically small (64 to 1,024 entries)

I On a TLB miss, value is loaded into the TLB for faster access next
time.

• Replacement policies must be considered.
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Memory Protection
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Memory Protection

I Memory protection implemented by associating protection bit with
each frame to indicate if read-only or read-write access is allowed.

I Valid-invalid bit attached to each entry in the page table:
• Valid indicates that the associated page is in the process logical

address space, and is thus a legal page.
• Invalid indicates that the page is not in the process logical address

space.

• Or use page-table length register (PTLR).

I Any violations result in a trap to the kernel.
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Valid/Invalid Bit In A Page Table
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Shared Pages

Amir H. Payberah (Tehran Polytechnic) Main Memory 1393/8/17 27 / 50



Shared Pages

I Shared code
• One copy of read-only (reentrant) code shared among processes

(e.g., text editors).
• Similar to multiple threads sharing the same process space.

I Private code and data
• Each process keeps a separate copy of the code and data.
• The pages for the private code and data can appear anywhere in

the logical address space.
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Shared Pages Example
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Structure of the Page Table
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Structure of the Page Table (1/2)

I Memory structures for paging can get huge using straight-forward
methods.

I Consider a 32-bit logical address space as on modern computers:

• Page size of 4KB = 212.
• Page table would have 1 million entries ( 232

212 ).
• If each entry is 4B: 4MB of physical address space memory for

page table alone.
• That amount of memory used to cost a lot.
• Don’t want to allocate that contiguously in main memory.
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Structure of the Page Table (2/2)

I Hierarchical Paging

I Hashed Page Tables

I Inverted Page Tables
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Hierarchical Paging
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Hierarchical Page Tables

I Break up the logical address space into multiple page tables.

I A simple technique is a two-level page table.

I We then page the page table.
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Two-Level Page-Table Scheme
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Two-Level Paging Example

I A logical address, on 32-bit machine with 1K page size, is divided:

• A page number consisting of 22 bits.
• A page offset consisting of 10 bits.

I Since the page table is paged, the page number is divided into:
• A 12-bit page number.
• A 10-bit page offset.

I Thus, a logical address is:

I where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table.

I Known as forward-mapped page table.
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Address-Translation Scheme
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64-bit Logical Address Space

I Even two-level paging scheme not sufficient.

I If page size is 4KB (212)

• Then page table has 252 entries
• If two level scheme, inner page tables could be 210, 4B entries
• Outer page table has 242 entries or 244B
• Address would look like:
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Three-level Paging Scheme

I One solution is to add a 2nd outer page table.

I But in the following example the 2nd outer page table is still 234

bytes in size.

I And possibly 4 memory access to get to one physical memory
location.
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Hashed Page Tables
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Hashed Page Tables (1/2)

I Common in address spaces > 32 bits

I The logical page number is hashed into a page table.

I This page table contains a chain of elements hashing to the same
location.
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Hashed Page Tables (2/2)

I Each element contains
1 The logical page number
2 The value of the mapped page frame
3 A pointer to the next element

I Logical page numbers are compared in this chain searching for a
match.

• If a match is found, the corresponding physical frame is extracted.
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Hashed Page Table Architecture
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Inverted Page Tables
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Inverted Page Table (1/2)

I Rather than each process having a page table and keeping track of
all possible logical pages, track all physical pages.

I One entry for each real page of memory.

I Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns
that page.
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Inverted Page Table (2/2)

I Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs.

I Use hash table to limit the search to one, or at most a few,
page-table entries.

I But how to implement shared memory?
• One mapping of a virtual address to the shared physical address
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Inverted Page Table Architecture
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Summary
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Summary

I Paging vs. Segmentation

I Physical memory: frames, Logical memory: pages

I Page table: translates logical to physical addresses

I Translation Look-aside Buffer (TLB)

I Memory protection: valid-invalid bit

I Page table structure: hierarchical paging, hashed page tables, in-
verted page tables
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Questions?
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