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Reminder
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Reminder (1/3)

» External fragmentation vs. internal fragmentation

» Compaction: shuffle memory contents to place all free memory
together in one large block.

» Other solutions:

e Segmentation
¢ Paging
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Reminder (2/3)
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» Segmentation and paging, both, permit the physical address space
of a process to be noncontiguous.



INNSS———
Paging vs. Segmentation

» Segmentation and paging, both, permit the physical address space
of a process to be noncontiguous.

» Paging avoids external fragmentation and the need for compaction,
whereas segmentation does not.
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Paging (1/2)

» Physical address space of a process can be noncontiguous; process
is allocated physical memory whenever the latter is available.

¢ Avoids external fragmentation
¢ Avoids problem of varying sized memory chunks

» Divide physical memory into fixed-sized blocks called frames.
e Size is power of 2, between 512 bytes and 16 Mbytes.

» Divide logical memory into blocks of same size called pages.
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» Keep track of all free frames.
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» Keep track of all free frames.

» To run a program of size N pages, need to find N free frames and
load program.

» Set up a page table to translate logical to physical addresses.
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Paging (2/2)

v

Keep track of all free frames.

v

To run a program of size N pages, need to find N free frames and
load program.

» Set up a page table to translate logical to physical addresses.

v

Still have internal fragmentation.
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parts:
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» Address generated by CPU (logical address) is divided into two
parts:

» Page number (p): used as an index into a page table that contains
base address of each page in physical memory.
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Address Translation Scheme

» Address generated by CPU (logical address) is divided into two
parts:

» Page number (p): used as an index into a page table that contains
base address of each page in physical memory.

» Page offset (d): combined with base address to define the physical
memory address that is sent to the memory unit.

page number ‘ page offset
| r | : |
m-n n
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R
Address Translation Scheme

» Address generated by CPU (logical address) is divided into two
parts:

» Page number (p): used as an index into a page table that contains
base address of each page in physical memory.

» Page offset (d): combined with base address to define the physical
memory address that is sent to the memory unit.

page number ‘ page offset
| r | : |
m-n n

» For given logical address space 2" and page size 2".
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Paging Model of Logical and Physical Memory
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Paging Example

logical memory

» n=2 and m = 4, 32-byte memory and 4-byte pages

physical memory



Free Frames

free-frame list
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» Page size = 2048 bytes
» Process size = 72766 bytes

, 722074686 = 35 pages + 1086 bytes
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Paging Example - Internal Fragmentation

v

Page size = 2048 bytes

v

Process size = 72766 bytes

v

722074686 = 35 pages + 1086 bytes

v

Internal fragmentation: 2048 - 1086 = 962 bytes
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Paging Example - Internal Fragmentation

v

Page size = 2048 bytes

v

Process size = 72766 bytes

v

722074686 = 35 pages + 1086 bytes

v

Internal fragmentation: 2048 - 1086 = 962 bytes

v

Worst case fragmentation = 1 frame - 1 byte

v

On average fragmentation = % frame size
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» On average fragmentation = % page size, hence, small page sizes
are desirable.

» Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

» Disk I/O is more efficient when the amount data being transferred
is larger (e.g., big pages).
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Small Page Size vs. Big Page Size

» On average fragmentation = % page size, hence, small page sizes
are desirable.

» Small pages, more overhead is in the page-table, this overhead is
reduced as the size of the pages increases.

» Disk I/O is more efficient when the amount data being transferred
is larger (e.g., big pages).

» Pages typically are between 4 KB and 8 KB in size.

getconf PAGESIZE
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Page Table
» Page table is kept in main memory.
» Page-table base register (PTBR) points to the page table.

» Page-table length register (PTLR) indicates size of the page table.
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Page Table

v

Page table is kept in main memory.

v

Page-table base register (PTBR) points to the page table.

v

Page-table length register (PTLR) indicates size of the page table.

v

In this scheme every data/instruction access requires two memory
accesses.



BN
Page Table

v

Page table is kept in main memory.

v

Page-table base register (PTBR) points to the page table.

v

Page-table length register (PTLR) indicates size of the page table.

v

In this scheme every data/instruction access requires two memory
accesses.

» One for the page table and one for the data/instruction.



I
Translation Look-aside Buffers (TLB)

» The two memory access problem can be solved by the use of a
special fast-lookup hardware cache called associative memory or
translation look-aside buffers (TLBs).



Associative Memory

» Associative memory: parallel search

Page #

Frame #

» Address translation (p, d)

e If pis in associative register, get frame# out
e Otherwise, get frame# from page table in memory



Paging Hardware With TLB
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o
Effective Access Time

» Hit ratio: percentage of times that a page number is found in the
TLB.

» Effective Access Time (EAT)
* «a: memory access latency
e h: hit ratio
o EAT =hxa+(1-h)x 2«

v

h =80%,« = 100ns = EAT = 0.80 x 100 + 0.20 x 200 = 120ns

v

h =99%, a = 100ns = EAT = 0.99 x 100 + 0.01 x 200 = 101ns
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More About TLB

» Some TLBs store address-space identifiers (ASIDs) in each TLB
entry
e Uniquely identifies each process to provide address-space protection
for that process.
e Otherwise, need to flush at every context switch.
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o
More About TLB

» Some TLBs store address-space identifiers (ASIDs) in each TLB
entry
e Uniquely identifies each process to provide address-space protection
for that process.
e Otherwise, need to flush at every context switch.

» TLBs typically small (64 to 1,024 entries)

» On a TLB miss, value is loaded into the TLB for faster access next
time.
¢ Replacement policies must be considered.
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» Memory protection implemented by associating protection bit with
each frame to indicate if read-only or read-write access is allowed.
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Memory Protection

» Memory protection implemented by associating protection bit with
each frame to indicate if read-only or read-write access is allowed.

» Valid-invalid bit attached to each entry in the page table:

e Valid indicates that the associated page is in the process logical
address space, and is thus a legal page.

e |nvalid indicates that the page is not in the process logical address
space.
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Memory Protection

» Memory protection implemented by associating protection bit with
each frame to indicate if read-only or read-write access is allowed.

» Valid-invalid bit attached to each entry in the page table:
» Valid indicates that the associated page is in the process logical
address space, and is thus a legal page.
e Invalid indicates that the page is not in the process logical address
space.
» Or use page-table length register (PTLR).

~ Amir H. Payberah (Tehran Polytechnicy ~~ Main Memory 1303/8/17 25/ 50



-
Memory Protection

» Memory protection implemented by associating protection bit with
each frame to indicate if read-only or read-write access is allowed.

» Valid-invalid bit attached to each entry in the page table:

» Valid indicates that the associated page is in the process logical
address space, and is thus a legal page.

e Invalid indicates that the page is not in the process logical address
space.

» Or use page-table length register (PTLR).

» Any violations result in a trap to the kernel.
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Valid/Invalid Bit In A Page Table
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* One copy of read-only (reentrant) code shared among processes
(e.g., text editors).
e Similar to multiple threads sharing the same process space.



INNSS———
Shared Pages

» Shared code
* One copy of read-only (reentrant) code shared among processes
(e.g., text editors).
e Similar to multiple threads sharing the same process space.

» Private code and data
e Each process keeps a separate copy of the code and data.
e The pages for the private code and data can appear anywhere in
the logical address space.



Shared Pages Example
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» Memory structures for paging can get huge using straight-forward
methods.

» Consider a 32-bit logical address space as on modern computers:
o Page size of 4KB = 212
32
+ Page table would have 1 million entries (35 ).
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BN
Structure of the Page Table (1/2)

» Memory structures for paging can get huge using straight-forward
methods.

» Consider a 32-bit logical address space as on modern computers:
o Page size of 4KB = 212
» Page table would have 1 million entries (%31;)
e |If each entry is 4B: 4MB of physical address space memory for
page table alone.
e That amount of memory used to cost a lot.
¢ Don't want to allocate that contiguously in main memory.
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Structure of the Page Table (2/2)

» Hierarchical Paging
» Hashed Page Tables

» Inverted Page Tables



Hierarchical Paging
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Hierarchical Page Tables

» Break up the logical address space into multiple page tables.
» A simple technique is a two-level page table.

» We then page the page table.



Two-Level Page-Table Scheme
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Two-Level Paging Example

> A logical address, on 32-bit machine with 1K page size, is divided:

e A page number consisting of 22 bits.
e A page offset consisting of 10 bits.

» Since the page table is paged, the page number is divided into:

e A 12-bit page number.
e A 10-bit page offset.
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Two-Level Paging Example

> A logical address, on 32-bit machine with 1K page size, is divided:

e A page number consisting of 22 bits.
e A page offset consisting of 10 bits.

» Since the page table is paged, the page number is divided into:

e A 12-bit page number.
e A 10-bit page offset.

» Thus, a logical address is:
page number page offset

Colo] e
12 10 10

» where p; is an index into the outer page table, and p, is the
displacement within the page of the inner page table.
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Two-Level Paging Example

> A logical address, on 32-bit machine with 1K page size, is divided:

e A page number consisting of 22 bits.
e A page offset consisting of 10 bits.

» Since the page table is paged, the page number is divided into:

e A 12-bit page number.
e A 10-bit page offset.

» Thus, a logical address is:
page number page offset

Colo] e
12 10 10

» where p; is an index into the outer page table, and p, is the
displacement within the page of the inner page table.

» Known as forward-mapped page table.
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Address-Translation Scheme
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INNSS———
64-bit Logical Address Space

» Even two-level paging scheme not sufficient.

> If page size is 4KB (2'2)
+ Then page table has 2°2 entries
e If two level scheme, inner page tables could be 210 4B entries
« Outer page table has 2% entries or 244B
* Address would look like:

outer page | inner page | offset
‘ P1 | P2 d
42 10 12
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bytes in size.
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Three-level Paging Scheme

» One solution is to add a 2nd outer page table.

» But in the following example the 2nd outer page table is still 234

bytes in size.

» And possibly 4 memory access to get to one physical memory

location.
outer page | inner page | offset

| P1 | P2 | d ‘

42 10 12
2nd outer page ) outer page | inner page ) offset

| P ‘ P2 | P3 ‘ d |

32 10 10 12
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Hashed Page Tables



I,
Hashed Page Tables (1/2)

» Common in address spaces > 32 bits
» The logical page number is hashed into a page table.

» This page table contains a chain of elements hashing to the same
location.
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Hashed Page Tables (2/2)

» Each element contains
@ The logical page number
@ The value of the mapped page frame
@ A pointer to the next element



I,
Hashed Page Tables (2/2)

» Each element contains

@ The logical page number
@ The value of the mapped page frame
@ A pointer to the next element

» Logical page numbers are compared in this chain searching for a
match.

e If a match is found, the corresponding physical frame is extracted.



Hashed Page Table Architecture

physical
logical address address

()

physical
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» Rather than each process having a page table and keeping track of
all possible logical pages, track all physical pages.
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» Rather than each process having a page table and keeping track of
all possible logical pages, track all physical pages.

» One entry for each real page of memory.
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Inverted Page Table (1/2)

» Rather than each process having a page table and keeping track of
all possible logical pages, track all physical pages.

» One entry for each real page of memory.

» Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns
that page.
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» Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs.
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» Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs.

» Use hash table to limit the search to one, or at most a few,
page-table entries.
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Inverted Page Table (2/2)

» Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs.

» Use hash table to limit the search to one, or at most a few,
page-table entries.

» But how to implement shared memory?
e One mapping of a virtual address to the shared physical address



Inverted Page Table Architecture

logical
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» Page table: translates logical to physical addresses



INNSS———
Summary

v

Paging vs. Segmentation

v

Physical memory: frames, Logical memory: pages

v

Page table: translates logical to physical addresses

v

Translation Look-aside Buffer (TLB)



INNSS———
Summary

v

Paging vs. Segmentation

v

Physical memory: frames, Logical memory: pages

v

Page table: translates logical to physical addresses

v

Translation Look-aside Buffer (TLB)

v

Memory protection: valid-invalid bit



L
Summary

» Paging vs. Segmentation

» Physical memory: frames, Logical memory: pages
» Page table: translates logical to physical addresses
» Translation Look-aside Buffer (TLB)

» Memory protection: valid-invalid bit

» Page table structure: hierarchical paging, hashed page tables, in-
verted page tables



Questions?

Some slides were derived from Avi Silberschatz slides. '




