Processes (Part I)

Amir H. Payberah

amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

AMIRKABIR UNIVERSITY
OF TECHNOLOGY

What Is A Process?

An instance of a program running. l

BN
Program vs. Process

» Program is a passive entity stored on disk (executable file).

BN
Program vs. Process

» Program is a passive entity stored on disk (executable file).

» Process is an active entity.

BN
Program vs. Process

» Program is a passive entity stored on disk (executable file).
» Process is an active entity.

» Program becomes process when executable file loaded into memory.

BN
Program vs. Process

v

Program is a passive entity stored on disk (executable file).

v

Process is an active entity.

\{

Program becomes process when executable file loaded into memory.

v

One program can be several processes.

L
Parts of a Process

» A process is more than the program code. a

L
Parts of a Process

» A process is more than the program code. a

» Multiple parts of a process:

» The program code (text section).

L
Parts of a Process

» A process is more than the program code. a

» Multiple parts of a process:

» The program code (text section).

e Current activity, e.g., program counter,
processor registers.

Parts of a Process

» A process is more than the program code.

max

» Multiple parts of a process:

» The program code (text section).

e Current activity, e.g., program counter,
processor registers.

¢ Data section containing global variables.

Parts of a Process

» A process is more than the program code.

max

» Multiple parts of a process:

» The program code (text section).

e Current activity, e.g., program counter,
processor registers.

¢ Data section containing global variables.

e Stack containing temporary data.

L
Parts of a Process

» A process is more than the program code. a

» Multiple parts of a process:

The program code (text section).

Current activity, e.g., program counter,
processor registers.

Data section containing global variables.

Stack containing temporary data.

Heap containing memory dynamically 0
allocated during run time.

Process Control Block (PCB)

» The information of each process.

Amir H. Payberah (Tehran Polytechnic)

process state

process number

program counter

registers

memory limits

list of open files

Processes

1393/6/31

6 /56

Process Control Block (PCB)

» The information of each process.

process state

process number

program counter

registers

memory limits

list of open files

» Process state: running, waiting, etc

Amir H. Payberah (Tehran Polytechnic)

Processes

1393/6/31

6 /56

Process Control Block (PCB)

» The information of each process.

process state

process number

program counter

registers

memory limits

list of open files

» Program counter: location of instruction to next execute

Amir H. Payberah (Tehran Polytechnic)

Processes

1393/6/31

6 /56

Process Control Block (PCB)

» The information of each process.

» CPU registers: contents of all process-centric registers

Amir H. Payberah (Tehran Polytechnic)

process state

process number

program counter

registers

memory limits

list of open files

Processes

1393/6/31

6 /56

Process Control Block (PCB)

» The information of each process.

» CPU scheduling: priorities, scheduling queue pointers

Amir H. Payberah (Tehran Polytechnic)

process state

process number

program counter

registers

memory limits

list of open files

Processes

1393/6/31

6 /56

Process Control Block (PCB)

» The information of each process.

» Memory-management: memory allocated to the process

Amir H. Payberah (Tehran Polytechnic)

process state

process number

program counter

registers

memory limits

list of open files

Processes

1393/6/31

6 /56

Process Control Block (PCB)

» The information of each process.

» Accounting: CPU used, clock time elapsed since start, time limits

Amir H. Payberah (Tehran Polytechnic)

process state

process number

program counter

registers

memory limits

list of open files

Processes

1393/6/31

6 /56

Process Control Block (PCB)

» The information of each process.

process state

process number

program counter

registers

memory limits

list of open files

» |/O status: 1/O devices allocated to

Amir H. Payberah (Tehran Polytechnic)

Processes

process, list of open files

1393/6/31

6 /56

Process States

» As a process executes, it changes state.

terminated

scheduler dispatch

1/0 or event completion 1/0 or event wait

waiting

Process States

» As a process executes, it changes state.

terminated

scheduler dispatch

1/0 or event completion 1/0 or event wait

waiting

» new: The process is being created.

Process States

» As a process executes, it changes state.

admitted

interrupt

terminated

1/0 or event completion

scheduler dispatch

I/0 or event wait
waiting

» new: The process is being created.

» ready: The process is waiting to be assigned to a processor.

Process States

» As a process executes, it changes state.

admitted

interrupt

terminated

1/0 or event completion

scheduler dispatch

I/0 or event wait
waiting

» new: The process is being created.

» ready: The process is waiting to be assigned to a processor.
» running: Instructions are being executed.

Process States

» As a process executes, it changes state.

admitted interrupt

terminated

1/0 or event completion scheduler dispaich

I/0 or event wait

new: The process is being created.

ready: The process is waiting to be assigned to a processor.
running: Instructions are being executed.

waiting: The process is waiting for some event to occur.

1393/6/31

7/ 56

N —
Process States

» As a process executes, it changes state.

admitted interrupt

terminated

1/0 or event completion scheduler dispatch 1/0 or event wait

» new: The process is being created.
ready: The process is waiting to be assigned to a processor.
» running: Instructions are being executed.

waiting: The process is waiting for some event to occur.

» terminated: The process has finished execution.

© Amir H. Payberah (Tehran Polytechnic) Processes e 75

R
Threads

» A process can have a single thread or multiple threads.

» Multi-thread process

e Multiple program counters in a PCB: multiple locations can execute

at once.

‘ code H data H files ‘

‘ code H data H files ‘

‘ registers ‘ ‘ stack ‘

registers

registers

registers

thread —> ;

stack

stack

stack

:

:

;_

single-threaded process

multithreaded process

T thread

1393/6/31

8 /56

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 9 /56

I
Process Data Structure in Linux Kernel (1/2)

» Represented by task_struct in the Linux kernel.
e in the <linux/sched.h>

I
Process Data Structure in Linux Kernel (2/2)

» All active processes are represented using a doubly linked list of
task_struct.

struct task_struct struct task_struct struct task_struct
process information process information process information
. . .

.
. . .

B,
Process ID (1/2)

» Each process is assigned a unique identifier, the process ID (PID).

B,
Process ID (1/2)

» Each process is assigned a unique identifier, the process ID (PID).

» The kernel allocates PIDs to processes in a strictly linear fashion.

NESSSS——
Process ID (1/2)
» Each process is assigned a unique identifier, the process ID (PID).
» The kernel allocates PIDs to processes in a strictly linear fashion.

» The maximum PID value of 32768.

BN
Process ID (1/2)

» Each process is assigned a unique identifier, the process ID (PID).
» The kernel allocates PIDs to processes in a strictly linear fashion.

» The maximum PID value of 32768.
cat /proc/sys/kernel/pid_max

» The first process that the kernel executes after booting the system,
is init process, with the PID 1.

B,
Process ID (2/2)

» The PID is represented by the pid_t type.

B,
Process ID (2/2)

» The PID is represented by the pid_t type.

» The getpid () system call returns the PID of the invoking process.

B,
Process ID (2/2)

» The PID is represented by the pid_t type.

» The getpid () system call returns the PID of the invoking process.

» Defined in <sys/types.h>

Process Scheduling

INNSS———
Process Scheduling

» The multiprogramming objective: to maximize CPU utilization.

INNSS———
Process Scheduling

» The multiprogramming objective: to maximize CPU utilization.

» The timesharing objective: to switch the CPU among processes
so frequently that users can interact with each program while it is
running.

-
Process Scheduling

» The multiprogramming objective: to maximize CPU utilization.

» The timesharing objective: to switch the CPU among processes
so frequently that users can interact with each program while it is
running.

» To meet these objectives: the process scheduler selects an available
process for program execution on the CPU.

o If there are more processes, the rest will have to wait until the CPU
is free and can be rescheduled.

© Amir H. Payberah (Tehran Polytechnic) Processes sene/s 15 5

BN
Scheduling Queues (1/2)

» Job queue: set of all processes in the system.

|
Scheduling Queues (1/2)

» Job queue: set of all processes in the system.

» Ready queue: set of all processes residing in main memory, ready
and waiting to execute.

ready
queue

PCB,

registers

queue header PCB;
head
- \\\\\\\\\\\‘-5§jiifiifi__——‘._.,.—~r/'

1393/6/31

16 / 56

|
Scheduling Queues (1/2)

» Job queue: set of all processes in the system.

» Ready queue: set of all processes residing in main memory, ready
and waiting to execute.

e This queue is generally stored as a linked list.
e Pointers to the first and final PCBs in the list.

e Each PCB points to the next PCB in the ready queue.

ready
queue

queue header PCB; PCB,
head —=
- \\regist_ers/ e
1393/6/31

16 / 56

|
Scheduling Queues (2/2)

» Device queues: set of processes waiting for an |/O device.
e Each device has its own device queue.

mag

o9 head +—e
unito [__tail =

mag [head 1

tape “ N PCB; PCB,, PCB,
unit 1 =

+—> ~+—> -—

disk head

unit 0 tail

PCB,

terminall head -'-|;: =

unit 0 | tail

 Amir H. Payberah (Tehran Polytechnicy =~ Processes 1393/6/31

17 / 56

|
Scheduling Queues (2/2)

» Device queues: set of processes waiting for an |/O device.
e Each device has its own device queue.

mag
o9 head +—e
unito [__tail =
mag [head 1
tape = PCB, PCB,, PCB,
unit1 @il =
+—> > -
disk head
unit 0 tail
PCB,
terminall head ‘|_' =

unit 0 | tail -|/

.

» Processes migrate among the various queues.

 Amir H. Payberah (Tehran Polytechnicy =~ Processes 1393/6/31

17 / 56

Queuing Diagram (1/2)

» A new process is initially put in the ready queue.

» |t waits there until it is selected for execution or dispatched.

: ready queue CPU
/0 queue H 1/O request F

time slice
expired

child forl_(a
executes child
interrupt wait for an

oceurs interrupt

—T1

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31

18 / 56

Queuing Diagram (2/2)

» After allocating the CPU to a process:

: ready queue CPU
170 queue H 1/O request %

time slice
expired

child forl_(a
executes child
interrupt wait for an

oceurs interrupt

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31

f—

19 / 56

Queuing Diagram (2/2)

» After allocating the CPU to a process:

e The process could issue an |/O request and be placed in an /0O
queue.

: ready queue CPU
170 queue H 1/O request %

time slice
expired

child forl_(a
executes child
interrupt wait for an

oceurs interrupt

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 19 / 56

f—

Queuing Diagram (2/2)

» After allocating the CPU to a process:

e The process could issue an |/O request and be placed in an /0O
queue.

e The process could create a new child process and wait for the
child’s termination.

: ready queue CPU
170 queue H 1/O request %

time slice
expired

child forl_(a
executes child
interrupt wait for an

oceurs interrupt

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 19 / 56

f—

N
Queuing Diagram (2/2)

» After allocating the CPU to a process:

e The process could issue an |/O request and
queue.

e The process could create a new child process and wait for the

child’s termination.
e The process could be removed forcibly from

be placed in an I/O

the CPU, as a result of

an interrupt, and be put back in the ready queue.

: ready queue CPU

time slice
expired

child fork a
executes child
interrupt wait for an

oceurs interrupt

 Amir H. Payberah (Tehran Polytechnic) Processes

170 queue H 1/0 request %

fe——

—

BN
Schedulers (1/3)

» Short-term scheduler (CPU scheduler)

e Selects which process should be executed next and allocates CPU.
¢ Invoked frequently (milliseconds): must be fast

BN
Schedulers (2/3)

» Long-term scheduler (job scheduler)
o Selects which processes should be brought into the ready queue.
e Controls the degree of multiprogramming.
* Invoked infrequently (seconds, minutes): may be slow.

L
Schedulers (2/3)

» Long-term scheduler (job scheduler)

o Selects which processes should be brought into the ready queue.
e Controls the degree of multiprogramming.
* Invoked infrequently (seconds, minutes): may be slow.

» It strives for good mix of |/O-bound and CPU-bound processes.

» |/O-bound process: more time doing |/O than computations.
e CPU-bound process: more time doing computations.

Schedulers (3/3)

» Medium-term scheduler

It can be added if degree of multiprogramming needs to decrease.
e Remove process from memory, store on disk, bring back in from
disk to continue execution: swapping

swap in

partially executed

swap out

swapped-out processes

Amir H. Payberah (Tehran Polytechnic)

Treavanee (e F——

ready queue QU/I_ end

1/0 waiting
queues

Processes

1393/6/31 22 / 56

Context Switching (1/2)

» When CPU switches to another process:

process P,

executing

idle

executing]

operating system process Py

interrupt or system call

interrupt or system call

idle

executing

idle

Context Switching (1/2)

» When CPU switches to another process:

e The state of the old process is saved by the system.

process P,

executing

idle

executing] [

operating system

interrupt or system call

save state into PCB,
.
.
.

reload state from PCB,

interrupt or system call

save state into PCB,
.

.
.

reload state from PCB,

process Py

idle

executing

idle

N
Context Switching (1/2)

» When CPU switches to another process:

e The state of the old process is saved by the system.
e The saved state of the new process is loaded via a context switch.

process P, operating system process Py

interrupt or system call

17 save state into PCB,

executing

. B
. idle
.
reload state from PCB;
idle interrupt or system call executing

save state into PCB,

.
N idle
.

reload state from PCB,
executing] [

© Amir H. Payberah (Tehran Polytechnic) Processes e 35

N
Context Switching (1/2)

» When CPU switches to another process:

e The state of the old process is saved by the system.
e The saved state of the new process is loaded via a context switch.
e Called context switching.

process P, operating system process Py

interrupt or system call

17 save state into PCB,

executing

. B
. idle
.
reload state from PCB;
idle interrupt or system call executing

save state into PCB,

.
N idle
.

reload state from PCB,
executing] [

© Amir H. Payberah (Tehran Polytechnic) Processes e 35

N
Context Switching (1/2)

» When CPU switches to another process:

e The state of the old process is saved by the system.
e The saved state of the new process is loaded via a context switch.
e Called context switching.

process P, operating system process Py

interrupt or system call

executing
17 save state into PCB,
.
.
.
reload state from PCB;

idle interrupt or system call executing

.
.
.
reload state from PCB,
executing] [

» Context of a process represented in the PCB.

© Amir H. Payberah (Tehran Polytechnic) Processes e 35

idle

idle

.
Context Switching (2/2)

» Context-switch time is an overhead.

e The system does no useful work while switching.
e The more complex the OS and PCB — the longer the context
switch.

.
Context Switching (2/2)

» Context-switch time is an overhead.

e The system does no useful work while switching.
e The more complex the OS and PCB — the longer the context
switch.

» Time dependent on hardware support.

e Some hardware provides multiple sets of registers per CPU —
multiple contexts loaded at once.

Operations on Processes

INNSS———
Operations on Processes

» OS must provide mechanisms for:

e Process creation
e Process termination

Process Creation

L
Process Creation

> A process may create several new processes.

e The creating process: the parent process.
e The new processes: the children processes.

L
Process Creation

> A process may create several new processes.

e The creating process: the parent process.
e The new processes: the children processes.

» These processes are forming a tree of processes.

Kthreadd
pid - 2
pdflush sshd
pid = 200 pid = 3610

tesch
pid = 4005

ps enacs
pid = 9298 pid = 9204

L
Process Creation

> A process may create several new processes.

e The creating process: the parent process.
e The new processes: the children processes.

» These processes are forming a tree of processes.

pdflush
pid = 200

INNSS———
Parent-Child Resource Sharing Options

» Parent and children share all resources.

INNSS———
Parent-Child Resource Sharing Options

» Parent and children share all resources.

» Children share subset of parent’s resources.

INNSS———
Parent-Child Resource Sharing Options

» Parent and children share all resources.

» Children share subset of parent’s resources.

» Parent and child share no resources.
e The child obtains the required resources directly from the OS.

INNSS———
Parent-Child Execution Options

» The parent continues to execute concurrently with its children.

INNSS———
Parent-Child Execution Options

» The parent continues to execute concurrently with its children.

» The parent waits until some or all of its children have terminated.

INNSS———
Parent-Child Address Space Options

» The child process is a duplicate of the parent process (it has the
same program and data as the parent).

INNSS———
Parent-Child Address Space Options

» The child process is a duplicate of the parent process (it has the
same program and data as the parent).

» The child process has a new program loaded into it.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 32 /56

I
Running a New Process in Linux (1/2)

» Executing a new program (exec())

I
Running a New Process in Linux (1/2)

» Executing a new program (exec())
e A system call loads a binary program into memory.

I
Running a New Process in Linux (1/2)

» Executing a new program (exec())

e A system call loads a binary program into memory.
* Replacing the previous contents of the address space.

I
Running a New Process in Linux (1/2)

» Executing a new program (exec())
e A system call loads a binary program into memory.
* Replacing the previous contents of the address space.
* Begins execution of the new program.

I
Running a New Process in Linux (1/2)

» Executing a new program (exec())

e A system call loads a binary program into memory.
* Replacing the previous contents of the address space.
* Begins execution of the new program.

» Creating a new process (fork())

I
Running a New Process in Linux (1/2)

» Executing a new program (exec())

e A system call loads a binary program into memory.
* Replacing the previous contents of the address space.
* Begins execution of the new program.

» Creating a new process (fork())

e The new process (child) initially is a near-duplicate of its parent
process.

I
Running a New Process in Linux (1/2)

» Executing a new program (exec())
e A system call loads a binary program into memory.
* Replacing the previous contents of the address space.
* Begins execution of the new program.

» Creating a new process (fork())

e The new process (child) initially is a near-duplicate of its parent
process.
e Often, the new process immediately executes a new program.

I
Running a New Process in Linux (2/2)

» Executing a new program in a new process:

@ First, a fork to create a new process,
@ and then an exec to load a new binary into that process.

B,
The Exec Family of Calls (1/3)

» There is no single exec function.

» The simplest of these calls is execl1 ().
e |t replaces the current process image with a new one.

B,
The Exec Family of Calls (2/3)

» Example

-
The Exec Family of Calls (3/3)

» 1 and v: arguments are provided via a list or an array (vector).
» p: the user’s full path is searched.

» e: a new environment is supplied for the new process.

#include <unistd.h>

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg, ..., char * const envp[l);
int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execve(const char *filename, char *const argv[], char *const envp[]);

© Amir H. Payberah (Tehran Polytechnic) Processes TR

N
Creating a New Process (1/4)

» The only way to create a new process.

» The new process (child) running the same image as the current one
(parent).

» Both processes continue to run, if nothing special had happened.

N
Creating a New Process (2/4)

» This fork() function is called once, but it returns twice.

e The PID of the new child — to the parent.
e 0 — to the child.

N
Creating a New Process (2/4)

» This fork() function is called once, but it returns twice.

e The PID of the new child — to the parent.
¢ 0 — to the child.

» The child and the parent process are identical, except for:

N
Creating a New Process (2/4)

» This fork() function is called once, but it returns twice.

e The PID of the new child — to the parent.
¢ 0 — to the child.

» The child and the parent process are identical, except for:
e Their PIDs and their parents’ PID.

N
Creating a New Process (2/4)

» This fork() function is called once, but it returns twice.

e The PID of the new child — to the parent.
¢ 0 — to the child.

» The child and the parent process are identical, except for:

e Their PIDs and their parents’ PID.
* Reset resource statistics at the child.

N
Creating a New Process (2/4)

» This fork() function is called once, but it returns twice.

e The PID of the new child — to the parent.
e 0 — to the child.

» The child and the parent process are identical, except for:
e Their PIDs and their parents’ PID.
¢ Reset resource statistics at the child.
e Clear any pending signals at the child.

N
Creating a New Process (2/4)

» This fork() function is called once, but it returns twice.

e The PID of the new child — to the parent.
e 0 — to the child.

» The child and the parent process are identical, except for:
e Their PIDs and their parents’ PID.
¢ Reset resource statistics at the child.
e Clear any pending signals at the child.
e The acquired file locks are not inherited by the child.

N
Creating a New Process (3/4)

» Example

Creating a New Process (4/4)

» Example

Process Termination

I
Process Termination (1/4)

» Process executes last statement and then asks the OS to delete it
using the exit () system call.

I
Process Termination (1/4)

» Process executes last statement and then asks the OS to delete it
using the exit () system call.

e Returns status data from the child to the parent via wait ().

I
Process Termination (1/4)

» Process executes last statement and then asks the OS to delete it
using the exit () system call.
e Returns status data from the child to the parent via wait ().
e Process resources are deallocated by the OS.

I
Process Termination (2/4)

» A parent may terminate the execution of its children via abort ().

I
Process Termination (2/4)

» A parent may terminate the execution of its children via abort ().

» Some reasons for doing so:

e Child has exceeded allocated resources.

e Task assigned to child is no longer required.

e The parent is exiting and the OS does not allow a child to continue
if its parent terminates.

o
Process Termination (3/4)

» Some OSs do not allow child to exists if its parent has terminated.

» If a process terminates, all its children must also be terminated.
e Cascading termination: all children, grandchildren, etc. are
terminated.
e The termination is initiated by the OS.

o
Process Termination (4/4)

» The parent process may wait for termination of a child via wait ().

o
Process Termination (4/4)

» The parent process may wait for termination of a child via wait ().

» The wait () returns the status information and the PID of the ter-
minated process.

Process Termination (4/4)

» The parent process may wait for termination of a child via wait ().

» The wait () returns the status information and the PID of the ter-
minated process.

» If a process has terminated, but whose parent has not yet called
wait (), the process is a zombie.

L
Process Termination (4/4)

» The parent process may wait for termination of a child via wait ().

» The wait () returns the status information and the PID of the ter-
minated process.

» If a process has terminated, but whose parent has not yet called
wait (), the process is a zombie.

» If the parent terminated without invoking wait (), the process is an
orphan.

e In Linux, the init process becomes the parent of all orphans.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 47 / 56

INNSS———
The exit () System Call

» The exit () performs some basic shutdown steps, then instructs the
kernel to terminate the process.

» The status is used to denote the process's exit status.

I
Waiting for Terminated Child Processes (1/3)

» When a child dies before its parent, the kernel puts the child into
the zombie state.

I
Waiting for Terminated Child Processes (1/3)

» When a child dies before its parent, the kernel puts the child into
the zombie state.

» Some basic kernel data structures containing potentially useful data
is kept for the process.

Waiting for Terminated Child Processes (1/3)

» When a child dies before its parent, the kernel puts the child into
the zombie state.

» Some basic kernel data structures containing potentially useful data
is kept for the process.

» A process in this state waits for its parent to inquire about its status.

Waiting for Terminated Child Processes (1/3)

» When a child dies before its parent, the kernel puts the child into
the zombie state.

» Some basic kernel data structures containing potentially useful data
is kept for the process.

» A process in this state waits for its parent to inquire about its status.

I
Waiting for Terminated Child Processes (2/3)

parent (pid > 0)

parent resumes

parent

child (pid = 0)

Waiting for Terminated Child Processes (3/3)

BN
More on Launching and Waiting for Processes

» waitpid() to wait for a process with a known PID.

» Launching and waiting for a new process

Summary

INNSS———
Summary

» Process vs. Program

INNSS———
Summary

» Process vs. Program

» Process states: new, running, waiting, ready, terminated

INNSS———
Summary

» Process vs. Program
» Process states: new, running, waiting, ready, terminated

» Process Control Block (PCB)

INNSS———
Summary

v

Process vs. Program

v

Process states: new, running, waiting, ready, terminated

\{

Process Control Block (PCB)

v

Process scheduling: scheduling queues, context switching

INNSS———
Summary

v

Process vs. Program

v

Process states: new, running, waiting, ready, terminated

\{

Process Control Block (PCB)

v

Process scheduling: scheduling queues, context switching

v

Process operations: creation (parent-child), termination

Questions?

