
Processes (Part I)

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 1 / 56

What Is A Process?

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 2 / 56

Process

An instance of a program running.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 3 / 56

Program vs. Process

I Program is a passive entity stored on disk (executable file).

I Process is an active entity.

I Program becomes process when executable file loaded into memory.

I One program can be several processes.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 4 / 56

Program vs. Process

I Program is a passive entity stored on disk (executable file).

I Process is an active entity.

I Program becomes process when executable file loaded into memory.

I One program can be several processes.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 4 / 56

Program vs. Process

I Program is a passive entity stored on disk (executable file).

I Process is an active entity.

I Program becomes process when executable file loaded into memory.

I One program can be several processes.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 4 / 56

Program vs. Process

I Program is a passive entity stored on disk (executable file).

I Process is an active entity.

I Program becomes process when executable file loaded into memory.

I One program can be several processes.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 4 / 56

Parts of a Process

I A process is more than the program code.

I Multiple parts of a process:

• The program code (text section).

• Current activity, e.g., program counter,
processor registers.

• Data section containing global variables.

• Stack containing temporary data.

• Heap containing memory dynamically
allocated during run time.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 5 / 56

Parts of a Process

I A process is more than the program code.

I Multiple parts of a process:

• The program code (text section).

• Current activity, e.g., program counter,
processor registers.

• Data section containing global variables.

• Stack containing temporary data.

• Heap containing memory dynamically
allocated during run time.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 5 / 56

Parts of a Process

I A process is more than the program code.

I Multiple parts of a process:

• The program code (text section).

• Current activity, e.g., program counter,
processor registers.

• Data section containing global variables.

• Stack containing temporary data.

• Heap containing memory dynamically
allocated during run time.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 5 / 56

Parts of a Process

I A process is more than the program code.

I Multiple parts of a process:

• The program code (text section).

• Current activity, e.g., program counter,
processor registers.

• Data section containing global variables.

• Stack containing temporary data.

• Heap containing memory dynamically
allocated during run time.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 5 / 56

Parts of a Process

I A process is more than the program code.

I Multiple parts of a process:

• The program code (text section).

• Current activity, e.g., program counter,
processor registers.

• Data section containing global variables.

• Stack containing temporary data.

• Heap containing memory dynamically
allocated during run time.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 5 / 56

Parts of a Process

I A process is more than the program code.

I Multiple parts of a process:

• The program code (text section).

• Current activity, e.g., program counter,
processor registers.

• Data section containing global variables.

• Stack containing temporary data.

• Heap containing memory dynamically
allocated during run time.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 5 / 56

Process Control Block (PCB)

I The information of each process.

I Process state: running, waiting, etc
I Program counter: location of instruction to next executeI CPU registers: contents of all process-centric registersI CPU scheduling: priorities, scheduling queue pointersI Memory-management: memory allocated to the processI Accounting: CPU used, clock time elapsed since start, time limitsI I/O status: I/O devices allocated to process, list of open files

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 6 / 56

Process Control Block (PCB)

I The information of each process.

I Process state: running, waiting, etc

I Program counter: location of instruction to next executeI CPU registers: contents of all process-centric registersI CPU scheduling: priorities, scheduling queue pointersI Memory-management: memory allocated to the processI Accounting: CPU used, clock time elapsed since start, time limitsI I/O status: I/O devices allocated to process, list of open files

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 6 / 56

Process Control Block (PCB)

I The information of each process.

I Process state: running, waiting, etc

I Program counter: location of instruction to next execute

I CPU registers: contents of all process-centric registersI CPU scheduling: priorities, scheduling queue pointersI Memory-management: memory allocated to the processI Accounting: CPU used, clock time elapsed since start, time limitsI I/O status: I/O devices allocated to process, list of open files

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 6 / 56

Process Control Block (PCB)

I The information of each process.

I Process state: running, waiting, etc
I Program counter: location of instruction to next execute

I CPU registers: contents of all process-centric registers

I CPU scheduling: priorities, scheduling queue pointersI Memory-management: memory allocated to the processI Accounting: CPU used, clock time elapsed since start, time limitsI I/O status: I/O devices allocated to process, list of open files

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 6 / 56

Process Control Block (PCB)

I The information of each process.

I Process state: running, waiting, etc
I Program counter: location of instruction to next executeI CPU registers: contents of all process-centric registers

I CPU scheduling: priorities, scheduling queue pointers

I Memory-management: memory allocated to the processI Accounting: CPU used, clock time elapsed since start, time limitsI I/O status: I/O devices allocated to process, list of open files

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 6 / 56

Process Control Block (PCB)

I The information of each process.

I Process state: running, waiting, etc
I Program counter: location of instruction to next executeI CPU registers: contents of all process-centric registersI CPU scheduling: priorities, scheduling queue pointers

I Memory-management: memory allocated to the process

I Accounting: CPU used, clock time elapsed since start, time limitsI I/O status: I/O devices allocated to process, list of open files

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 6 / 56

Process Control Block (PCB)

I The information of each process.

I Process state: running, waiting, etc
I Program counter: location of instruction to next executeI CPU registers: contents of all process-centric registersI CPU scheduling: priorities, scheduling queue pointersI Memory-management: memory allocated to the process

I Accounting: CPU used, clock time elapsed since start, time limits

I I/O status: I/O devices allocated to process, list of open files

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 6 / 56

Process Control Block (PCB)

I The information of each process.

I Process state: running, waiting, etc
I Program counter: location of instruction to next executeI CPU registers: contents of all process-centric registersI CPU scheduling: priorities, scheduling queue pointersI Memory-management: memory allocated to the processI Accounting: CPU used, clock time elapsed since start, time limits

I I/O status: I/O devices allocated to process, list of open files

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 6 / 56

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 7 / 56

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 7 / 56

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 7 / 56

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 7 / 56

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 7 / 56

Process States

I As a process executes, it changes state.

I new: The process is being created.

I ready: The process is waiting to be assigned to a processor.

I running: Instructions are being executed.

I waiting: The process is waiting for some event to occur.

I terminated: The process has finished execution.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 7 / 56

Threads

I A process can have a single thread or multiple threads.

I Multi-thread process
• Multiple program counters in a PCB: multiple locations can execute

at once.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 8 / 56

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 9 / 56

Process Data Structure in Linux Kernel (1/2)

I Represented by task struct in the Linux kernel.
• in the <linux/sched.h>

struct task_struct {

volatile long state;

long counter;

struct task_struct *next_task, *prev_task;

int pid;

struct task_struct *p_pptr; // pointers to the parent

struct task_struct *p_cptr; // pointers to the youngest child

struct task_struct *p_ysptr // pointers to the younger sibling

struct task_struct *p_osptr; // pointers to the older sibling

struct wait_queue *wait_chldexit;

unsigned short uid, euid, suid, fsuid;

...

}

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 10 / 56

Process Data Structure in Linux Kernel (2/2)

I All active processes are represented using a doubly linked list of
task struct.

struct task_struct {

...

struct task_struct *next_task, *prev_task;

...

}

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 11 / 56

Process ID (1/2)

I Each process is assigned a unique identifier, the process ID (PID).

I The kernel allocates PIDs to processes in a strictly linear fashion.

I The maximum PID value of 32768.

cat /proc/sys/kernel/pid_max

I The first process that the kernel executes after booting the system,
is init process, with the PID 1.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 12 / 56

Process ID (1/2)

I Each process is assigned a unique identifier, the process ID (PID).

I The kernel allocates PIDs to processes in a strictly linear fashion.

I The maximum PID value of 32768.

cat /proc/sys/kernel/pid_max

I The first process that the kernel executes after booting the system,
is init process, with the PID 1.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 12 / 56

Process ID (1/2)

I Each process is assigned a unique identifier, the process ID (PID).

I The kernel allocates PIDs to processes in a strictly linear fashion.

I The maximum PID value of 32768.

cat /proc/sys/kernel/pid_max

I The first process that the kernel executes after booting the system,
is init process, with the PID 1.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 12 / 56

Process ID (1/2)

I Each process is assigned a unique identifier, the process ID (PID).

I The kernel allocates PIDs to processes in a strictly linear fashion.

I The maximum PID value of 32768.

cat /proc/sys/kernel/pid_max

I The first process that the kernel executes after booting the system,
is init process, with the PID 1.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 12 / 56

Process ID (2/2)

I The PID is represented by the pid t type.

I The getpid() system call returns the PID of the invoking process.

I Defined in <sys/types.h>

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 13 / 56

Process ID (2/2)

I The PID is represented by the pid t type.

I The getpid() system call returns the PID of the invoking process.

I Defined in <sys/types.h>

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 13 / 56

Process ID (2/2)

I The PID is represented by the pid t type.

I The getpid() system call returns the PID of the invoking process.

I Defined in <sys/types.h>

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 13 / 56

Process Scheduling

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 14 / 56

Process Scheduling

I The multiprogramming objective: to maximize CPU utilization.

I The timesharing objective: to switch the CPU among processes
so frequently that users can interact with each program while it is
running.

I To meet these objectives: the process scheduler selects an available
process for program execution on the CPU.

• If there are more processes, the rest will have to wait until the CPU
is free and can be rescheduled.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 15 / 56

Process Scheduling

I The multiprogramming objective: to maximize CPU utilization.

I The timesharing objective: to switch the CPU among processes
so frequently that users can interact with each program while it is
running.

I To meet these objectives: the process scheduler selects an available
process for program execution on the CPU.

• If there are more processes, the rest will have to wait until the CPU
is free and can be rescheduled.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 15 / 56

Process Scheduling

I The multiprogramming objective: to maximize CPU utilization.

I The timesharing objective: to switch the CPU among processes
so frequently that users can interact with each program while it is
running.

I To meet these objectives: the process scheduler selects an available
process for program execution on the CPU.

• If there are more processes, the rest will have to wait until the CPU
is free and can be rescheduled.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 15 / 56

Scheduling Queues (1/2)

I Job queue: set of all processes in the system.

I Ready queue: set of all processes residing in main memory, ready
and waiting to execute.

• This queue is generally stored as a linked list.
• Pointers to the first and final PCBs in the list.
• Each PCB points to the next PCB in the ready queue.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 16 / 56

Scheduling Queues (1/2)

I Job queue: set of all processes in the system.

I Ready queue: set of all processes residing in main memory, ready
and waiting to execute.

• This queue is generally stored as a linked list.
• Pointers to the first and final PCBs in the list.
• Each PCB points to the next PCB in the ready queue.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 16 / 56

Scheduling Queues (1/2)

I Job queue: set of all processes in the system.

I Ready queue: set of all processes residing in main memory, ready
and waiting to execute.

• This queue is generally stored as a linked list.
• Pointers to the first and final PCBs in the list.
• Each PCB points to the next PCB in the ready queue.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 16 / 56

Scheduling Queues (2/2)

I Device queues: set of processes waiting for an I/O device.
• Each device has its own device queue.

I Processes migrate among the various queues.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 17 / 56

Scheduling Queues (2/2)

I Device queues: set of processes waiting for an I/O device.
• Each device has its own device queue.

I Processes migrate among the various queues.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 17 / 56

Queuing Diagram (1/2)

I A new process is initially put in the ready queue.

I It waits there until it is selected for execution or dispatched.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 18 / 56

Queuing Diagram (2/2)

I After allocating the CPU to a process:

• The process could issue an I/O request and be placed in an I/O
queue.

• The process could create a new child process and wait for the
child’s termination.

• The process could be removed forcibly from the CPU, as a result of
an interrupt, and be put back in the ready queue.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 19 / 56

Queuing Diagram (2/2)

I After allocating the CPU to a process:
• The process could issue an I/O request and be placed in an I/O

queue.

• The process could create a new child process and wait for the
child’s termination.

• The process could be removed forcibly from the CPU, as a result of
an interrupt, and be put back in the ready queue.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 19 / 56

Queuing Diagram (2/2)

I After allocating the CPU to a process:
• The process could issue an I/O request and be placed in an I/O

queue.
• The process could create a new child process and wait for the

child’s termination.

• The process could be removed forcibly from the CPU, as a result of
an interrupt, and be put back in the ready queue.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 19 / 56

Queuing Diagram (2/2)

I After allocating the CPU to a process:
• The process could issue an I/O request and be placed in an I/O

queue.
• The process could create a new child process and wait for the

child’s termination.
• The process could be removed forcibly from the CPU, as a result of

an interrupt, and be put back in the ready queue.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 19 / 56

Schedulers (1/3)

I Short-term scheduler (CPU scheduler)
• Selects which process should be executed next and allocates CPU.
• Invoked frequently (milliseconds): must be fast

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 20 / 56

Schedulers (2/3)

I Long-term scheduler (job scheduler)
• Selects which processes should be brought into the ready queue.
• Controls the degree of multiprogramming.
• Invoked infrequently (seconds, minutes): may be slow.

I It strives for good mix of I/O-bound and CPU-bound processes.
• I/O-bound process: more time doing I/O than computations.
• CPU-bound process: more time doing computations.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 21 / 56

Schedulers (2/3)

I Long-term scheduler (job scheduler)
• Selects which processes should be brought into the ready queue.
• Controls the degree of multiprogramming.
• Invoked infrequently (seconds, minutes): may be slow.

I It strives for good mix of I/O-bound and CPU-bound processes.
• I/O-bound process: more time doing I/O than computations.
• CPU-bound process: more time doing computations.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 21 / 56

Schedulers (3/3)

I Medium-term scheduler
• It can be added if degree of multiprogramming needs to decrease.
• Remove process from memory, store on disk, bring back in from

disk to continue execution: swapping

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 22 / 56

Context Switching (1/2)

I When CPU switches to another process:

• The state of the old process is saved by the system.
• The saved state of the new process is loaded via a context switch.
• Called context switching.

I Context of a process represented in the PCB.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 23 / 56

Context Switching (1/2)

I When CPU switches to another process:
• The state of the old process is saved by the system.

• The saved state of the new process is loaded via a context switch.
• Called context switching.

I Context of a process represented in the PCB.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 23 / 56

Context Switching (1/2)

I When CPU switches to another process:
• The state of the old process is saved by the system.
• The saved state of the new process is loaded via a context switch.

• Called context switching.

I Context of a process represented in the PCB.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 23 / 56

Context Switching (1/2)

I When CPU switches to another process:
• The state of the old process is saved by the system.
• The saved state of the new process is loaded via a context switch.
• Called context switching.

I Context of a process represented in the PCB.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 23 / 56

Context Switching (1/2)

I When CPU switches to another process:
• The state of the old process is saved by the system.
• The saved state of the new process is loaded via a context switch.
• Called context switching.

I Context of a process represented in the PCB.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 23 / 56

Context Switching (2/2)

I Context-switch time is an overhead.
• The system does no useful work while switching.
• The more complex the OS and PCB → the longer the context

switch.

I Time dependent on hardware support.
• Some hardware provides multiple sets of registers per CPU →

multiple contexts loaded at once.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 24 / 56

Context Switching (2/2)

I Context-switch time is an overhead.
• The system does no useful work while switching.
• The more complex the OS and PCB → the longer the context

switch.

I Time dependent on hardware support.
• Some hardware provides multiple sets of registers per CPU →

multiple contexts loaded at once.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 24 / 56

Operations on Processes

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 25 / 56

Operations on Processes

I OS must provide mechanisms for:
• Process creation
• Process termination
• ...

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 26 / 56

Process Creation

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 27 / 56

Process Creation

I A process may create several new processes.
• The creating process: the parent process.
• The new processes: the children processes.

I These processes are forming a tree of processes.

it lists complete information for all active processes in the system

ps -el

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 28 / 56

Process Creation

I A process may create several new processes.
• The creating process: the parent process.
• The new processes: the children processes.

I These processes are forming a tree of processes.

it lists complete information for all active processes in the system

ps -el

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 28 / 56

Process Creation

I A process may create several new processes.
• The creating process: the parent process.
• The new processes: the children processes.

I These processes are forming a tree of processes.

it lists complete information for all active processes in the system

ps -el

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 28 / 56

Parent-Child Resource Sharing Options

I Parent and children share all resources.

I Children share subset of parent’s resources.

I Parent and child share no resources.
• The child obtains the required resources directly from the OS.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 29 / 56

Parent-Child Resource Sharing Options

I Parent and children share all resources.

I Children share subset of parent’s resources.

I Parent and child share no resources.
• The child obtains the required resources directly from the OS.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 29 / 56

Parent-Child Resource Sharing Options

I Parent and children share all resources.

I Children share subset of parent’s resources.

I Parent and child share no resources.
• The child obtains the required resources directly from the OS.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 29 / 56

Parent-Child Execution Options

I The parent continues to execute concurrently with its children.

I The parent waits until some or all of its children have terminated.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 30 / 56

Parent-Child Execution Options

I The parent continues to execute concurrently with its children.

I The parent waits until some or all of its children have terminated.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 30 / 56

Parent-Child Address Space Options

I The child process is a duplicate of the parent process (it has the
same program and data as the parent).

I The child process has a new program loaded into it.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 31 / 56

Parent-Child Address Space Options

I The child process is a duplicate of the parent process (it has the
same program and data as the parent).

I The child process has a new program loaded into it.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 31 / 56

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 32 / 56

Running a New Process in Linux (1/2)

I Executing a new program (exec())

• A system call loads a binary program into memory.
• Replacing the previous contents of the address space.
• Begins execution of the new program.

I Creating a new process (fork())

• The new process (child) initially is a near-duplicate of its parent
process.

• Often, the new process immediately executes a new program.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 33 / 56

Running a New Process in Linux (1/2)

I Executing a new program (exec())
• A system call loads a binary program into memory.

• Replacing the previous contents of the address space.
• Begins execution of the new program.

I Creating a new process (fork())

• The new process (child) initially is a near-duplicate of its parent
process.

• Often, the new process immediately executes a new program.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 33 / 56

Running a New Process in Linux (1/2)

I Executing a new program (exec())
• A system call loads a binary program into memory.
• Replacing the previous contents of the address space.

• Begins execution of the new program.

I Creating a new process (fork())

• The new process (child) initially is a near-duplicate of its parent
process.

• Often, the new process immediately executes a new program.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 33 / 56

Running a New Process in Linux (1/2)

I Executing a new program (exec())
• A system call loads a binary program into memory.
• Replacing the previous contents of the address space.
• Begins execution of the new program.

I Creating a new process (fork())

• The new process (child) initially is a near-duplicate of its parent
process.

• Often, the new process immediately executes a new program.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 33 / 56

Running a New Process in Linux (1/2)

I Executing a new program (exec())
• A system call loads a binary program into memory.
• Replacing the previous contents of the address space.
• Begins execution of the new program.

I Creating a new process (fork())

• The new process (child) initially is a near-duplicate of its parent
process.

• Often, the new process immediately executes a new program.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 33 / 56

Running a New Process in Linux (1/2)

I Executing a new program (exec())
• A system call loads a binary program into memory.
• Replacing the previous contents of the address space.
• Begins execution of the new program.

I Creating a new process (fork())
• The new process (child) initially is a near-duplicate of its parent

process.

• Often, the new process immediately executes a new program.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 33 / 56

Running a New Process in Linux (1/2)

I Executing a new program (exec())
• A system call loads a binary program into memory.
• Replacing the previous contents of the address space.
• Begins execution of the new program.

I Creating a new process (fork())
• The new process (child) initially is a near-duplicate of its parent

process.
• Often, the new process immediately executes a new program.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 33 / 56

Running a New Process in Linux (2/2)

I Executing a new program in a new process:
1 First, a fork to create a new process,
2 and then an exec to load a new binary into that process.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 34 / 56

The Exec Family of Calls (1/3)

I There is no single exec function.

I The simplest of these calls is execl().
• It replaces the current process image with a new one.

#include <unistd.h>

int execl(const char *path, const char *arg, ...);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 35 / 56

The Exec Family of Calls (2/3)

I Example

int ret;

ret = execl("/bin/vi", "vi", "/home/kidd/hooks.txt", NULL);

if (ret == -1)

perror("execl");

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 36 / 56

The Exec Family of Calls (3/3)

I l and v: arguments are provided via a list or an array (vector).

I p: the user’s full path is searched.

I e: a new environment is supplied for the new process.

#include <unistd.h>

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg, ..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

int execve(const char *filename, char *const argv[], char *const envp[]);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 37 / 56

Creating a New Process (1/4)

I The only way to create a new process.

I The new process (child) running the same image as the current one
(parent).

I Both processes continue to run, if nothing special had happened.

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 38 / 56

Creating a New Process (2/4)

I This fork() function is called once, but it returns twice.
• The PID of the new child → to the parent.
• 0 → to the child.

I The child and the parent process are identical, except for:

• Their PIDs and their parents’ PID.
• Reset resource statistics at the child.
• Clear any pending signals at the child.
• The acquired file locks are not inherited by the child.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 39 / 56

Creating a New Process (2/4)

I This fork() function is called once, but it returns twice.
• The PID of the new child → to the parent.
• 0 → to the child.

I The child and the parent process are identical, except for:

• Their PIDs and their parents’ PID.
• Reset resource statistics at the child.
• Clear any pending signals at the child.
• The acquired file locks are not inherited by the child.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 39 / 56

Creating a New Process (2/4)

I This fork() function is called once, but it returns twice.
• The PID of the new child → to the parent.
• 0 → to the child.

I The child and the parent process are identical, except for:
• Their PIDs and their parents’ PID.

• Reset resource statistics at the child.
• Clear any pending signals at the child.
• The acquired file locks are not inherited by the child.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 39 / 56

Creating a New Process (2/4)

I This fork() function is called once, but it returns twice.
• The PID of the new child → to the parent.
• 0 → to the child.

I The child and the parent process are identical, except for:
• Their PIDs and their parents’ PID.
• Reset resource statistics at the child.

• Clear any pending signals at the child.
• The acquired file locks are not inherited by the child.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 39 / 56

Creating a New Process (2/4)

I This fork() function is called once, but it returns twice.
• The PID of the new child → to the parent.
• 0 → to the child.

I The child and the parent process are identical, except for:
• Their PIDs and their parents’ PID.
• Reset resource statistics at the child.
• Clear any pending signals at the child.

• The acquired file locks are not inherited by the child.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 39 / 56

Creating a New Process (2/4)

I This fork() function is called once, but it returns twice.
• The PID of the new child → to the parent.
• 0 → to the child.

I The child and the parent process are identical, except for:
• Their PIDs and their parents’ PID.
• Reset resource statistics at the child.
• Clear any pending signals at the child.
• The acquired file locks are not inherited by the child.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 39 / 56

Creating a New Process (3/4)

I Example

pid_t pid = fork();

if (pid == -1) {

perror("fork");

exit(1);

}

if (pid > 0)

printf("I am the parent of pid = %d!\n", pid);

else

printf("I am the child!\n");

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 40 / 56

Creating a New Process (4/4)

I Example

pid_t pid = fork();

if (pid == -1) {

perror("fork");

exit(1);

}

if (pid == 0) { // the child

const char *args[] = {"windlass", NULL};

int ret;

ret = execv("/bin/windlass", args);

if (ret == -1) {

perror("execv");

exit(1);

}

}

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 41 / 56

Process Termination

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 42 / 56

Process Termination (1/4)

I Process executes last statement and then asks the OS to delete it
using the exit() system call.

• Returns status data from the child to the parent via wait().
• Process resources are deallocated by the OS.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 43 / 56

Process Termination (1/4)

I Process executes last statement and then asks the OS to delete it
using the exit() system call.

• Returns status data from the child to the parent via wait().

• Process resources are deallocated by the OS.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 43 / 56

Process Termination (1/4)

I Process executes last statement and then asks the OS to delete it
using the exit() system call.

• Returns status data from the child to the parent via wait().
• Process resources are deallocated by the OS.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 43 / 56

Process Termination (2/4)

I A parent may terminate the execution of its children via abort().

I Some reasons for doing so:
• Child has exceeded allocated resources.
• Task assigned to child is no longer required.
• The parent is exiting and the OS does not allow a child to continue

if its parent terminates.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 44 / 56

Process Termination (2/4)

I A parent may terminate the execution of its children via abort().

I Some reasons for doing so:
• Child has exceeded allocated resources.
• Task assigned to child is no longer required.
• The parent is exiting and the OS does not allow a child to continue

if its parent terminates.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 44 / 56

Process Termination (3/4)

I Some OSs do not allow child to exists if its parent has terminated.

I If a process terminates, all its children must also be terminated.
• Cascading termination: all children, grandchildren, etc. are

terminated.
• The termination is initiated by the OS.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 45 / 56

Process Termination (4/4)

I The parent process may wait for termination of a child via wait().

I The wait() returns the status information and the PID of the ter-
minated process.

I If a process has terminated, but whose parent has not yet called
wait(), the process is a zombie.

I If the parent terminated without invoking wait(), the process is an
orphan.

• In Linux, the init process becomes the parent of all orphans.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 46 / 56

Process Termination (4/4)

I The parent process may wait for termination of a child via wait().

I The wait() returns the status information and the PID of the ter-
minated process.

I If a process has terminated, but whose parent has not yet called
wait(), the process is a zombie.

I If the parent terminated without invoking wait(), the process is an
orphan.

• In Linux, the init process becomes the parent of all orphans.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 46 / 56

Process Termination (4/4)

I The parent process may wait for termination of a child via wait().

I The wait() returns the status information and the PID of the ter-
minated process.

I If a process has terminated, but whose parent has not yet called
wait(), the process is a zombie.

I If the parent terminated without invoking wait(), the process is an
orphan.

• In Linux, the init process becomes the parent of all orphans.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 46 / 56

Process Termination (4/4)

I The parent process may wait for termination of a child via wait().

I The wait() returns the status information and the PID of the ter-
minated process.

I If a process has terminated, but whose parent has not yet called
wait(), the process is a zombie.

I If the parent terminated without invoking wait(), the process is an
orphan.

• In Linux, the init process becomes the parent of all orphans.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 46 / 56

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 47 / 56

The exit() System Call

I The exit() performs some basic shutdown steps, then instructs the
kernel to terminate the process.

I The status is used to denote the process’s exit status.

#include <stdlib.h>

void exit(int status);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 48 / 56

Waiting for Terminated Child Processes (1/3)

I When a child dies before its parent, the kernel puts the child into
the zombie state.

I Some basic kernel data structures containing potentially useful data
is kept for the process.

I A process in this state waits for its parent to inquire about its status.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 49 / 56

Waiting for Terminated Child Processes (1/3)

I When a child dies before its parent, the kernel puts the child into
the zombie state.

I Some basic kernel data structures containing potentially useful data
is kept for the process.

I A process in this state waits for its parent to inquire about its status.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 49 / 56

Waiting for Terminated Child Processes (1/3)

I When a child dies before its parent, the kernel puts the child into
the zombie state.

I Some basic kernel data structures containing potentially useful data
is kept for the process.

I A process in this state waits for its parent to inquire about its status.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 49 / 56

Waiting for Terminated Child Processes (1/3)

I When a child dies before its parent, the kernel puts the child into
the zombie state.

I Some basic kernel data structures containing potentially useful data
is kept for the process.

I A process in this state waits for its parent to inquire about its status.

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 49 / 56

Waiting for Terminated Child Processes (2/3)

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 50 / 56

Waiting for Terminated Child Processes (3/3)

int main (void) {

int status;

pid_t pid;

if (fork() == 0) return 1; // the child

pid = wait(&status);

if (pid == -1) perror("wait");

printf("pid = %d\n", pid);

return 0;

}

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 51 / 56

More on Launching and Waiting for Processes

I waitpid() to wait for a process with a known PID.

#include <sys/types.h>

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *status, int options);

I Launching and waiting for a new process

#include <stdlib.h>

int system(const char *command);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 52 / 56

Summary

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 53 / 56

Summary

I Process vs. Program

I Process states: new, running, waiting, ready, terminated

I Process Control Block (PCB)

I Process scheduling: scheduling queues, context switching

I Process operations: creation (parent-child), termination

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 54 / 56

Summary

I Process vs. Program

I Process states: new, running, waiting, ready, terminated

I Process Control Block (PCB)

I Process scheduling: scheduling queues, context switching

I Process operations: creation (parent-child), termination

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 54 / 56

Summary

I Process vs. Program

I Process states: new, running, waiting, ready, terminated

I Process Control Block (PCB)

I Process scheduling: scheduling queues, context switching

I Process operations: creation (parent-child), termination

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 54 / 56

Summary

I Process vs. Program

I Process states: new, running, waiting, ready, terminated

I Process Control Block (PCB)

I Process scheduling: scheduling queues, context switching

I Process operations: creation (parent-child), termination

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 54 / 56

Summary

I Process vs. Program

I Process states: new, running, waiting, ready, terminated

I Process Control Block (PCB)

I Process scheduling: scheduling queues, context switching

I Process operations: creation (parent-child), termination

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 54 / 56

Questions?

Amir H. Payberah (Tehran Polytechnic) Processes 1393/6/31 55 / 56

