Processes (Part 1)

Amir H. Payberah

amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

AMIRKABIR UNIVERSITY
OF TECHNOLOGY

Inter-Process Communication

(IPC)

byte
stream

FIFO

{ pseudoterminal)

System V message queue)

—| message POSIX message queue)

datagram socket

System V shared mernnry)

data
transfer
communication
shared

memory

POSIX shared memoryD

4nonymous

Amir H. Payberah (Tehran Polytechnic)

mapping

mapped file

Processes 1393/7/7 3 /50

memory map[)ing

Socket

Let's First Review The Basic
Concepts of TCP/IP

BN
Internetworking

» An internetwork (internet (with a lowercase i)) is a network of com-
puter networks.

| pukaki | | rotoiti |

Network 1

| wakatipu | | wanaka |

I
Internetworking

» An internetwork (internet (with a lowercase i)) is a network of com-
puter networks.

» Subnetwork refers to one of the networks composing an internet.

| pukaki | | rotoiti |

Network 1

| wakatipu | | wanaka |

|
Internetworking

» An internetwork (internet (with a lowercase i)) is a network of com-
puter networks.

» Subnetwork refers to one of the networks composing an internet.

» An internet aims to hide the details of different physical networks,
to present a unified network architecture.

| pukaki | | rotoiti |

Network 1

| wakatipu | | wanaka |

~ Amir H. Payberah (Tehran Polytechnicy =~ Processes 1393/7/7 6 /50

L
The Internet

» TCP/IP has become the dominant protocol for the internetworking.

L
The Internet

» TCP/IP has become the dominant protocol for the internetworking.

» The Internet (with an uppercase) refers to the TCP/IP internet
that connects millions of computers globally.

L
The Internet

» TCP/IP has become the dominant protocol for the internetworking.

» The Internet (with an uppercase) refers to the TCP/IP internet
that connects millions of computers globally.

» The first widespread implementation of TCP/IP appeared with
4.2BSD in 1983.

BN
Networking Protocols and Layers

> A networking protocol is a set of rules defining how information is
to be transmitted across a network.

BN
Networking Protocols and Layers

» A networking protocol is a set of rules defining how information is
to be transmitted across a network.

» Networking protocols are generally organized as a series of layers.

I
Networking Protocols and Layers

» A networking protocol is a set of rules defining how information is
to be transmitted across a network.

» Networking protocols are generally organized as a series of layers.

» Each layer building on the layer below it to add features that are
made available to higher layers.

|
Networking Protocols and Layers

v

A networking protocol is a set of rules defining how information is
to be transmitted across a network.

v

Networking protocols are generally organized as a series of layers.

v

Each layer building on the layer below it to add features that are
made available to higher layers.

v

Transparency: each protocol layer shields higher layers from the
operation and complexity of lower layers.

* Amir H. Payberah (Tehran Polytechnic) Processes Y

TCP/IP Protocol Suite

» The TCP/IP protocol suite is a layered

networking protocol.

Network medium

'

o — __ soplicatio
[Apphicarion | [Applcarion | [Application | | pPPHe o™
8 w
g 'z g
S £ z
Transport
(o] e |
x rd
AN ¥
Network
L] B
Network interface hardware Datalink
layer

s 4as7)

o oy

auvmpwi]

1393/7/7

9 /50

TCP/IP Protocol Layers

— Application-defined protocol —
Application id- S m e m e — »| Application
(transfers application data)

» Data-Link layer
’ [}« i oo]
. "7 (sransfers TCP segments) -
» Network layer (IP)
IP protocol
[T S o P
» Transport layer (TCP, UDP) [v |« (iransfors IP datagrams) S v]
> App“cation Data link protocol

Datalink [—-—-—-——-————-——————— Data link
(transfers data frames)

Network medium

Amir H. Payberah (Tehran Polytechnic) Processes 1393/7/7 10 / 50

-
Encapsulation

» Encapsulation: the information passed from a higher layer to a lower
layer is treated as opaque data by the lower layer.

e The lower layer does not interpret information from the upper layer.

Applicationdefined
content
Application
data
| |
I I
i i
TCP header ¥ TCP data v
Source + destination
port #, sequence #, TCP
acknowledgement #, segment
flags, checksum, etc.
1 I
1 |
' |
IP header ¥ IP data v
Source +
destination IP 1P
address, header datagram
checksum, etc.

1393/7/7 11/50

-
Encapsulation

» Encapsulation: the information passed from a higher layer to a lower
layer is treated as opaque data by the lower layer.

e The lower layer does not interpret information from the upper layer.

» When data is passed up from a lower layer to a higher layer, a
converse unpacking process takes place.

Application-defined
content

Application
data

-

TCP header ¥ TCP data

Source + destination
port #, sequence #, TCP

acknowledgement #, segment
flags, checksum, etc.

1 I
1 |
' |
IP header ¥ IP data v

Source +

destination IP 1P
address, header datagram
checksum, etc.

© Amir H. Payberah (Tehran Polytechnic) Processes e D

I
Data-Link Layer (1/3)

» It is concerned with transferring data across a physical link in a
network.

I
Data-Link Layer (1/3)

» It is concerned with transferring data across a physical link in a
network.

» It consists of the device driver and the hardware interface (network
card) to the underlying physical medium, e.g., fiber-optic cable.

I
Data-Link Layer (2/3)

» The data-link layer encapsulates datagrams from the network layer
into units, called frames.

Data-Link Layer (2/3)

» The data-link layer encapsulates datagrams from the network layer
into units, called frames.

> It also adds each frame a header containing the destination address
and frame size.

I
Data-Link Layer (2/3)

» The data-link layer encapsulates datagrams from the network layer
into units, called frames.

> It also adds each frame a header containing the destination address
and frame size.

» The data-link layer transmits the frames across the physical link and
handles acknowledgements from the receiver.

I
Data-Link Layer (3/3)

» From an application-programming point of view, we can generally
ignore the data-link layer, since all communication details are han-
dled in the driver and hardware.

I
Data-Link Layer (3/3)

» From an application-programming point of view, we can generally
ignore the data-link layer, since all communication details are han-
dled in the driver and hardware.

» Maximum Transmission Unit (MTU): the upper limit that the layer
places on the size of a frame.

e data-link layers have different MTUs.

netstat -i

NN
Network Layer (1/4)

» It is concerned with delivering data from the source host to the
destination host.

B
Network Layer (1/4)

» It is concerned with delivering data from the source host to the
destination host.

» It tasks include:

» Breaking data into fragments small enough for transmission via the
data-link layer.

¢ Routing data across the internet.

e Providing services to the transport layer.

NN
Network Layer (1/4)

» It is concerned with delivering data from the source host to the
destination host.

» It tasks include:

» Breaking data into fragments small enough for transmission via the
data-link layer.

¢ Routing data across the internet.

e Providing services to the transport layer.

» In the TCP/IP protocol suite, the principal protocol in the network
layer is IP.

B
Network Layer (2/4)

» |P transmits data in the form of packets.

B
Network Layer (2/4)

» |P transmits data in the form of packets.

» Each packet sent between two hosts travels independently across
the network.

B
Network Layer (2/4)

» |P transmits data in the form of packets.

» Each packet sent between two hosts travels independently across
the network.

» An IP packet includes a header that contains the address of the
source and target hosts.

B
Network Layer (3/4)

» IP is a connectionless protocol: it does not provide a virtual circuit
connecting two hosts.

B
Network Layer (3/4)

» IP is a connectionless protocol: it does not provide a virtual circuit
connecting two hosts.

» IP is an unreliable protocol: it makes a best effort to transmit data-
grams from the sender to the receiver, but it does not guarantee:

e that packets will arrive in the order they were transmitted,
 that they will not be duplicated,
e that they will arrive at all.

N
Network Layer (4/4)

» An IP address consists of two parts:

e Network ID: specifies the network on which a host resides.
e Host ID: identifies the host within that network.

32 bits
Network address | Network 1D | Host ID |

Network mask | all 1s | all Os |

~ Amir H. Payberah (Tehran Polytechnicy =~ Processes 1393/7/7

18 / 50

N
Network Layer (4/4)

» An IP address consists of two parts:

e Network ID: specifies the network on which a host resides.
e Host ID: identifies the host within that network.

» An IPv4 address consists of 32 bits: 204.152.189.0/24
e loopback 127.0.0.1 refers to system on which process is running.

32 bits
Network address | Network 1D | Host ID |

Network mask | all 1s | all Os |

© Amir H. Payberah (Tehran Polytechnic) Processes T

N
Network Layer (4/4)

» An IP address consists of two parts:

e Network ID: specifies the network on which a host resides.
e Host ID: identifies the host within that network.

» An IPv4 address consists of 32 bits: 204.152.189.0/24
e loopback 127.0.0.1 refers to system on which process is running.

» Network mask: a sequence of 1s in the leftmost bits, followed by a
sequence of Os

e The 1s indicate which part of the address contains the assigned

network ID.
e The Os indicate which part of the address is available to assign as
host IDs.
32 bits
Network address | Network [D | Host [D |
Network mask | all 1s | all 0s |

© Amir H. Payberah (Tehran Polytechnic) Processes T

I
Transport Layer (1/5)

» Transport protocol provides an end-to-end communication service
to applications residing on different hosts.

I
Transport Layer (1/5)

» Transport protocol provides an end-to-end communication service
to applications residing on different hosts.

» Two widely used transport-layer protocols in the TCP/IP suite:
» User Datagram Protocol (UDP): the protocol used for datagram
sockets.
» Transmission Control Protocol (TCP): the protocol used for stream
sockets.

I
Transport Layer (2/5)

» Port: a method of differentiating the applications on a host.
e 16-bit number

I
Transport Layer (2/5)

» Port: a method of differentiating the applications on a host.

e 16-bit number
e All ports below 1024 are well known, used for standard services,
e.g., http: 80, ssh: 22.

I
Transport Layer (2/5)

» Port: a method of differentiating the applications on a host.
e 16-bit number
e All ports below 1024 are well known, used for standard services,
e.g., http: 80, ssh: 22.
e Shown as 192.168.1.1:8080.

I
Transport Layer (3/5)

» UDP, like IP, is connectionless and unreliable.

I
Transport Layer (3/5)

» UDP, like IP, is connectionless and unreliable.

» If an application layered on top of UDP requires reliability, then this
must be implemented within the application.

I
Transport Layer (3/5)

» UDP, like IP, is connectionless and unreliable.

» If an application layered on top of UDP requires reliability, then this
must be implemented within the application.

» UDP adds just two features to IP:

e Port number
o Data checksum to allow the detection of errors in the transmitted

data.
Sourcs Port Destination Port 8_'B;l
es
Length Checksum il

[http://www.tamos.net/~rhay/overhead/ip-packet-overhead.htm|

I
Transport Layer (4/5)

» TCP provides a reliable, connection-oriented, bidirectional, byte-
stream communication channel between two endpoints.

Transport Layer (4/5)

» TCP provides a reliable, connection-oriented, bidirectional, byte-
stream communication channel between two endpoints.

» Before communication can commence, TCP establishes a commu-
nication channel between the two endpoints.

Kernel Kernel
TCP endpoint TCP endpoint
Apnlicati state state Apnlicati
Application info info Application
A Network B

send send

sockfd buffer | |1 T buffer
[

): receive receive

buffer [71| L

. sockfd
I

Amir H. Payberah (Tehran Polytechnic) Processes

1393/7/7 22/ 50

I
Transport Layer (5/5)

» In TCP, data is broken into segments: each is transmitted in a single

IP packet.

Sequence Number

Acknowledgement Number

Offset

Revorsd 474 Wndor

Checksum

Urgent Pointer

r

20 Bytes

[http://www.tamos.net/~rhay/overhead/ip-packet-overhead.htm|

Transport Layer (5/5)

» In TCP, data is broken into segments: each is transmitted in a single
IP packet.

» When a destination receives a TCP segment, it sends an ack. to
the sender, informing weather it received the segment correctly or

not.

Source Port | Destination Port T

Sequence Number

Acknowledgement Number 20 By(es

oot | Reowvedt (44 Wndor

[http://www.tamos.net/~rhay/overhead/ip-packet-overhead.htm|

Transport Layer (5/5)

» In TCP, data is broken into segments: each is transmitted in a single

IP packet.

» When a destination receives a TCP segment, it sends an ack. to
the sender, informing weather it received the segment correctly or

not.

» Other features of TCP:
e Sequencing
e Flow control
» Congestion control

Source Port

| Destination Port

Sequence Number

Acknowledgement Number

| ot (47118 Yhvlos

Checksum

Urgent Painter

;

20 Bytes

Il

[http://www.tamos.net/~rhay/overhead/ip-packet-overhead.htm|

1393/7/7

23 / 50

OK, Let's Back to Socket

o
Socket

» A socket is defined as an endpoint for communication.

o
Socket

» A socket is defined as an endpoint for communication.

» A typical client-server scenario:
e Each process creates a socket: both processes require one.
» The server binds its socket to a well-known address (name) so that
clients can locate it.

INNSS———
Creating a Socket

» socket () creates a new socket.

L
Socket Domains

» The UNIX domain (AF_UNIX)
» Communication between processes on the same host (within the
kernel).
¢ Address format: path name.

Socket Domains

» The UNIX domain (AF_UNIX)
» Communication between processes on the same host (within the

kernel).
e Address format: path name.

» The IPV4 domain (AF_INET)
e Communication between processes running on hosts connected via

an IPv4 network.
e Address format: 32-bit IPv4 address + 16-bit port number.

int socket(int domain, int type, int protocol);

INNSS———
Socket Types

» Stream sockets (SOCK_STREAM)
e |t provides a reliable, bidirectional, byte-stream communication
channel.
e Called connection-oriented.

INNSS———
Socket Types

» Stream sockets (SOCK_STREAM)

e |t provides a reliable, bidirectional, byte-stream communication
channel.
e Called connection-oriented.

» Datagram sockets (SOCK_DGRAM)

¢ Allow data to be exchanged in the form of messages called
datagrams.
e Called connectionless.

int socket(int domain, int type, int protocol);

INNSS———
Binding a Socket to an Address

» bind () binds a socket to an address.

BN
Listening for Incoming Connections

» listen() marks the stream socket passive.

» The socket will subsequently be used to accept connections from
other (active) sockets.

BN
Accepting a Connection

» accept () accepts an incoming connection on the listening stream
socket.

» If there are no pending connections when accept () is called, the
call blocks until a connection request arrives.

INNSS———
Connecting to a Peer Socket

» connect () connects the active socket to the listening socket whose
address is specified by addr and addrlen.

Stream Sockets

Passive socket
(server)

Active socket
(client)

blocks until
client connects

resumes

1 connect()

(Possibly multiple) data
transfers in either direction ,

|

write()

Amir H. Payberah (Tehran Polytechnic) Processes 1393/7/7

33/ 50

Producer-Consumer vi Stream Socket (1/2)

» Producer (Server)

int sockfd, connfd;

struct sockaddr_in serv_addr, cli_addr;
socklen_t cli_len;

char buffer[256];

bzero(&serv_addr, sizeof (serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = htonl (INADDR_ANY) ;
serv_addr.sin_port = htons(32000) ;

sockfd = socket(AF_INET, SOCK_STREAM, 0);
bind(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr));
listen(sockfd, 5);

cli_len = sizeof(cli_addr);

connfd = accept(sockfd, (struct sockaddr *)&cli_addr, &cli_len);
read(connfd, buffer, 255);

write(connfd, "I got your message", 18);

Amir H. Payberah (Tehran Polytechnic) Processes 1393/7/7 34 / 50

Producer-Consumer vi Stream Socket (2/2)

» Consumer (Client)

Internet Socket Addresses

» An IPv4 socket address is stored in a sockaddr_in structure, defined
in <netinet/in.h>.

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

struct sockaddr {
sa_family_t sa_family; // Address family (AF_* constant)
char sa_datal[14]; // Socket address

g

struct sockaddr_in { // IPv4 socket address

sa_family_t sin_family; // Address family (AF_INET)

in_port_t sin_port; // Port number

struct in_addr sin_addr; // IPv4 address

unsigned char _pad[X]; // Pad to size of ’sockaddr’ structure (16 bytes)
};

struct in_addr { // IPv4 4-byte address

in_addr_t s_addr; // Unsigned 32-bit integer
ks

Amir H. Payberah (Tehran Polytechnic) Processes 1393/7/7 36 / 50

Datagram Sockets

Server

Client
bind() | sockel() |

(Possibly multiple) data
transfers in either direction

A\ A\
recufrom() | [sendto()

sendtof)

recufrom()

Amir H. Payberah (Tehran Polytechnic) Processes 1393/7/7 37 / 50

BN
Exchanging Datagrams

» recvfrom() and sendto() receive and send datagrams on a data-
gram socket.

Producer-Consumer vi Datagram Socket (1/2)

» Producer (Server)

int sockfd, n;

struct sockaddr_in serv_addr, cli_addr;
socklen_t cli_len;

char buf [256] ;

bzero(&serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = htonl (INADDR_ANY);
serv_addr.sin_port = htons(32000);

sockfd = socket(AF_INET, SOCK_DGRAM, 0);
bind(sockfd, (struct sockaddr *)&serv_addr, sizeof (serv_addr));

cli_len = sizeof(cli_addr);

n = recvfrom(sockfd, buf, 255, 0, (struct sockaddr *)&cli_addr, &cli_len);
sendto(sockfd, buf, n, 0, (struct sockaddr *)&cli_addr,sizeof(cli_addr));

Amir H. Payberah (Tehran Polytechnic) Processes 1393/7/7 39 / 50

Producer-Consumer vi Datagram Socket (2/2)

» Consumer (Client)

Signals

BN
Signals (1/2)

» Signals are software interrupts to notify a process that a particular
event has occurred.

BN
Signals (1/2)

» Signals are software interrupts to notify a process that a particular
event has occurred.

» These events can originate from outside the system, e.g., by pressing
Ctrl-C, or when a process executes code that divides by zero.

BN
Signals (1/2)

» Signals are software interrupts to notify a process that a particular
event has occurred.

» These events can originate from outside the system, e.g., by pressing
Ctrl-C, or when a process executes code that divides by zero.

» As a primitive form of IPC, one process can also send a signal to
another process.

BN
Signals (2/2)

» A signal handler is used to process signals.

@ Signal is generated by particular event.

@ Signal is delivered to a process.

@ Signal is handled by one of two signal handlers: default or
user-defined.

I
Signals (2/2)

» A signal handler is used to process signals.

@ Signal is generated by particular event.

@ Signal is delivered to a process.

@ Signal is handled by one of two signal handlers: default or
user-defined.

» Every signal has default handler that kernel runs when handling
signal

» User-defined signal handler can override default.

Amir H. Payberah (Tehran Polytechnic) Processes 1393/7/7 44 / 50

INNSS———
Signal Management

» signal() removes the current action taken on receipt of the sig-
nal signo and instead handles the signal with the signal handler
specified by handler.

INNSS———
Waiting for a Signal

» pause() puts a process to sleep until it receives a signal.

Signal Example

Summary

INNSS———
Summary

» TCP-IP protocol layers: data-link, network, transport, application

INNSS———
Summary

» TCP-IP protocol layers: data-link, network, transport, application

» Data-link: network card

INNSS———
Summary

» TCP-IP protocol layers: data-link, network, transport, application
» Data-link: network card

» Network layer: routing, IP, 32-bit address, 16-bit port

INNSS———
Summary

v

TCP-IP protocol layers: data-link, network, transport, application

v

Data-link: network card

v

Network layer: routing, IP, 32-bit address, 16-bit port

v

Transport layer: TCP (stream, connection-oriented), UDP (data-
gram, connectionless)

INNSS———
Summary

v

TCP-IP protocol layers: data-link, network, transport, application

v

Data-link: network card

v

Network layer: routing, IP, 32-bit address, 16-bit port

v

Transport layer: TCP (stream, connection-oriented), UDP (data-
gram, connectionless)

Sockets

v

v

Signal: software interrupts

Questions?

