
Protection

Amir H. Payberah
amir@sics.se

Amirkabir University of Technology
(Tehran Polytechnic)

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 1 / 53



Introduction

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 2 / 53



Protection

I In one protection model, a computer consists of a collection of ob-
jects, hardware or software.

I Each object has a unique name and can be accessed through a
well-defined set of operations.

I Protection problem: ensure that each object is accessed correctly
and only by those processes that are allowed to do so.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 3 / 53



Protection

I In one protection model, a computer consists of a collection of ob-
jects, hardware or software.

I Each object has a unique name and can be accessed through a
well-defined set of operations.

I Protection problem: ensure that each object is accessed correctly
and only by those processes that are allowed to do so.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 3 / 53



Protection

I In one protection model, a computer consists of a collection of ob-
jects, hardware or software.

I Each object has a unique name and can be accessed through a
well-defined set of operations.

I Protection problem: ensure that each object is accessed correctly
and only by those processes that are allowed to do so.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 3 / 53



Policy vs. Mechanism

I Policies decide what will be done.
• Policies are likely to change from place to place or time to time.

I Mechanisms determine how something will be done.

I The separation of policy and mechanism: flexibility

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 4 / 53



Policy vs. Mechanism

I Policies decide what will be done.
• Policies are likely to change from place to place or time to time.

I Mechanisms determine how something will be done.

I The separation of policy and mechanism: flexibility

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 4 / 53



Policy vs. Mechanism

I Policies decide what will be done.
• Policies are likely to change from place to place or time to time.

I Mechanisms determine how something will be done.

I The separation of policy and mechanism: flexibility

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 4 / 53



Principles of Protection

I Principle of least privilege
• Programs, users and systems should be given just enough privileges

to perform their tasks.

I Limits damage if entity has a bug.

I Fine-grained management
• More complex
• More overhead
• More protective

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 5 / 53



Principles of Protection

I Principle of least privilege
• Programs, users and systems should be given just enough privileges

to perform their tasks.

I Limits damage if entity has a bug.

I Fine-grained management
• More complex
• More overhead
• More protective

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 5 / 53



Principles of Protection

I Principle of least privilege
• Programs, users and systems should be given just enough privileges

to perform their tasks.

I Limits damage if entity has a bug.

I Fine-grained management
• More complex
• More overhead
• More protective

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 5 / 53



Domain of Protection

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 6 / 53



Domain of Protection

I The need-to-know principle: at any time, a process should be able
to access only those resources that it currently requires to complete
its task.

I Limiting the amount of damage a faulty process can cause in the
system.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 7 / 53



Domain of Protection

I The need-to-know principle: at any time, a process should be able
to access only those resources that it currently requires to complete
its task.

I Limiting the amount of damage a faulty process can cause in the
system.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 7 / 53



Domain of Protection Example (1/2)

I Assume a process p invokes procedure A().

I The procedure should be allowed to access only its own variables
and the parameters passed to it.

I The procedure should not be able to access all the variables of
process p.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 8 / 53



Domain of Protection Example (1/2)

I Assume a process p invokes procedure A().

I The procedure should be allowed to access only its own variables
and the parameters passed to it.

I The procedure should not be able to access all the variables of
process p.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 8 / 53



Domain of Protection Example (1/2)

I Assume a process p invokes procedure A().

I The procedure should be allowed to access only its own variables
and the parameters passed to it.

I The procedure should not be able to access all the variables of
process p.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 8 / 53



Domain of Protection Example (2/2)

I Assume a process p invokes a compiler to compile a particular file.

I The compiler should not be able to access files arbitrarily.

I The compiler should have access only to a well-defined subset of
files (such as the source file, listing file, and so on) related to the
file to be compiled.

I The compiler may have private files used for accounting or optimiza-
tion purposes that process p should not be able to access.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 9 / 53



Domain of Protection Example (2/2)

I Assume a process p invokes a compiler to compile a particular file.

I The compiler should not be able to access files arbitrarily.

I The compiler should have access only to a well-defined subset of
files (such as the source file, listing file, and so on) related to the
file to be compiled.

I The compiler may have private files used for accounting or optimiza-
tion purposes that process p should not be able to access.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 9 / 53



Domain of Protection Example (2/2)

I Assume a process p invokes a compiler to compile a particular file.

I The compiler should not be able to access files arbitrarily.

I The compiler should have access only to a well-defined subset of
files (such as the source file, listing file, and so on) related to the
file to be compiled.

I The compiler may have private files used for accounting or optimiza-
tion purposes that process p should not be able to access.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 9 / 53



Domain of Protection Example (2/2)

I Assume a process p invokes a compiler to compile a particular file.

I The compiler should not be able to access files arbitrarily.

I The compiler should have access only to a well-defined subset of
files (such as the source file, listing file, and so on) related to the
file to be compiled.

I The compiler may have private files used for accounting or optimiza-
tion purposes that process p should not be able to access.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 9 / 53



Domain Structure

I Access-right = 〈object-name, rights-set〉 where rights-set is a subset
of all valid operations that can be performed on the object.

• E.g., domain D2 has the access right 〈O2, {write}〉

I Domain = set of access-rights

I Can be static (during life of system, during life of process), or dy-
namic (changed by process as needed).

I Domain switching

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 10 / 53



Domain Structure

I Access-right = 〈object-name, rights-set〉 where rights-set is a subset
of all valid operations that can be performed on the object.

• E.g., domain D2 has the access right 〈O2, {write}〉

I Domain = set of access-rights

I Can be static (during life of system, during life of process), or dy-
namic (changed by process as needed).

I Domain switching

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 10 / 53



Domain Structure

I Access-right = 〈object-name, rights-set〉 where rights-set is a subset
of all valid operations that can be performed on the object.

• E.g., domain D2 has the access right 〈O2, {write}〉

I Domain = set of access-rights

I Can be static (during life of system, during life of process), or dy-
namic (changed by process as needed).

I Domain switching

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 10 / 53



Domain Structure

I Access-right = 〈object-name, rights-set〉 where rights-set is a subset
of all valid operations that can be performed on the object.

• E.g., domain D2 has the access right 〈O2, {write}〉

I Domain = set of access-rights

I Can be static (during life of system, during life of process), or dy-
namic (changed by process as needed).

I Domain switching

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 10 / 53



Protection Domains

I Each user may be a domain

• The set of accessible objects depends on the identity of the user.
• Domain switching in users logout/login.

I Each process may be a domain

• The set of accessible objects depends on the identity of the process.
• Domain switching when one process sends a message to another

process and then waits for a response.

I Each procedure may be a domain

• The set of accessible objects corresponds to the local variables
defined within the procedure.

• Domain switching when a procedure call is made.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 11 / 53



Protection Domains

I Each user may be a domain
• The set of accessible objects depends on the identity of the user.

• Domain switching in users logout/login.

I Each process may be a domain

• The set of accessible objects depends on the identity of the process.
• Domain switching when one process sends a message to another

process and then waits for a response.

I Each procedure may be a domain

• The set of accessible objects corresponds to the local variables
defined within the procedure.

• Domain switching when a procedure call is made.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 11 / 53



Protection Domains

I Each user may be a domain
• The set of accessible objects depends on the identity of the user.
• Domain switching in users logout/login.

I Each process may be a domain

• The set of accessible objects depends on the identity of the process.
• Domain switching when one process sends a message to another

process and then waits for a response.

I Each procedure may be a domain

• The set of accessible objects corresponds to the local variables
defined within the procedure.

• Domain switching when a procedure call is made.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 11 / 53



Protection Domains

I Each user may be a domain
• The set of accessible objects depends on the identity of the user.
• Domain switching in users logout/login.

I Each process may be a domain

• The set of accessible objects depends on the identity of the process.
• Domain switching when one process sends a message to another

process and then waits for a response.

I Each procedure may be a domain

• The set of accessible objects corresponds to the local variables
defined within the procedure.

• Domain switching when a procedure call is made.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 11 / 53



Protection Domains

I Each user may be a domain
• The set of accessible objects depends on the identity of the user.
• Domain switching in users logout/login.

I Each process may be a domain
• The set of accessible objects depends on the identity of the process.

• Domain switching when one process sends a message to another
process and then waits for a response.

I Each procedure may be a domain

• The set of accessible objects corresponds to the local variables
defined within the procedure.

• Domain switching when a procedure call is made.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 11 / 53



Protection Domains

I Each user may be a domain
• The set of accessible objects depends on the identity of the user.
• Domain switching in users logout/login.

I Each process may be a domain
• The set of accessible objects depends on the identity of the process.
• Domain switching when one process sends a message to another

process and then waits for a response.

I Each procedure may be a domain

• The set of accessible objects corresponds to the local variables
defined within the procedure.

• Domain switching when a procedure call is made.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 11 / 53



Protection Domains

I Each user may be a domain
• The set of accessible objects depends on the identity of the user.
• Domain switching in users logout/login.

I Each process may be a domain
• The set of accessible objects depends on the identity of the process.
• Domain switching when one process sends a message to another

process and then waits for a response.

I Each procedure may be a domain

• The set of accessible objects corresponds to the local variables
defined within the procedure.

• Domain switching when a procedure call is made.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 11 / 53



Protection Domains

I Each user may be a domain
• The set of accessible objects depends on the identity of the user.
• Domain switching in users logout/login.

I Each process may be a domain
• The set of accessible objects depends on the identity of the process.
• Domain switching when one process sends a message to another

process and then waits for a response.

I Each procedure may be a domain
• The set of accessible objects corresponds to the local variables

defined within the procedure.

• Domain switching when a procedure call is made.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 11 / 53



Protection Domains

I Each user may be a domain
• The set of accessible objects depends on the identity of the user.
• Domain switching in users logout/login.

I Each process may be a domain
• The set of accessible objects depends on the identity of the process.
• Domain switching when one process sends a message to another

process and then waits for a response.

I Each procedure may be a domain
• The set of accessible objects corresponds to the local variables

defined within the procedure.
• Domain switching when a procedure call is made.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 11 / 53



UNIX Domain Implementation (1/2)

I Domain = user-id

I Domain switching corresponds to changing the user id:
• via file system
• via passwords
• via commands

I Domain switching via file system:

• Each file has associated with it a domain bit (setuid bit)
• If the setuid bit is on, and a user executes that file, the userID is

set to that of the owner of the file.
• If the setuid bit is off, the userID does not change.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 12 / 53



UNIX Domain Implementation (1/2)

I Domain = user-id

I Domain switching corresponds to changing the user id:
• via file system
• via passwords
• via commands

I Domain switching via file system:

• Each file has associated with it a domain bit (setuid bit)
• If the setuid bit is on, and a user executes that file, the userID is

set to that of the owner of the file.
• If the setuid bit is off, the userID does not change.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 12 / 53



UNIX Domain Implementation (1/2)

I Domain = user-id

I Domain switching corresponds to changing the user id:
• via file system
• via passwords
• via commands

I Domain switching via file system:

• Each file has associated with it a domain bit (setuid bit)
• If the setuid bit is on, and a user executes that file, the userID is

set to that of the owner of the file.
• If the setuid bit is off, the userID does not change.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 12 / 53



UNIX Domain Implementation (1/2)

I Domain = user-id

I Domain switching corresponds to changing the user id:
• via file system
• via passwords
• via commands

I Domain switching via file system:
• Each file has associated with it a domain bit (setuid bit)

• If the setuid bit is on, and a user executes that file, the userID is
set to that of the owner of the file.

• If the setuid bit is off, the userID does not change.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 12 / 53



UNIX Domain Implementation (1/2)

I Domain = user-id

I Domain switching corresponds to changing the user id:
• via file system
• via passwords
• via commands

I Domain switching via file system:
• Each file has associated with it a domain bit (setuid bit)
• If the setuid bit is on, and a user executes that file, the userID is

set to that of the owner of the file.

• If the setuid bit is off, the userID does not change.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 12 / 53



UNIX Domain Implementation (1/2)

I Domain = user-id

I Domain switching corresponds to changing the user id:
• via file system
• via passwords
• via commands

I Domain switching via file system:
• Each file has associated with it a domain bit (setuid bit)
• If the setuid bit is on, and a user executes that file, the userID is

set to that of the owner of the file.
• If the setuid bit is off, the userID does not change.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 12 / 53



UNIX Domain Implementation (2/2)

I Domain switching via passwords:
• su command temporarily switches to another user’s domain when

other domain’s password provided

I Domain switching via commands:
• sudo command prefix executes specified command in another

domain.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 13 / 53



UNIX Domain Implementation (2/2)

I Domain switching via passwords:
• su command temporarily switches to another user’s domain when

other domain’s password provided

I Domain switching via commands:
• sudo command prefix executes specified command in another

domain.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 13 / 53



MULTICS Domain Implementation

I Let Di and Dj be any two domain rings.

I A process in Di can only access segments associated with domains
j , where (j ≥ i).

I Domain switching when a process crosses from one ring to another
by calling a procedure in a different ring.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 14 / 53



MULTICS Domain Implementation

I Let Di and Dj be any two domain rings.

I A process in Di can only access segments associated with domains
j , where (j ≥ i).

I Domain switching when a process crosses from one ring to another
by calling a procedure in a different ring.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 14 / 53



MULTICS Domain Implementation

I Let Di and Dj be any two domain rings.

I A process in Di can only access segments associated with domains
j , where (j ≥ i).

I Domain switching when a process crosses from one ring to another
by calling a procedure in a different ring.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 14 / 53



MULTICS Limitations

I Fairly complex → more overhead

I It does not allow strict need-to-know
• Object accessible in Dj but not in Di , then j must be < i .
• But then every segment accessible in Di also accessible in Dj .

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 15 / 53



Access Matrix

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 16 / 53



Access Matrix

I View protection as a access matrix.

I Rows represent domains.

I Columns represent objects.

I access(i , j) is the set of operations that a process executing in
domaini can invoke on objectj .

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 17 / 53



Access Matrix

I View protection as a access matrix.

I Rows represent domains.

I Columns represent objects.

I access(i , j) is the set of operations that a process executing in
domaini can invoke on objectj .

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 17 / 53



Access Matrix

I View protection as a access matrix.

I Rows represent domains.

I Columns represent objects.

I access(i , j) is the set of operations that a process executing in
domaini can invoke on objectj .

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 17 / 53



Access Matrix

I View protection as a access matrix.

I Rows represent domains.

I Columns represent objects.

I access(i , j) is the set of operations that a process executing in
domaini can invoke on objectj .

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 17 / 53



Use of Access Matrix

I If a process in domain Di tries to do an operation on object Oj , then
the operation must be in the access matrix.

I User who creates object can define access column for that object.

I For a new object Oj , the column Oj is added to the access matrix.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 18 / 53



Access Matrix With Domains As Objects

I switch operation: switching a process from one domain to another.

I Including domains among the objects of the access matrix.

I Switching from domain Di to domain Dj is allowed if and only if the
access right switch ∈ access(i , j).

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 19 / 53



Access Matrix With Domains As Objects

I switch operation: switching a process from one domain to another.

I Including domains among the objects of the access matrix.

I Switching from domain Di to domain Dj is allowed if and only if the
access right switch ∈ access(i , j).

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 19 / 53



Access Matrix With Domains As Objects

I switch operation: switching a process from one domain to another.

I Including domains among the objects of the access matrix.

I Switching from domain Di to domain Dj is allowed if and only if the
access right switch ∈ access(i , j).

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 19 / 53



Access Matrix Operations

I Allowing controlled change in the contents of the access-matrix en-
tries requires three additional operations:

• copy: applicable to an object
• owner: applicable to an object
• control: applicable to domain object

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 20 / 53



Access Matrix copy Operation

I With the copy right, a domain
can copy its access right to
another domain.

I Denoted by an asterisk (*)
appended to the access right.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 21 / 53



Access Matrix owner Operation

I With the owner right, a
process in domain Di can add
and remove any right in any
entry in column j .

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 22 / 53



Access Matrix control Operation

I If access(i , j) includes the control right, then a process in domain
Di can remove any access right from row j .

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 23 / 53



Access Matrix Mechanism and Policy

I Access matrix design separates mechanism from policy.

I Mechanism
• OS provides access-matrix + rules
• It ensures that the matrix is only manipulated by authorized agents

and that rules are strictly enforced.

I Policy
• User dictates policy.
• Who can access what object and in what mode.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 24 / 53



Access Matrix Mechanism and Policy

I Access matrix design separates mechanism from policy.

I Mechanism
• OS provides access-matrix + rules
• It ensures that the matrix is only manipulated by authorized agents

and that rules are strictly enforced.

I Policy
• User dictates policy.
• Who can access what object and in what mode.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 24 / 53



Access Matrix Mechanism and Policy

I Access matrix design separates mechanism from policy.

I Mechanism
• OS provides access-matrix + rules
• It ensures that the matrix is only manipulated by authorized agents

and that rules are strictly enforced.

I Policy
• User dictates policy.
• Who can access what object and in what mode.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 24 / 53



Implementation of
Access Matrix

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 25 / 53



Implementation of Access Matrix

I In general, the access matrix is sparse: most of the entries will be
empty.

I Option 1: Global table

I Option 2: Access lists for objects

I Option 3: Capability list for domains

I Option 4: Lock-key

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 26 / 53



Implementation of Access Matrix

I In general, the access matrix is sparse: most of the entries will be
empty.

I Option 1: Global table

I Option 2: Access lists for objects

I Option 3: Capability list for domains

I Option 4: Lock-key

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 26 / 53



Option 1 - Global Table

I Store ordered triples 〈domain, object, rights set〉 in table.

I A requested operation M on object Oj within domain Di → search
table for 〈Di ,Oj ,Rk〉.

• with M ∈ Rk

I But table could be large → won’t fit in main memory.

I Difficult to group objects, e.g., consider an object that all domains
can read.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 27 / 53



Option 1 - Global Table

I Store ordered triples 〈domain, object, rights set〉 in table.

I A requested operation M on object Oj within domain Di → search
table for 〈Di ,Oj ,Rk〉.

• with M ∈ Rk

I But table could be large → won’t fit in main memory.

I Difficult to group objects, e.g., consider an object that all domains
can read.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 27 / 53



Option 1 - Global Table

I Store ordered triples 〈domain, object, rights set〉 in table.

I A requested operation M on object Oj within domain Di → search
table for 〈Di ,Oj ,Rk〉.

• with M ∈ Rk

I But table could be large → won’t fit in main memory.

I Difficult to group objects, e.g., consider an object that all domains
can read.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 27 / 53



Option 1 - Global Table

I Store ordered triples 〈domain, object, rights set〉 in table.

I A requested operation M on object Oj within domain Di → search
table for 〈Di ,Oj ,Rk〉.

• with M ∈ Rk

I But table could be large → won’t fit in main memory.

I Difficult to group objects, e.g., consider an object that all domains
can read.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 27 / 53



Option 2 - Access Lists For Objects

I Each column implemented as an access list for one object.

I Per-object list consists of ordered pairs 〈domain, rights set〉, defining
all domains with non-empty set of access rights for the object.

I Easily extended to contain default set → if M ∈ default set, also
allow access.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 28 / 53



Option 2 - Access Lists For Objects

I Each column implemented as an access list for one object.

I Per-object list consists of ordered pairs 〈domain, rights set〉, defining
all domains with non-empty set of access rights for the object.

I Easily extended to contain default set → if M ∈ default set, also
allow access.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 28 / 53



Option 2 - Access Lists For Objects

I Each column implemented as an access list for one object.

I Per-object list consists of ordered pairs 〈domain, rights set〉, defining
all domains with non-empty set of access rights for the object.

I Easily extended to contain default set → if M ∈ default set, also
allow access.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 28 / 53



Option 3 - Capability List For Domains (1/2)

I Instead of object-based, list is domain-based.

I Capability list for domain is list of objects together with operations
allows on them.

I Object represented by its name or address, called a capability.

I To execute operation M on object Oj , a process requests operation
and specifies capability as parameter.

• Possession of capability means access is allowed

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 29 / 53



Option 3 - Capability List For Domains (1/2)

I Instead of object-based, list is domain-based.

I Capability list for domain is list of objects together with operations
allows on them.

I Object represented by its name or address, called a capability.

I To execute operation M on object Oj , a process requests operation
and specifies capability as parameter.

• Possession of capability means access is allowed

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 29 / 53



Option 3 - Capability List For Domains (1/2)

I Instead of object-based, list is domain-based.

I Capability list for domain is list of objects together with operations
allows on them.

I Object represented by its name or address, called a capability.

I To execute operation M on object Oj , a process requests operation
and specifies capability as parameter.

• Possession of capability means access is allowed

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 29 / 53



Option 3 - Capability List For Domains (1/2)

I Instead of object-based, list is domain-based.

I Capability list for domain is list of objects together with operations
allows on them.

I Object represented by its name or address, called a capability.

I To execute operation M on object Oj , a process requests operation
and specifies capability as parameter.

• Possession of capability means access is allowed

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 29 / 53



Option 3 - Capability List For Domains (2/2)

I Capability list associated with domain, but never directly accessible
by domain.

• Rather, protected object, maintained by OS and accessed indirectly
• Like a secure pointer

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 30 / 53



Option 4 - Lock-Key

I Compromise between access lists and capability lists.

I Each object has a list of unique bit patterns, called locks.

I Each domain has a list of unique bit patterns called keys.

I Process in a domain can only access an object, if the domain has
key that matches one of the locks.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 31 / 53



Option 4 - Lock-Key

I Compromise between access lists and capability lists.

I Each object has a list of unique bit patterns, called locks.

I Each domain has a list of unique bit patterns called keys.

I Process in a domain can only access an object, if the domain has
key that matches one of the locks.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 31 / 53



Option 4 - Lock-Key

I Compromise between access lists and capability lists.

I Each object has a list of unique bit patterns, called locks.

I Each domain has a list of unique bit patterns called keys.

I Process in a domain can only access an object, if the domain has
key that matches one of the locks.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 31 / 53



Option 4 - Lock-Key

I Compromise between access lists and capability lists.

I Each object has a list of unique bit patterns, called locks.

I Each domain has a list of unique bit patterns called keys.

I Process in a domain can only access an object, if the domain has
key that matches one of the locks.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 31 / 53



Comparison of Implementations (1/3)

I Many trade-offs to consider.

I Global table is simple, but can be large.

I Access lists correspond to needs of users
• Because access-right info for a domain is not localized, determining

the set of access rights for each domain is difficult.
• Every access to an object must be checked: Many objects and

access rights → slow

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 32 / 53



Comparison of Implementations (1/3)

I Many trade-offs to consider.

I Global table is simple, but can be large.

I Access lists correspond to needs of users
• Because access-right info for a domain is not localized, determining

the set of access rights for each domain is difficult.
• Every access to an object must be checked: Many objects and

access rights → slow

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 32 / 53



Comparison of Implementations (1/3)

I Many trade-offs to consider.

I Global table is simple, but can be large.

I Access lists correspond to needs of users
• Because access-right info for a domain is not localized, determining

the set of access rights for each domain is difficult.
• Every access to an object must be checked: Many objects and

access rights → slow

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 32 / 53



Comparison of Implementations (2/3)

I Capability list is useful for localizing info for a given process.
• But revocation capabilities can be inefficient.

I Lock-key effective and flexible, keys can be passed freely from do-
main to domain, easy revocation

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 33 / 53



Comparison of Implementations (2/3)

I Capability list is useful for localizing info for a given process.
• But revocation capabilities can be inefficient.

I Lock-key effective and flexible, keys can be passed freely from do-
main to domain, easy revocation

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 33 / 53



Comparison of Implementations (3/3)

I Most systems use combination of access lists and capabilities.

I First access to an object → access list searched.
• If allowed, capability created and attached to process: additional

accesses need not be checked
• After last access, capability destroyed.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 34 / 53



Comparison of Implementations (3/3)

I Most systems use combination of access lists and capabilities.

I First access to an object → access list searched.
• If allowed, capability created and attached to process: additional

accesses need not be checked
• After last access, capability destroyed.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 34 / 53



Access Control

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 35 / 53



Access Control (1/2)

I Oracle Solaris 10 provides role-based access control (RBAC) to im-
plement least privilege.

I Privilege is a right to execute a system call or use an option within
a system call.

I Can be assigned to processes.

I Users are assigned roles granting access to privileges and programs:
enable role via password to gain its privileges.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 36 / 53



Access Control (1/2)

I Oracle Solaris 10 provides role-based access control (RBAC) to im-
plement least privilege.

I Privilege is a right to execute a system call or use an option within
a system call.

I Can be assigned to processes.

I Users are assigned roles granting access to privileges and programs:
enable role via password to gain its privileges.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 36 / 53



Access Control (1/2)

I Oracle Solaris 10 provides role-based access control (RBAC) to im-
plement least privilege.

I Privilege is a right to execute a system call or use an option within
a system call.

I Can be assigned to processes.

I Users are assigned roles granting access to privileges and programs:
enable role via password to gain its privileges.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 36 / 53



Access Control (1/2)

I Oracle Solaris 10 provides role-based access control (RBAC) to im-
plement least privilege.

I Privilege is a right to execute a system call or use an option within
a system call.

I Can be assigned to processes.

I Users are assigned roles granting access to privileges and programs:
enable role via password to gain its privileges.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 36 / 53



Access Control (2/2)

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 37 / 53



Revocation of Access Rights

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 38 / 53



Revocation of Access Rights (1/2)

I Various options to remove the access right of a domain to an object.

I Immediate vs. delayed
• If delayed, can we find out when it will take place?

I Selective vs. general
• Affect all the users who have access right to that object, or just a

selected group of users?

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 39 / 53



Revocation of Access Rights (1/2)

I Various options to remove the access right of a domain to an object.

I Immediate vs. delayed
• If delayed, can we find out when it will take place?

I Selective vs. general
• Affect all the users who have access right to that object, or just a

selected group of users?

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 39 / 53



Revocation of Access Rights (1/2)

I Various options to remove the access right of a domain to an object.

I Immediate vs. delayed
• If delayed, can we find out when it will take place?

I Selective vs. general
• Affect all the users who have access right to that object, or just a

selected group of users?

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 39 / 53



Revocation of Access Rights (2/2)

I Partial vs. total
• Can a subset of the rights associated with an object be revoked, or

must we revoke all access rights for this object?

I Temporary vs. permanent
• Can access be revoked permanently, or can access be revoked and

later be obtained again?

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 40 / 53



Revocation of Access Rights (2/2)

I Partial vs. total
• Can a subset of the rights associated with an object be revoked, or

must we revoke all access rights for this object?

I Temporary vs. permanent
• Can access be revoked permanently, or can access be revoked and

later be obtained again?

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 40 / 53



Access List

I Delete access rights from access list

I Simple: search the access list and remove entry

I Immediate, general or selective, total or partial, permanent or tem-
porary.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 41 / 53



Capability List (1/5)

I More difficult: because the capabilities are distributed throughout
the system.

I Scheme required to locate capability in the system before capability
can be revoked:

• Reacquisition
• Back-pointers
• Indirection
• Keys

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 42 / 53



Capability List (2/5)

I Reacquisition: periodically, capabilities are deleted from each do-
main.

I If a process needs a capability, it may try to reacquire the capability.

I If access has been revoked, the process will not be able to reacquire
the capability.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 43 / 53



Capability List (3/5)

I Back-pointers: set of pointers from each object to all capabilities of
that object.

I When revocation is required, we can follow these pointers, changing
the capabilities as necessary.

I Its implementation is costly.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 44 / 53



Capability List (4/5)

I Indirection: capability points to global table entry, which points to
the object.

I Delete entry from global table.

I Not selective.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 45 / 53



Capability List (5/5)

I Keys: unique bits associated with capability, generated when capa-
bility created.

I Master key associated with object, key matches master key for ac-
cess.

I Revocation: create new master key

I Policy decision of who can create and modify keys - object owner or
others?

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 46 / 53



Language-Based Protection

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 47 / 53



Language-Based Protection

I Protection is usually achieved through an OS kernel: high overhead

I OSs have become more complex.

• Concern for the function to be invoked extends beyond a set of
system-defined functions, such as standard file-access methods, to
include user-defined functions as well.

I Policies for resource use may also change over time.
• So, protection should be available as a tool for use by the

application designer.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 48 / 53



Language-Based Protection

I Protection is usually achieved through an OS kernel: high overhead

I OSs have become more complex.

• Concern for the function to be invoked extends beyond a set of
system-defined functions, such as standard file-access methods, to
include user-defined functions as well.

I Policies for resource use may also change over time.
• So, protection should be available as a tool for use by the

application designer.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 48 / 53



Language-Based Protection

I Protection is usually achieved through an OS kernel: high overhead

I OSs have become more complex.
• Concern for the function to be invoked extends beyond a set of

system-defined functions, such as standard file-access methods, to
include user-defined functions as well.

I Policies for resource use may also change over time.
• So, protection should be available as a tool for use by the

application designer.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 48 / 53



Language-Based Protection

I Protection is usually achieved through an OS kernel: high overhead

I OSs have become more complex.
• Concern for the function to be invoked extends beyond a set of

system-defined functions, such as standard file-access methods, to
include user-defined functions as well.

I Policies for resource use may also change over time.
• So, protection should be available as a tool for use by the

application designer.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 48 / 53



Compiler-Based Enforcement

I Specification of protection in a programming language allows the
high-level description of policies for the allocation and use of re-
sources

I Language implementation can provide software for protection en-
forcement when automatic hardware-supported checking is unavail-
able.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 49 / 53



Protection in Java

I Protection is handled by the Java Virtual Machine (JVM).

I A class is assigned a protection domain when it is loaded by the
JVM.

I The protection domain indicates what operations the class can (and
cannot) perform.

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 50 / 53



Summary

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 51 / 53



Summary

I Protection problem

I Principle of least privilege

I The need-to-know principle:

I Domain structure: user, process, procedure

I Access matrix: switch, copy, owner, control

I Access matrix implementation: global table, access lists for objects,
capability list for domains, lock-key

I Revocation of access rights

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 52 / 53



Summary

I Protection problem

I Principle of least privilege

I The need-to-know principle:

I Domain structure: user, process, procedure

I Access matrix: switch, copy, owner, control

I Access matrix implementation: global table, access lists for objects,
capability list for domains, lock-key

I Revocation of access rights

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 52 / 53



Summary

I Protection problem

I Principle of least privilege

I The need-to-know principle:

I Domain structure: user, process, procedure

I Access matrix: switch, copy, owner, control

I Access matrix implementation: global table, access lists for objects,
capability list for domains, lock-key

I Revocation of access rights

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 52 / 53



Summary

I Protection problem

I Principle of least privilege

I The need-to-know principle:

I Domain structure: user, process, procedure

I Access matrix: switch, copy, owner, control

I Access matrix implementation: global table, access lists for objects,
capability list for domains, lock-key

I Revocation of access rights

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 52 / 53



Summary

I Protection problem

I Principle of least privilege

I The need-to-know principle:

I Domain structure: user, process, procedure

I Access matrix: switch, copy, owner, control

I Access matrix implementation: global table, access lists for objects,
capability list for domains, lock-key

I Revocation of access rights

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 52 / 53



Summary

I Protection problem

I Principle of least privilege

I The need-to-know principle:

I Domain structure: user, process, procedure

I Access matrix: switch, copy, owner, control

I Access matrix implementation: global table, access lists for objects,
capability list for domains, lock-key

I Revocation of access rights

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 52 / 53



Summary

I Protection problem

I Principle of least privilege

I The need-to-know principle:

I Domain structure: user, process, procedure

I Access matrix: switch, copy, owner, control

I Access matrix implementation: global table, access lists for objects,
capability list for domains, lock-key

I Revocation of access rights

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 52 / 53



Questions?

Amir H. Payberah (Tehran Polytechnic) Protection 1393/9/24 53 / 53


