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Background

» Processes can execute concurrently.
» Concurrent access to shared data may result in data inconsistency.

» Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating processes.
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Producer-Consumer Problem

» Providing a solution to the producer-consumer problem that fills all
the buffers.

» Having an integer counter that keeps track of the number of full
buffers.
e |nitially, counter is set to 0.
e The producer produces a new buffer: increment the counter
¢ The consumer consumes a buffer: decrement the counter
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Race Condition

» counter++ could be implemented as
registerl = counter
registerl = registerl + 1
counter = registerl

» counter-- could be implemented as
register2 = counter
register2 = register2 - 1
counter = register2

» Consider this execution interleaving with count = 5 initially:
SO: producer: registerl = counter: registerl = 5
S1: producer: registerl = registerl + 1: registerl = 6
S2: consumer: register2 = counter: register2 = 5
S3: consumer: register2 = register2 - 1: register2 = 4
S4: producer: counter = registerl: counter = 6
S5: consumer: counter = register2: counter = 4
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The Critical-Section Problem (1/2)

» Consider system of n processes {po, p1,- -+ ,Pn—1}-

» Each process has CS segment of code.
¢ Process may be changing common variables, updating table, writing
file, etc.
* When one process in CS, no other may be in its CS.



I
The Critical-Section Problem (2/2)

» CS problem is to design protocol to solve this.

» Each process must ask permission to enter CS in entry section, may
follow CS with exit section, then remainder section.

do {

critical section

exit section

remainder section

} while (true);

General structure of process P;.



N
CS Problem Solution Requirements (1/3)

» Mutual Exclusion: if process P; is executing in its CS, then no other
processes can be executing in their CSs.

do {

critical section

exit section

remainder section

} while (true);



-
CS Problem Solution Requirements (2/3)

» Progress: if no process is executing in its CS and there exist some
processes that wish to enter their CS, then the selection of the pro-
cesses that will enter the CS next cannot be postponed indefinitely.

do {

critical section

exit section

remainder section

} while (true);
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CS Problem Solution Requirements (3/3)

» Bounded Waiting: a bound must exist on the number of times that
other processes are allowed to enter their CSs after a process has
made a request to enter its CS and before that request is granted.

do {

critical section

exit section

remainder section

} while (true);
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CS Handling in OS

» Two approaches depending on if kernel is preemptive or non-
preemptive.

» Preemptive: allows preemption of process when running in kernel
mode.

» Non-preemptive: runs until exits kernel mode, blocks, or voluntarily
yields CPU.

o Essentially free of race conditions in kernel mode.
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v

Two-process solution.

v

The two processes share two variables:

e int turn
e boolean flagl[2]

» turn: indicates whose turn it is to enter the CS.

v

flag: indicates if a process is ready to enter the CS, i.e.,
flag[i] = true implies that process P; is ready.



I
Algorithm for Process P;

do {

flag[i]

turn

true;

3

while (flag[j] && turn

= 3);

critical section
flag[i]

false;

remainder section
} while (true);
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INNSS———
CS Requirements

» Provable that the three CS requirement are met:

@ Mutual exclusion is preserved:

P; enters CS only if: either flag[j] = false or turn = i
@ Progress requirement is satisfied.
@ Bounded-waiting requirement is met.
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Synchronization Hardware

» Many systems provide hardware support for implementing the CS
code.

» Uniprocessors: could disable interrupts: running code without pre-
emption.

» Modern machines provide atomic hardware instructions:
atomic = non-interruptible



INNSS———
Solution to CS Problem Using Locks

» Protecting CS via locks.

do {

Iacquire lock

critical section

release lock

remainder section

} while (TRUE) ;
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Atomic Instructions

» test_and_set

» compare_and_swap



L
test_and set Instruction

» Executed atomically.

» Returns the original value of passed parameter.

» Set the new value of passed parameter to true.
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compare_and swap Instruction

» Executed atomically.

» Returns the original value of passed parameter value.

» Set the value the value of the passed parameter new value but
only if value == expected.




L
Solution Using compare and swap

» Shared integer lock initialized to 0.




I
compare and swap and compare and swap Problem

» Although these algorithms satisfy the mutual-exclusion requirement,
they do not satisfy the bounded-waiting requirement.



Mutex Locks
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Mutex Locks (1/2)

» Previous solutions are complicated and generally inaccessible to ap-
plication programmers.

» OS designers build software tools to solve CS problem.

» Simplest is mutex lock.
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Mutex Locks (2/2)

» Protect a CS by first acquire() a lock then release() the lock.
e Boolean variable indicating if lock is available or not.

» Calls to acquire() and release() must be atomic.
e Usually implemented via hardware atomic instructions.

» But this solution requires busy waiting.
e This lock therefore called a spinlock.



acquire() and release()

do {

acguire lock
critical section

release lock

remainder section

} while (true):
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BN
Initializing Mutexes

» Mutexes are represented by the pthread mutex_t object.




BN
Locking Mutexes

» pthread mutex_lock() locks (acquires) a pthreads mutex.




BN
Unlocking Mutexes

» pthread mutex unlock() unlocks (releases) a pthreads mutex.




Mutex Example
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o
Condition Variable

» Mutex is very resource consuming since the thread would be
continuously busy in this activity.

» A condition variable is a way to achieve the same goal without
polling.

» A condition variable allows one thread to inform other threads
about changes in the state of a shared variable.



|
Waiting on Condition Variables

» pthread cond wait () must be called after
pthread mutex_lock() and before pthread mutex_unlock().

» pthread cond wait () release the mutex lock while it is waiting,
so that pthread cond_signal (), which is also called in the mutex
should get access and can give signal to waiting thread to awake.

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex) ;
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INNSS———
Signaling on Condition Variables

» This routine is used to wakeup the thread which is waiting for any
condition to occur.

» If in any case pthread cond_signal () calls first before the
execution of pthread_cond wait () then it cannot awake the
thread which is waiting.




BN
Condition Variable Calling Format




Condition Variable Example
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Summary

Access to shared data

v

Race condition

v

\{

The critical-section problem

v

Requirements: mutual-exclusion, progress, bounding waiting

v

Peterson solution

v

Synchronization hardware

v

Mutex lock and condition variable



Questions?

Some slides were derived from Avi Silberschatz slides. '




