
Utilizing Large Language Models for Ablation Studies
in Machine Learning and Deep Learning

Sina Sheikholeslami
KTH Royal Institute of Technology

Stockholm, Sweden
sinash@kth.se

Hamid Ghasemirahni
KTH Royal Institute of Technology

Stockholm, Sweden
hamidgr@kth.se

Amir H. Payberah
KTH Royal Institute of Technology

Stockholm, Sweden
payberah@kth.se

Tianze Wang
KTH Royal Institute of Technology

Stockholm, Sweden
tianzew@kth.se

Jim Dowling
Hopsworks AB

Stockholm, Sweden
jim@hopsworks.ai

Vladimir Vlassov
KTH Royal Institute of Technology

Stockholm, Sweden
vladv@kth.se

Abstract

In Machine Learning (ML) and Deep Learning (DL) research,
ablation studies are typically performed to provide insights
into the individual contribution of di�erent building blocks
and components of an ML/DL system (e.g., a deep neural net-
work), as well as to justify that certain additions or modi�ca-
tions to an existing ML/DL system can result in the proposed
improved performance. Although dedicated frameworks for
performing ablation studies have been introduced in recent
years, conducting such experiments is still associated with
requiring tedious, redundant work, typically involving main-
taining redundant and nearly identical versions of code that
correspond to di�erent ablation trials. Inspired by the recent
promising performance of Large Language Models (LLMs) in
the generation and analysis of ML/DL code, in this paper we
discuss the potential of LLMs as facilitators of ablation study
experiments for scienti�c research projects that involve or
deal with ML and DL models. We �rst discuss the di�erent
ways in which LLMs can be utilized for ablation studies and
then present the prototype of a tool called AblationMage,
that leverages LLMs to semi-automate the overall process
of conducting ablation study experiments. We showcase the
usability of AblationMage as a tool through three exper-
iments, including one in which we reproduce the ablation
studies from a recently published applied DL paper.

CCS Concepts: • Computing methodologies→Model

development and analysis;Machine learning.

Keywords: Ablation Studies, Machine Learning, Deep Learning,

Deep Neural Networks, Feature Ablation, Model Ablation, Large

Language Models

This work is licensed under a Creative Commons Attribution-

NonCommercial 4.0 International License.

EuroMLSys ’25, Rotterdam, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1538-9/2025/03

h�ps://doi.org/10.1145/3721146.3721957

ACM Reference Format:

Sina Sheikholeslami, Hamid Ghasemirahni, Amir H. Payberah,

Tianze Wang, Jim Dowling, and Vladimir Vlassov. 2025. Utilizing

Large Language Models for Ablation Studies in Machine Learning

and Deep Learning. In The 5th Workshop on Machine Learning and

Systems (EuroMLSys ’25), March 30-April 3, 2025, Rotterdam, Nether-

lands. ACM, New York, NY, USA, 8 pages. h�ps://doi.org/10.1145/

3721146.3721957

1 Introduction

Deep neural networks (DNNs) are becoming increasingly
larger in size and complexity. In just a decade, the size of prac-
tical and popular networks has grown from around 62million
parameters (AlexNet [16]) to hundreds of billions of parame-
ters (e.g., Megatron-Turing NLG [24], PaLM [4], Falcon [21],
Vision Transformer (ViT) [6], and Llama 3 [7]). Meanwhile,
through the introduction of new architectures and training
approaches, di�erent modules andmechanisms for construct-
ing and training DNNs have become widely adapted (e.g.,
inception modules [26], residual connections [12], and multi-
head attention [28]).
A common practice in Machine Learning (ML) and Deep

Learning (DL) research and creating ML/DL systems is to
start with an established network architecture (e.g., a Trans-
former [28]) or training method (e.g., Adam optimizer [15])
a “baseline” and try to improve that architecture or training
method with regard to speci�c downstream tasks. The new
architecture or method will then become di�erent from the
baseline in terms of the number of “components” that may
have been added to or removed from the baseline. After that,
to evaluate the new architecture or method, its performance
on a number of benchmarks will be compared to that of the
baseline as well as the state-of-the-art.
While such experimental results can be enough to deter-

mine the performance of the new architecture/method “as a
whole” compared to the baseline, they may not provide infor-
mation about the contribution of the di�erent components
of the architecture/method to its performance. To that end,
a simple technique is to perform a systematic experiment

https://orcid.org/0000-0001-7236-4637
https://orcid.org/0000-0002-0034-5098
https://orcid.org/0000-0002-2748-8929
https://orcid.org/0000-0003-0422-6560
https://orcid.org/0000-0002-9484-6714
https://orcid.org/0000-0002-6779-7435
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1145/3721146.3721957
https://doi.org/10.1145/3721146.3721957
https://doi.org/10.1145/3721146.3721957


EuroMLSys ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Sheikholeslami et al.

known as ablation study [20, 22, 23]. Essentially, in an abla-
tion study, the changed components are added/removed from
the baseline one by one or in groups, and the performance
of each of these di�erent “con�gurations” is then compared
to the baseline as well as the �nal architecture/method. This
way, one can reason about the individual contribution of the
di�erent added, removed, or modi�ed components to the
overall performance.
However, while performing an ablation study seems to

be a straightforward task, it is still missing from many of
the scienti�c publications in the various �elds that deal with
ML/DL. This is partly due to its added cost and manual e�ort,
as it requires performing extra experiments and maintaining
multiple versions of the code required for de�ning and train-
ing the di�erent con�gurations. Although in recent years,
dedicated frameworks for ablation studies in ML/DL have
been introduced to address these challenges [8, 23], many
practitioners still choose to either perform ablation studies
manually (e.g., to avoid adding another framework or library
to their project) or forgo them entirely.
Meanwhile, a recent trend in the ML/DL research com-

munity is to use Large Language Models (LLMs) and dif-
ferent prompting techniques to provide novel solutions or
to enhance the existing solutions for various downstream
tasks [9, 27, 29, 32]. In particular, LLMs have shown promis-
ing results in neural architecture search [2, 13] and hyperpa-
rameter optimization [18, 33]. Considering that the training
data for the leading publicly available LLMs includes a large
corpus of codes and documents related to DNN training
available on the web, LLMs have shown good potential in
generating sound and relevant code for di�erent ML/DL
stages and tasks [31].

Contributions:Motivated by these e�orts, we (8) inves-
tigate how LLMs can be leveraged for performing ablation
experiments, speci�cally by helping in the design of the ab-
lation study, generating correct and coherent artifacts for
performing the ablation trials, and analyzing and presenting
the results. We then (88) introduce AblationMage, a tool
that leverages an LLM to semi-automate the process of con-
ducting ablation studies in ML/DL. Finally, we (888) evaluate
the usability of AblationMage using three examples related
to common scenarios related to ablation studies. To the best
of our knowledge, AblationMage is the �rst LLM-based
dedicated tool for automating and conducting ablation study
experiments1.

2 Using LLMs for Ablation Studies

We now discuss settings and use cases in which LLMs can
enable or enhance ablation study experiments. To aid the
discussion, we break down an ablation study into three steps:
(8) study design, (88) experimentation, and (888) analysis &

1Source code and scripts to reproduce the experiments are available at

h�ps://github.com/ssheikholeslami/utilizing-llms-for-ablation-studies.

presentation.

Study Design. In the �rst step, the user has to decide how
to design the ablation study experiment. This includes iden-
tifying the baseline and the changed (added, removed, or
modi�ed) components. It is worth noting that the compo-
nents can relate to any part of the ML/DL data and training
pipelines, e.g., dataset features can also be included in an
ablation study (a.k.a. “feature ablation”). Here, the user can
provide the code and/or a description of the setting to the
LLM, and the LLM can come up with suggestions for di�er-
ent ablation trials. Ideally, an LLMmay be able to identify the
changed components compared to a baseline, given a �nal
implementation and a speci�cation (either in code or text) of
the baseline. This is, in particular, very straightforward for
ablation studies that deal with the training data, e.g., when
a feature ablation study is desired.

Experimentation. Given a set of speci�cations for the dif-
ferent ablation trials, either as an output from an LLM or
provided by the user, the second step deals with study ex-
ecution. In this step, an LLM can provide executable code
and artifacts corresponding to di�erent ablation trials in the
ablation study. The user can, e.g., also ask for a “di�” for the
code of each trial to be able to quickly verify the correctness
of the provided codes.

Analysis & Presentation. In the �nal step, the LLM can be
used to provide explanations about the results of the ablation
study, and to quickly generate plots and �gures. The user
can also ask for scripts that automate the execution and pre-
sentation of results for the full ablation study, e.g., to include
as part of the artifacts of a publication.

3 AblationMage

We now discuss the prototype implementation of Ablation-
Mage, a reusable and customizable tool for ablation experi-
ments. An overview of AblationMage is shown in Figure 1.
AblationMage receives the original or annotated source
code of the system alongside any other documentation, such
as dataset properties or the related research paper, as the
input. It can then provide suggestions for annotations related
to trials (if the code does not have any annotations), and the
user can modify and verify them. The annotated code is then
analyzed to �nd and extract the associated code snippets.
Then, a full prompt is generated by AblationMage, and an
LLM will be queried. We refer to this as the �rst call.

The response of the LLMwill include the executable source
code(s), instructions for conducting the trials, description of
added trials, and any code added for analysis and presenta-
tion. Once the user executes the provided code(s), in case
there are any errors or issues related to the correctness, they

https://github.com/ssheikholeslami/utilizing-llms-for-ablation-studies


Utilizing LLMs for Ablation Studies in ML and DL EuroMLSys ’25, March 30-April 3, 2025, Ro�erdam, Netherlands

Large Language Model

Analysis & 

Presentation

Execution

Suggestion 1:

Suggestion 2:

…
Suggestion N:

Interactive 

Code Annotator

(Annotated) 

ML/DL System 

Source Code

Extra 

Documents

Dataset 

Properties

AblationMage
Correctness Feedback

Prompt 

Manager

Annotation 

Extractor

User

User

Figure 1. Overview of AblationMage.

can use AblationMage to perform a follow-up call, which
prompts the LLM to �x the speci�c issues. The user can re-
peat this process until desired artifacts are created. Example
prompts and LLM responses for each of these types of calls
(�rst or follow-up call) can be found in the Appendix.

Currently, AblationMage supports two types of anno-
tations: explicit annotations and hint annotations. Explicit
annotations require the user to explicitly annotate the lines
of code that may correspond to ablation trials. This is par-
ticularly useful for model/layer ablation trials, and the users
can add “#ABLATABLE_COMPONENT” as comments to the lines
of code that correspond to adding di�erent layers to a model
(see Listing 1 as an example). The users can also provide hint
annotations, which are natural language descriptions of the
desired ablation trials that are added in the form of comment
blocks before related parts of the code (e.g., one might place
a hint annotation before the de�nition of a function that
creates a model, as shown in Listing 3).

Depending on how sophisticated the original implementa-
tion (base code) is, the LLMmight still be able to “understand”
the logic of the base code and help in both the design and
implementation of the ablation trials without any explicit
annotations or correct placement of hint annotations; how-
ever, the LLMs seem to bene�t from documentation and code
comments in code understanding [25].

AblationMage is implemented in Python and uses Hug-
gingFace’s Chat Templates to communicate with LLMs. The
current version supports the OpenAI and Anthropic APIs,
but it can be easily extended to support other standard LLM
APIs. Next, we will evaluate the usability of AblationMage

while using Claude Sonnet 3.5 as the LLM backend.

4 Evaluation & Discussion

To evaluate the usability of our prototype implementation of
AblationMage, we conduct three experiments: in the �rst

experiment, we use AblationMage to generate code for
an ablation study of a few layers of a Convolutional Neural
Network (CNN) trained on the CIFAR-10 dataset, where we
annotate the lines of code that correspond to de�ning the
layers of the CNN with #ABLATABLE_COMPONENT comments.
In the second experiment, we try to reproduce the ablation
studies mentioned in a recently published paper [5]. In the
aforementioned paper, the authors discuss an ablation study
in their manuscript and have made their code repository
publicly available. However, the said repository does not
contain the code related to their ablation studies. We are
interested to see if we can use AblationMage to generate
the code to perform the ablation studies given the original
implementation by the authors. Finally, in the third exper-
iment, we use AblationMage for a feature ablation study
of the Higgs Boson Machine Learning Challenge dataset [1]
when used for training an XGBoost [3] classi�er.

4.1 Experiment 1: Layer Ablation of a CNN

For this experiment, we start with a typical PyTorch code that
trains a simple CNN on the CIFAR-10 dataset. We are inter-
ested in performing a layer ablation experiment, in which the
goal is to study the relative contribution of a convolutional
layer (conv2) as well as a fully connected layer (fc1). To this
end, we annotate the model creation code lines correspond-
ing to those layers with #ABLATABLE_COMPONENT comments.
Listing 1 shows the annotated code of the model creation
function.

The next step is to pass this annotated code to Ablation-

Mage, and wait for it to initiate an API Call to an LLM
and return the results (this corresponds to the �rst call as
discussed in the previous section). Listing 2 shows how to
initiate a �rst call. The user can expect to receive the re-
sponse after a few seconds. The response is returned in the
form of a text �le containing both the full versions of the



EuroMLSys ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Sheikholeslami et al.

Listing 1: Annotating speci�c lines of the original code to
specify ablation trials (explicit annotation).
...

class CIFAR10CNN(nn.Module):

def __init__(self):

super(CIFAR10CNN , self).__init__ ()

self.conv1 = nn.Conv2d(3, 32, kernel_size =3, padding =1)

self.conv2 = nn.Conv2d (32, 64, kernel_size =3, padding =1) #

ABLATABLE_COMPONENT

self.conv3 = nn.Conv2d (64, 128, kernel_size =3, padding =1)

self.pool = nn.MaxPool2d (2, 2)

self.fc1 = nn.Linear (128 * 4 * 4, 512) #

ABLATABLE_COMPONENT

self.fc2 = nn.Linear (512, 10)

self.dropout = nn.Dropout (0.5)

def forward(self , x):

x = self.pool(F.relu(self.conv1(x)))

...

Listing 2: First call to an LLM using AblationMage.
python ablationmage.py first -call -a anthropic -m claude -3-5-

sonnet -20241022

modi�ed source �le(s), as well as instructions on how to
run the ablation study, an overview of the changes made
to the original source code, as well as additional notes, e.g.,
regarding the plots or how to interpret possible results.
We take the portion of the result that corresponds to the

full source code for the ablation study to replace the origi-
nal source code, and we run it. The baseline trial executes
successfully, but the script fails when trying to execute the
�rst layer ablation trial. Upon looking at the error logs and
the stack trace, we realize this is due to the fact that when
the layer is removed, the input of its following layer should
be modi�ed to match the output of the preceding layer. We
paste the relevant parts of the stack trace in a �le called
output_result.txt and then use AblationMage to initi-
ate a follow-up call.
The follow-up call is made similarly to the �rst call, but

instead of the original source �le(s), it requires the path to the
new source �le(s) - which we just executed - as well as the
path to output_result.txt. The response to the follow-up
call also comes in a similar format to the response to the �rst
call. Upon replacing the source code(s) with the new version
of the code and attempting the execution, the full ablation
study experiment runs without a problem. The output of
running the study includes several plots that can be used to
compare the baseline and the di�erent ablation trials, as well
as a JSON �le that includes the raw results of all the trials.
We hence conclude that AblationMage can be used as an
aid in conducting ablation study experiments.

4.2 Experiment 2: Reproducing the Ablation Studies

of a Research Paper

We now consider a di�erent scenario: conducting an abla-
tion study on a paper or code authored by other researchers.
In cases where authors include an ablation study in their

paper, they may or may not provide the code needed to re-
produce it. We aim to evaluate whether AblationMage can
assist in such situations, speci�cally when an original im-
plementation is available for a research paper that discusses
an ablation study, but the code to reproduce the study is
unavailable.

We take [5] as a relevant example of this case among the
papers we had recently read. In the aforementioned paper,
the authors propose an approach using Graph Representa-
tion Learning to automate the triage of emergency patients,
i.e., to classify each patient’s emergency treatment condi-
tion. As part of their system, they use a model based on
GraphSAGE [11] as one of the possible classi�ers. Since the
model based on GraphSAGE showed the best performance
among the di�erent classi�ers, they performed an ablation
study on the relative contribution of the di�erent layers of
the model to the classi�cation accuracy on the test set. They
report their results and discuss the outcome of the di�erent
trials; however, their implementation on their publicly avail-
able repository does not contain the code for conducting the
ablation study.
We add a description of the desired ablation trials in the

form of a hint annotation and add it before the place in the
code where the model is de�ned. Listing 3 shows the anno-
tation we added to the original source code. Upon providing
the source code to AblationMage, the response from the
�rst call got the correct implementation of di�erent trials,
but it missed an import of a required module. This required
a simple, one-liner �x and could be done by the user, but
nevertheless, we made a follow-up call with AblationMage,
and the output contained the missing import statement. The
main part of the code was correct, and the trials were ex-
ecuted successfully, but there was an error related to the
results visualization code that was added by the LLM. Again,
this was something that could be �xed easily, but we used an-
other follow-up call, and the �nal code was executed without
any errors. We were able to replicate the study as described
by the authors and witness mostly similar results. We further
con�rmed the correctness of the generated code by compar-
ing it with the ablation study code provided by the authors
of the original article upon our request.

4.3 Experiment 3: Feature Ablation of the Higgs

Boson Challenge Dataset

We now look at another component of an ML/DL system that
may bene�t from ablation study experiments: the dataset
used for training the model. Depending on the type and
modality of the data, the examples within a dataset can have
several ablatable dimensions (and in a multi-modal datasets,
modalities themselves can be ablated), but perhaps the most
typical type of data ablation is feature ablation. In a feature
ablation study, we remove individual (or groups of) features
(e.g., channels in an image, or columns in a tabular dataset)



Utilizing LLMs for Ablation Studies in ML and DL EuroMLSys ’25, March 30-April 3, 2025, Ro�erdam, Netherlands

Listing 3: Example of a hint annotation for model ablation.
...

#ABLATION_HINT_START

# The ablation study should consist of the following layer

ablation trials on GraphSAGE:

# - the second layer removed

# - the third layer removed

# - the fourth layer removed

# - the second , third , and fourth layers removed , while the number

of output neurons of the first layer is 8

# - the second , third , and fourth layers removed , while the number

of output neurons of the first layer is 64

#ABLATION_HINT_END

class GraphSAGE(torch.nn.Module):

def __init__(self , dim_in , dim_out):

...

Listing 4: Example of a hint annotation for feature ablation.
...

def main():

data = pd.read_csv('training.csv')

#ABLATION_HINT_START

# The ablation study should consist of the following feature

ablation trials:

# - remove 'DER_mass_MMC '

# - remove 'DER_mass_transverse_met_lep '

# - remove 'DER_mass_vis '

# - remove 'DER_pt_h '

# - remove 'DER_deltaeta_jet_jet '

# - remove 'DER_mass_jet_jet '

# - remove pairs of the above features , one pair at a time

#ABLATION_HINT_END

data['Label '] = data['Label '].map({'s': 1, 'b': 0})

...

from the training dataset, train the same model on each vari-
ation of the dataset, and examine the di�erence in the per-
formance of the model. This simple examination can provide
us with useful information on the importance of di�erent
dataset features.

To demonstrate the capability of AblationMage for data
ablation studies, we perform a feature ablation study on the
Higgs Boson ML Challenge Dataset [1], a well-known tab-
ular dataset. The training data consists of 250000 particle
collision events, and we want to train an XGBoost classi-
�er to determine whether a collision event is a signal, or
background noise. Each event has an ID column, 30 feature
columns, a weight column, and a label column. The test set
comprises 550000 events with an ID and 30 feature columns.
We are interested to know about the individual and pairwise
importance of 6 of the features to the performance of the
classi�er trained on the dataset.

We add a description of the desired ablation trials as a hint
annotation and add it immediately after the line of code in
which we load the training dataset. Listing 4 shows the anno-
tation we added to the original source code. Upon providing
the source code to AblationMage, the response from the
�rst call gets the correct implementation required to execute
all the trials.

4.4 Discussion

The results of these experiments verify the usability and
potential of AblationMage as a tool to semi-automate the
design and execution of ablation studies. Regarding the possi-
bility of full automation, although LLMs have shown promis-
ing performance in generating ML/DL code, the users should
still verify the correctness of the generated codes to make
sure they correspond exactly to the target ablation study
experiments. That being said, a natural next step for improv-
ing AblationMage would be to provide more automation
for the correctness/veri�cation loop, possibly eliminating or
reducing the need for multiple executions of possibly faulty
code, e.g., by detecting and �xing common errors through
static code analysis [10, 19].
Another possible challenge stems from the limited max-

imum number of input and output tokens and the limited
context length of current LLMs [14]. This, in particular, may
make it challenging for LLMs to understand and/or mod-
ify multiple source �les simultaneously, especially in cases
where the ML/DL system implementation spans many �les
and possibly hundreds of thousands of lines of code. This
challenge can be alleviated by providing more sophisticated
annotations and asking the LLM to provide experimentation
code for the ablation trials one at a time. This may also en-
sure that the context length growth stays within the context
length of the current publicly available LLMs such as GPT,
Claude, and DeepSeek. This is particularly possible for code
generation and code understanding tasks related to ablation
studies, since the trials in an ablation study are intrinsically
independent of each other (i.e., each trial can be generated
and performed independently of the others). Nevertheless,
we should also note the rapid improvement of LLMs in this
regard; e.g., OpenAI’s recent o3-mini model has a context
window of 200K tokens and can have 100K tokens in its out-
puts, showing a remarkable increase compared to GPT-4’s
8192-token context window andmaximumoutput size. These
improvements can enable LLMs to assist users with much
more complex ablation studies. Our tests of AblationMage

on code repositories of complex DL frameworks and systems,
while using more than a hundred source and documentation
�les as input documents, show that LLMs can successfully
analyze and generate the desired code.
Limitations of existing dedicated ablation study frame-

works (AutoAblation [23] and ABLATOR [8]) compared to
utilizing state-of-the-art LLMs for conducting ablation stud-
ies include their dependence on their developers for imple-
menting and providing support for di�erent ML and DL
frameworks, and the initial investment and learning curve
required to learn their work�ows, which might not be justi-
�ed for smaller or simpler projects. We predict that as more
users adopt LLM-based tools for their coding tasks [34], us-
ing LLM-based tools such as AblationMage for conducting
ablation studies will also become more common.



EuroMLSys ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Sheikholeslami et al.

A natural extension to AblationMage would be to pro-
vide full automation using agentic frameworks such as Lang-
Graph [17] and AutoGen [30]. By leveraging these frame-
works, a complete ablation study work�ow can be structured
as interactions among multiple specialized agents (e.g., for
code generation and optimization, experiment execution,
and result analysis), each potentially utilizing di�erent LLMs
and iterating over generated artifacts and outputs (such as
errors and stack traces) until a desired outcome is achieved.
Meanwhile, a human-in-the-loop can validate artifacts and
provide high-quality guidance for complex tasks, ensuring
correctness and re�ning the work�ow as needed.

5 Summary

In this paper, we investigated the potential of LLMs as aids
for performing ablation studies in ML/DL. We highlighted
a number of ways in which LLMs can be a facilitator for
ablation studies, in the di�erent steps of study design, ex-
perimentation, and analysis & presentation, and discussed
the prototype implementation of AblationMage, an LLM-
based tool that can semi-automate the process of conducting
an ablation study by exploiting explicit and hint annotations
provided by the users. Using three experiments, including
one in which we reproduced the ablation studies of a re-
cently published paper, we evaluated the usability of Abla-
tionMage and brie�y reviewed its current challenges and
possible extensions.

Acknowledgments

This work has been partially supported by funding from Vin-
nova (Sweden) for the Digital Cellulose Competence Center
(DCC), diary number 2016–05193. The authors would like to
thank Annamaria De�lippo for providing the ablation study
code of [5].

References
[1] Claire Adam-Bourdarios, Glen Cowan, Cécile Germain, Isabelle Guyon,

Balázs Kégl, and David Rousseau. 2015. The Higgs boson machine

learning challenge. In NIPS 2014 workshop on high-energy physics and

machine learning. PMLR, 19–55.

[2] Angelica Chen, David Dohan, and David So. 2023. EvoPrompting:

language models for code-level neural architecture search. Advances

in Neural Information Processing Systems (2023).

[3] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree

boosting system. In Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining. 785–794.

[4] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,

Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,

Charles Sutton, Sebastian Gehrmann, et al. 2023. Palm: Scaling lan-

guage modeling with pathways. Journal of Machine Learning Research

24, 240 (2023), 1–113.

[5] Annamaria De�lippo, Pierangelo Veltri, Pietro Lió, and Pietro Hiram

Guzzi. 2024. Leveraging graph neural networks for supporting auto-

matic triage of patients. Scienti�c Reports 14, 1 (2024), 12548.

[6] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski,

Jonathan Heek, Justin Gilmer, Andreas Peter Steiner, Mathilde Caron,

Robert Geirhos, Ibrahim Alabdulmohsin, et al. 2023. Scaling vision

transformers to 22 billion parameters. In International Conference on

Machine Learning. PMLR, 7480–7512.

[7] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-

dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,

Amy Yang, Angela Fan, et al. 2024. The llama 3 herd of models. arXiv

preprint arXiv:2407.21783 (2024).

[8] Iordanis Fostiropoulos and Laurent Itti. 2023. ABLATOR: Robust

Horizontal-Scaling of Machine Learning Ablation Experiments. In

International Conference on Automated Machine Learning. PMLR, 19–

1.

[9] Hamid Ghasemirahni, Alireza Farshin, Mariano Scazzariello, Marco

Chiesa, and Dejan Kostić. 2024. Deploying Stateful Network Functions

E�ciently using Large Language Models. In Proceedings of the 4th

Workshop on Machine Learning and Systems. 28–38.

[10] Xueting Guan and Christoph Treude. 2024. Enhancing Source Code

Representations for Deep Learning with Static Analysis. In Proceedings

of the 32nd IEEE/ACM International Conference on Program Compre-

hension. 64–68.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive rep-

resentation learning on large graphs. Advances in neural information

processing systems 30 (2017).

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770–778.

[13] Ganesh Jawahar, Muhammad Abdul-Mageed, Laks VS Lakshmanan,

and Dujian Ding. 2023. LLM Performance Predictors are good initial-

izers for Architecture Search. arXiv preprint arXiv:2310.16712 (2023).

[14] Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu,

Chia-Yuan Chang, Huiyuan Chen, and Xia Hu. 2024. LLM Maybe

LongLM: Self-extend LLM context window without tuning. arXiv

preprint arXiv:2401.01325 (2024).

[15] Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochas-

tic Optimization. arXiv e-prints (2014), arXiv–1412.

[16] Alex Krizhevsky, Ilya Sutskever, andGeo�rey EHinton. 2012. Imagenet

classi�cation with deep convolutional neural networks. Advances in

neural information processing systems 25 (2012).

[17] LangChain-AI. 2025. LangGraph. h�ps://github.com/langchain-ai/

langgraph. Accessed: 2025-02-09.

[18] Siyi Liu, Chen Gao, and Yong Li. 2024. Large Language Model Agent

for Hyper-Parameter Optimization. arXiv preprint arXiv:2402.01881

(2024).

[19] Panagiotis Louridas. 2006. Static code analysis. Ieee Software 23, 4

(2006), 58–61.

[20] Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau, and To-

bias Meisen. 2019. Ablation studies in arti�cial neural networks. arXiv

preprint arXiv:1901.08644 (2019).

[21] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojo-

caru, Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam

Almazrouei, and Julien Launay. 2023. The Re�nedWeb dataset for Fal-

con LLM: outperforming curated corpora with web data, and web data

only. arXiv preprint arXiv:2306.01116 (2023).

[22] Sina Sheikholeslami. 2019. Ablation Programming forMachine Learning.

Master’s thesis. KTH, School of Electrical Engineering and Computer

Science (EECS).

[23] Sina Sheikholeslami, Moritz Meister, Tianze Wang, Amir H Payberah,

Vladimir Vlassov, and Jim Dowling. 2021. Autoablation: Automated

parallel ablation studies for deep learning. In Proceedings of the 1st

Workshop on Machine Learning and Systems. 55–61.

[24] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley,

Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye,

George Zerveas, Vijay Korthikanti, et al. 2022. Using deepspeed and

megatron to train megatron-turing nlg 530b, a large-scale generative

language model. arXiv preprint arXiv:2201.11990 (2022).

https://github.com/langchain-ai/langgraph
https://github.com/langchain-ai/langgraph


Utilizing LLMs for Ablation Studies in ML and DL EuroMLSys ’25, March 30-April 3, 2025, Ro�erdam, Netherlands

[25] Demin Song, Honglin Guo, Yunhua Zhou, Shuhao Xing, YudongWang,

Zifan Song, Wenwei Zhang, Qipeng Guo, Hang Yan, Xipeng Qiu, and

Dahua Lin. 2024. Code Needs Comments: Enhancing Code LLMs with

Comment Augmentation. In Findings of the Association for Computa-

tional Linguistics: ACL 2024, Lun-Wei Ku, Andre Martins, and Vivek

Srikumar (Eds.). Association for Computational Linguistics, Bangkok,

Thailand, 13640–13656.

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

Rabinovich. 2015. Going deeper with convolutions. In Proceedings of

the IEEE conference on computer vision and pattern recognition. 1–9.

[27] Kotaro Tanahashi, Yuichi Inoue, Yu Yamaguchi, Hidetatsu Yaginuma,

Daiki Shiotsuka, Hiroyuki Shimatani, Kohei Iwamasa, Yoshiaki Inoue,

Takafumi Yamaguchi, Koki Igari, et al. 2023. Evaluation of Large

Language Models for Decision Making in Autonomous Driving. arXiv

preprint arXiv:2312.06351 (2023).

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017.

Attention is All you Need. InAdvances in Neural Information Processing

Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates,

Inc.

[29] Jiaqi Wang, Zhengliang Liu, Lin Zhao, Zihao Wu, Chong Ma, Sigang

Yu, Haixing Dai, Qiushi Yang, Yiheng Liu, Songyao Zhang, et al. 2023.

Review of large vision models and visual prompt engineering. Meta-

Radiology (2023), 100047.

[30] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang,

Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023.

Autogen: Enabling next-gen llm applications via multi-agent conver-

sation framework. arXiv preprint arXiv:2308.08155 (2023).

[31] Jinglue Xu, Jialong Li, Zhen Liu, NAV Suryanarayanan, Guoyuan Zhou,

JIA GUO, Hitoshi Iba, and Kenji Tei. 2024. Large Language Models

Synergize with AutomatedMachine Learning. Transactions onMachine

Learning Research (2024).

[32] Sherry Yang, O�r Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and

Dale Schuurmans. 2023. Foundation models for decision making:

Problems, methods, and opportunities. arXiv preprint arXiv:2303.04129

(2023).

[33] Michael R Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and

Jimmy Ba. 2023. Using Large Language Models for Hyperparameter

Optimization. arXiv e-prints (2023), arXiv–2312.

[34] Dewu Zheng, Yanlin Wang, Ensheng Shi, Hongyu Zhang, and Zibin

Zheng. 2024. How Well Do LLMs Generate Code for Di�erent

Application Domains? Benchmark and Evaluation. arXiv preprint

arXiv:2412.18573 (2024).

A Appendix: Example Prompts and LLM
Responses

Here we provide examples of the prompts that Ablation-
Mage creates as well as the responses from Claude Sonnet
3.5, the LLM backend we used for our experimental evalua-
tion. These prompts and responses correspond to the second
experiment, in which we reproduced the ablation studies of
a recently published paper by adding hint annotations to the
original code. The prompts and snippets of the responses for
the �rst call are shown in Figure 2, while Figure 3 shows the
same for the �rst follow-up call AblationMage makes. In
this case, the “Feedback/Error Output” was the stack trace of
errors after the execution of the code provided by the LLM
in response to the �rst call.



EuroMLSys ’25, March 30-April 3, 2025, Ro�erdam, Netherlands Sheikholeslami et al.

I'll help you create a modified version of the script that 

implements the ablation study for the GraphSAGE layers. 

The study will test different architectures by removing 

layers and varying the number of neurons. Here's the 

complete modified code with ablation study capabilities: 

```python 

…..

LLM Agent Response

…..

if model_config['type'] == 'full':

  self.sage1 = SAGEConv(dim_in, 64, aggr='max')

  self.sage2 = SAGEConv(64, 32, aggr='max')

  self.sage3 = SAGEConv(32, 16, aggr='mean')

  self.sage4 = SAGEConv(16, 8, aggr='max')

  self.sage5 = SAGEConv(8, dim_out, aggr='max')

elif model_config['type'] == 'no_layer2':

  self.sage1 = SAGEConv(dim_in, 64, aggr='max')

  self.sage3 = SAGEConv(64, 16, aggr='mean')

  self.sage4 = SAGEConv(16, 8, aggr='max')

  self.sage5 = SAGEConv(8, dim_out, aggr='max')

You are assisting me in creating code for ablation studies. I'm going to 

give you a runnable and correct script that trains a machine learning 

model. In the script, there may be lines that have a comment in the form 

of: #ABLATABLE_COMPONENT, These are related to ablation studies. 

Also, they might be comment blocks that start with 

#ABLATION_HINT_START and end with #ABLATION_HINT_END, these 

contain a description of the desired ablation study. When you see lines 

that have #ABLATABLE_COMPONENT or blocks of commented out lines 

enclosed in #ABLATION_HINT_START and #ABLATION_HINT_END, modify 

the original script in such a way that the mentioned component is 

removed but the code is still runnable and correct.

...

Annotated Source Code Additional Documents

System Prompt

Attached Files:

Figure 2. The prompt prepared by AblationMage for the “�rst call” to the LLM and part of the response. The user provides
the path to the annotated source code and other documents.

I added two important imports at the beginning of the file:

```python

from torch_geometric.nn import SAGEConv

import torch.nn.functional as F

```

These imports are necessary because:

1. `SAGEConv` is the GraphSAGE convolution layer implementation 

from PyTorch Geometric

2. `F` contains various functions like `relu()`, `dropout()`, and 

`log_softmax()` that we use in the modelThe rest of the code remains 

the same. This should now run without the `NameError` you 

encountered.

Previously, I asked you to output a script based on some requirements, 

but it failed to run successfully. I will give you the script you provided, as 

well as the stack trace of errors or any other error message outputted 

from running that script. Try to fix it, and provide the full code (not only 

hints for modifications, but the full code) in response.

Previously executed source code Feedback / Error Output

Attached Files:

System Prompt

LLM Agent Response

Figure 3. The prompt prepared by AblationMage for the “follow-up call” to the LLM and part of the response.


	Abstract
	1 Introduction
	2 Using LLMs for Ablation Studies
	3 AblationMage
	4 Evaluation & Discussion
	4.1 Experiment 1: Layer Ablation of a CNN
	4.2 Experiment 2: Reproducing the Ablation Studies of a Research Paper
	4.3 Experiment 3: Feature Ablation of the Higgs Boson Challenge Dataset
	4.4 Discussion

	5 Summary
	Acknowledgments
	References
	A Appendix: Example Prompts and LLM Responses

