AUTOABLATION: Automated Parallel Ablation Studies
for Deep Learning

Sina Sheikholeslami
KTH Royal Institute of Technology
sinash@kth.se

Amir H. Payberah
KTH Royal Institute of Technology
payberah@kth.se

Abstract

Ablation studies provide insights into the relative contri-
bution of different architectural and regularization compo-
nents to machine learning models’ performance. In this pa-
per, we introduce AUTOABLATION, a new framework for
the design and parallel execution of ablation experiments.
AUTOABLATION provides a declarative approach to defining
ablation experiments on model architectures and training
datasets, and enables the parallel execution of ablation trials.
This reduces the execution time and allows more comprehen-
sive experiments by exploiting larger amounts of computa-
tional resources. We show that AUTOABLATION can provide
near-linear scalability by performing an ablation study on
the modules of the Inception-v3 network trained on the
TenGeoPSAR dataset.

CCS Concepts: - Computing methodologies — Model
development and analysis; Machine learning.

Keywords: Ablation Studies, Deep Learning, Feature Ablation,
Model Ablation, Parallel Trial Execution

ACM Reference Format:

Sina Sheikholeslami, Moritz Meister, Tianze Wang, Amir H. Pay-
berah, Vladimir Vlassov, and Jim Dowling. 2021. AUTOABLATION:
Automated Parallel Ablation Studies for Deep Learning. In The 1st
Workshop on Machine Learning and Systems (EuroMLSys’21), April
26, 2021, Online, United Kingdom. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3437984.3458834

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

EuroMLSys’21, April 26, 2021, Online, United Kingdom

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8298-4/21/04...$15.00
https://doi.org/10.1145/3437984.3458834

Moritz Meister
Logical Clocks AB
moritz@logicalclocks.com

Vladimir Vlassov
KTH Royal Institute of Technology
vladv@kth.se

Tianze Wang
KTH Royal Institute of Technology
tianzew@kth.se

Jim Dowling
KTH Royal Institute of Technology
Logical Clocks AB
jim@logicalclocks.com

N

Max-Pool Convolution Max-Pool Dense

rooms | area age price rooms | age price

3 90 15 250,000 3 15 250,000

1 24 2 120,000 1 2 120,000

2 51 8 200,000 2 8 200,000

2 60 3 180,000 2 3 180,000

Figure 1. Example trial configurations for model ablation
(up) and feature ablation (bottom). Yellow highlighting indi-
cates a “component” that is removed for the trial.

1 Introduction

Inspired by how the mammalian brain works, Deep Neural
Networks (DNNs) have been at the forefront of recent break-
throughs in Artificial Intelligence. Since the early 19th cen-
tury, a surgical procedure called an ablation study has been
developed to understand the role of different components of
the brain [3]. An ablation study involves removing a specific
part of the brain of a mammal, and observing any resulting
changes in its behavior. Given our limited understanding of
brain function, this black-box approach has helped identify
regions in the neocortex that are specialized for controlling
specific behaviours and the relative contribution of brain
regions to global function.

Similar to brains, we lack models to understand the func-
tion of Deep Learning (DL) systems at both the macro and
micro levels. As such, black-box experiments that modify
model architectures while observing system performance
offer an approach to help improve our understanding of a
DL system. An ablation study in DL involves measuring the
performance of a network after removing one or more of its
components to help understand the relative contribution of
the ablated components to overall performance [24]. Dataset
features and model components (e.g., layers) are notable ex-
amples of ablatable components, but any design choice or
module of the system can be considered in an ablation study.

https://doi.org/10.1145/3437984.3458834
https://doi.org/10.1145/3437984.3458834

EuroMLSys’21, April 26, 2021, Online, United Kingdom

In this setting, we consider the execution of an ablation
study on a given DL model or dataset as a single experi-
ment consisting of several trials, where each trial involves
removing one or more model or dataset building blocks, e.g.,
layers or features. We distinguish two kinds of ablation trials,
namely, model ablation trials and feature ablation trials, de-
pending on what kind of block is ablated in the trial: model
components (e.g., layers or modules), or dataset features,
respectively. Each model ablation trial involves training and
evaluating a model with one or more of its components (e.g.,
layers) removed (Figure 1, (up)). Similarly, a feature abla-
tion trial involves training and evaluating the model using a
different subset of features in the dataset (Figure 1, (bottom)).

Over the years, many Machine Learning (ML) papers have
included ablation studies [2, 9-11, 22]. Moreover, following
the recent trend towards explainable and interpretable ML
systems, several recent works [13, 17], discuss how ablation
studies can lead to more explainable ML models. However,
it can be observed that a significant part of the ML research
community still regards performing ablation studies to be
unnecessary, and when researchers publish or propose new
model architectures or training procedures, they may at-
tribute the resulting gains only to the changes they have
made to a base model architecture or training procedure,
without performing any ablation studies that would allow
to identify and quantify the actual impact of each of these
proposed changes [13].

Based on our observations, two main reasons for this over-
sight are: (i) performing ablation studies requires maintain-
ing redundant copies of code that each correspond to a dif-
ferent configuration of the model or the dataset, and (ii)
evaluating these different configurations requires extra time
and compute resources. Looking closer at these challenges,
however, reveals trivial yet interesting characteristics of abla-
tion studies. When talking about the existence of redundant
copies of code for ablation trials, we can observe that these
copies are almost identical, except for the part related to the
specific ablation trial. Moreover, executing a set of ablation
trials is an embarrassingly parallel task.

In this work, we exploit the above characteristics to design
and develop a framework to overcome the aforementioned
challenges. Our framework, AUTOABLATION, is based on the
concept of the distribution oblivious training function [16],
in which we decouple model creation and dataset creation
functions from the training function. This decoupling allows
us to (i) eliminate the need for maintaining redundant copies
of code for ablation trials, and (ii) provide distribution trans-
parency for ML developers so the code that is developed for
execution of ablation trials on a single host can easily be
executed in parallel on a cluster of machines. This practice
has recently enjoyed increased adoption in the community,
as can be seen in the programming model of libraries such
as PyTorch Lightning [8] and Keras Tuner [19].

Sheikholeslami and Meister, et al.

With AUTOABLATION, we introduce a novel way to de-
fine and parallelize the execution of ablation studies for (i)
DL model architectures, and (ii) training datasets. By decou-
pling model creation and dataset creation from the training
function, we have come up with a simple and declarative
Application Programming Interface (API) that eliminates the
need for maintaining redundant copies of code for ablation
studies. Furthermore, our framework enables parallel exe-
cution of ablation trials without requiring the developers to
modify their code, which leads to shorter study times and
better resource utilization. To the best of our knowledge, this
is the first framework that provides support for the specifi-
cation and parallel execution of ablation studies for DL. We
demonstrate the usability and scalability of AUTOABLATION
through three common scenarios in which ablation studies
may be performed.

2 Preliminaries

In this section we provide a formal definition of ablation
studies in DL, and describe the parallel execution of trials.

2.1 A Formal Definition of Ablation Study

Given a training dataset D and a model M, in training of the
model, we aim to optimize its parameters with regards to
an objective function (e.g., Mean Squared Error or Binary
Cross-Entropy) using an iterative optimization algorithm
(e.g., Stochastic Gradient Descent). In practice, developing a
performant DL model requires many design decisions and
trying out several configurations C. The goal of an ablation
study is to investigate the relative contribution of each of
these configurations to the performance of the model. A
configuration can be a dataset configuration Cp or a model
configuration Cy.

The dataset configuration describes what features of a
given dataset we need to exclude for training. For a dataset
X with n features, Cp(X, {x}) indicates that the features in
{x} should be excluded during training the models. For exam-
ple, Cp (X, {x1, x3, x4 }) means to skip features 1, 3, and 4, and
use the rest of the features to train the models. Similarly, the
model configuration illustrates the architecture of a model.
To be more precise, for a given model M with k components,
Cp (M, {m}) means to exclude the listed components in {m}
during training M. A component can be a layer, a set of neu-
rons, a filter, and so on. For example, if M is a Convolutional
Neural Network (CNN) with two convolution layers (c; and
c2), one pooling layer in between (p;), and one dense layer at
the end (d;), then Cp (M, {c1, p1}) means to remove the first
convolution layer and the pooling layer from M and train
the model with the rest of component, i.e., {cs, d;}.

We define a study S as a set of either dataset configurations,
Sp = {Cp}, or model configurations, Sys = {Cas}. For exam-
ple, Sm = {Cm,, Cm,, - - - , Car, } means to train the model M
with z different model configurations, such that in training

AUTOABLATION: Automated Parallel Ablation Studies for Deep Learning

with configuration Cyj,, we only consider the components
of the model M, which are not listed in that configuration.
We call the execution of an study as an experiment, which
consists of several trials, where each trial corresponds to a
configuration. Given the set of components that are to be ab-
lated in an ablation experiment, an ablation policy specifies
the trials that constitute the experiment. An ablator, in turn,
is an implementation of an ablation policy that materializes
the trials of the experiment. A simple policy could be to re-
move (exclude) one component per each trial. This is perhaps
the most common form of performing ablation studies, and
we refer to it as Leave-One-Component-Out (LOCO) ablation.

2.2 Parallel Execution of Trials

Over the last few years, several ML and DL frameworks and
libraries have been introduced, such as TensorFlow [1], Py-
Torch [20], and Keras [5]. To make model ablation possible,
the underlying DL framework should provide ways for ex-
porting configuration representations of the models, and
ways to distinguish different components. All of the above
mentioned frameworks fulfill this requirement, e.g., Keras
enables developers to set the name parameter for layers of a
DNN, and export the configuration representation of a model
in various formats, such as JSON.

The above mentioned frameworks, however, lack support
for parallel and distributed execution of DL experiments
consisting of independent trials. For example, TensorFlow
and PyTorch provide distributed training capabilities for
single models, but practitioners are often left building their
own solutions to parallelize their experiments. Therefore,
efforts have been made either to develop new frameworks for
distributing DL workloads (e.g., Ray [18]), or to use existing
distributed processing engines for DL workloads.

Among big data processing frameworks, Apache Spark
[29] has been the target of several such efforts [4], as it has
become an industry standard for data processing and en-
gineering tasks. TensorFlowOnSpark [28] runs distributed
training of a single model with TensorFlow within a Spark
job, where each task within this job will serve as a worker
process. However, mapping each trial in an experiment to
a Spark task results in poor resource utilization, as running
iterative jobs on Spark follows the Bulk Synchronous Par-
allel (BSP) execution model. Stages in Spark introduce task
synchronization barriers, and for jobs to proceed to a new
stage, all tasks (trials) from the previous stage have to be
completed. In case of ablation studies, some trials may take
significantly longer time to train due to their configurations,
i.e., their specific model architecture, or the dataset subset.
Hence, asynchronous execution of trials on an Apache Spark
cluster would be highly desirable.

MAGGy [15] is a framework for asynchronous execution
of trials on Apache Spark clusters. MAGGY launches a single
Spark job for the whole experiment, and on each Spark ex-
ecutor, one long running task will be run to execute the trials.

EuroMLSys’21, April 26, 2021, Online, United Kingdom

Once the evaluation of a trial is finished (or stopped) on an
executor, the same task on the executor will be reinitialized
with a new trial configuration. A Controller thread, run-
ning on the driver side, is responsible for generating new trial
configurations. Depending on the nature of the experiment,
the Controller can include an optimizer (for hyperparame-
ter tuning experiments), or an ablator (for ablation studies).
Currently, MAGGY supports asynchronous, parallel execu-
tion of hyperparameter tuning experiments [15], and with
AUTOABLATION we extend it to also support ablation study
experiments.

Through a communication model based on non-blocking
Remote Procedure Calls (RPC), once the job is launched
(or an executor finishes an assigned trial), the executors
can communicate with the driver and poll the controller for
new trials independent of other executors. This removes the
barrier (synchronization step) imposed by the BSP execution
model, leading to increased resource utilization as well as
reduced total run-time of experiments.

3 AUTOABLATION

Currently, AUTOABLATION supports model ablation and fea-
ture ablation of DNNs. Model ablation is possible in form
of individual layers, groups of layers, and modules (e.g., an
Inception module), and feature ablation is possible in form of
individual features or groups of features. To address the two
challenges of (i) redundant code maintenance, and (ii) effi-
cient parallel execution of ablation trials, we exploit the fact
that the training logic remains largely unchanged between
different trials. When we want to investigate the contribu-
tion of different components of a DL model to its overall
performance, we have to construct different variants of the
model architecture and apply the same training logic on
these variants, using the same training data. Similarly, if we
are interested in the importance of each feature of our train-
ing dataset, we use different combinations of the features to
train the same model, using the same training logic.

Following the above observations, the programming model
of AUTOABLATION is based on the decoupling of the model
creation and dataset creation from the training logic. In other
words, instead of having model creation, dataset creation,
and training logic in a single block of code, the user wraps the
training code in a function that is parameterized by dataset
creation and model creation functions. This decoupling and
parameterization allows the framework to automatically gen-
erate and replace parts of the logic that are specific to each
trial. Performing an ablation experiment in AUTOABLATION
consists of three steps’: (i) defining the training components
(including model creation and dataset creation), (ii) defining
the ablation study, and (iii) executing the ablation trials in
parallel. We will explain this workflow, as shown in Figure 2,
in the following subsections.

ISee https://maggy.readthedocs.io/ for the API documentation.

EuroMLSys’21, April 26, 2021, Online, United Kingdom

Define Training Components

Model Creation

Training Logic ‘ —-{ Define the Ablation Study H Launch the Experiment
Dataset Creation

Figure 2. Workflow of an ablation experiment.

3.1 Defining the Training Components

The first step is to define the actual training loop. This step
is always part of the ML process, irrespective of whether
an ablation study will be performed or not. The important
thing here, however, is that the user has to decouple the
model creation and the dataset creation from the training
function. In most cases, this is equivalent to moving the code
blocks responsible for the model creation and the dataset
creation to their own functions, e.g., create_model () and
create_dataset(), and passing them as arguments to the
training function. A skeleton code for the first step is shown
in Listing 1.

Model Creation. Here, the user has to wrap the model cre-
ation code in a Python function that we refer to as the base
model function, which receives trial-specific parameters (e.g.,
layer identifiers) and returns a trainable model that can be
used in the training function.

Dataset Creation. Similar to model creation, the process
of creating the train/test/validation sets that will be used in
the train/test/validation loops should be wrapped in its own
function. The user can implement their own function for
creating these sets or use default dataset creation functions
shipped with AUTOABLATION.

Training Function. The training function is the actual pure
Python code block that will be executed either on a single
host or in parallel on a cluster of workers, and contains
the code for training a DL model using a training dataset.
In a typical implementation of a DL application, the whole
process of preparing the train/test/validation sets, model ar-
chitecture definition, and model training is implemented in a
monolithic style; but in our programming model, as the user
has already implemented the model creation and the dataset
creation functions in the previous sub-steps, the model func-
tion and the dataset function are passed as arguments to
the training function, and will instantiate the model and the
dataset(s) once called.

3.2 Defining the Ablation Study

The next step is to define the ablation study by specifying
the model configuration and dataset configuration (Sp and
Sum, as defined in Section 2.1). To this end, the user has to

Sheikholeslami and Meister, et al.

define the model creation logic
def base_model(trial_params):

create the model ...

return model

define the dataset creation logic
def base_dataset(trial_params):

create the dataset ...

return dataset

define the training logic, parametrized by the model and dataset
def train(model_func, dataset_func):

model = model_func()

data = dataset_func()

metric = model.fit(data)

return metric

Listing 1. Defining the training components.

define the ablation study
study = AblationStudy()

study.model.set_base_model_generator(base_model)
study.set_dataset_generator(base_dataset)

study.features.include('feature_name')
study.model.layers.include('layer_name")
study.model.add_module('module_name")

launch the experiment
experiment.launch(train, study)

Listing 2. Defining the ablation study.

create an AblationStudy instance and initialize it with the
default model creation and dataset creation functions defined
in the previous step. After this, the user should specify which
configurations they want to include in the study. Currently,
AuTOABLATION API provides methods for defining config-
urations for dataset features, model layers, layer groups,
modules, and custom models. Example usage of the API for
defining an ablation study is shown in Listing 2.

3.3 Launching the Experiment

The final step is to invoke an API call that mainly receives the
training function and the study specification, and initiates
the execution of the trials through MAGGy, either sequen-
tially on a single host or in parallel on a cluster of nodes.

4 Implementation

AUTOABLATION runs on top of MAGGY, an open-source Python-
based framework for asynchronous execution of ML trials on
top of Apache Spark. The experiment is launched as a Spark
application that generates the trials of the experiment, and
Magay distributes the trials on the set of available worker
nodes (executors). Below, we explain how AUTOABLATION
generates trials based on the ablation study specification
defined in the second step of the workflow in Section 3.

4.1 Implementing the LOCO Ablator

As discussed in Section 2.1, an ablator is an implementation
of an ablation policy. In AUTOABLATION, ablators are im-
plemented as Python classes. The Controller thread in the

AUTOABLATION: Automated Parallel Ablation Studies for Deep Learning

Spark job creates an instance of an ablator class and uses it to
generate Trial objects that contain the model creation and
dataset creation functions specific to each trial. To execute a
trial, an executor requests a new trial configuration from the
Controller. If there is a trial to be evaluated, the executor
will be sent a Trial object. The executor then de-serializes
the object and unpacks its contents, and then passes them as
arguments to the training function, and executes the training
function.

The LOCO ablator uses the dataset creation and model
creation functions to generate Trial objects that are then
shipped to the executors as they request new trial configura-
tions. Given an AblationStudy instance that contains dif-
ferent configurations, in order to create customized models
and datasets for each trial, an ablator must modify the base
model or dataset by removing these components. LOCO does
this through parsing and modifying “configuration represen-
tations” of the components. For datasets, this is equivalent
to the dataset schema (which can come in different formats).
For models, many DL frameworks provide ways for saving or
exporting model configurations, e.g., through JSON files (as
in Keras) or serializable dictionaries (as in PyTorch). Hence,
an ablator essentially implements the process of parsing and
modifying these configuration representations and generat-
ing trials according to an ablation policy.

Given the schema of the base dataset, the LOCO abla-
tor modifies the base schema to create a new schema for
each feature ablation trial, and generates its corresponding
create_dataset function. To generate create_model func-
tions specific to each trial, the LOCO ablator uses the base
model function (as described in Section 3.1) to export the
configuration representation of the base model, and then
parses it to find and select model components defined in
the AblationStudy instance of the experiment. It then mod-
ifies the configuration representations and generates new
create_model functions for each trial.

Input or output shape changes that may result from re-
moval of components are either handled by the underlying
framework (e.g., when removing layers of a model developed
with Keras Sequential API), or require explicit handling in
the implementation of the ablator (e.g., by using a randomly
initialized tensor as the input of one forward pass of the
modified model, to infer the correct shapes). However, if a
trial cannot be automatically generated, the user still has the
option to create a custom trial with their own model creation
and dataset creation functions, and add it to the experiment.
Finally, the LOCO ablator creates the corresponding Trial
objects, and populates the buffer of trials that the executors
can poll as the experiment is launched.

4.2 Parallel Execution of Trials

To execute different trials of an experiment, each Spark ex-
ecutor needs to have the training function that is parametrized
by the create_model and create_dataset function objects.

EuroMLSys’21, April 26, 2021, Online, United Kingdom

The training function is supposed to remain the same through
all trials, so it will be sent to the executors as the experiment
is launched. The two parameters of the training function, will
be provided through the Trial objects created by the LOCO
ablator. The executors will then register with the MacGgy
driver, and start polling the server for these objects. Depend-
ing on the ablation policy, a number of initial trials will be
generated on the driver side; in the case of LOCO, since the
number of trials can be determined from the components
included in the ablation study, the ablator will generate all
trials and put them in a buffer, which will be queried by
the Controller every time an executor requests a new trial
configuration. It should be noted that the Spark job is started
and managed by MAGGY, and the start-up only takes a few
seconds, which is negligible compared to the actual time it
takes to train the model variants.

5 Evaluation

In this Section, we demonstrate three common scenarios, in
which ablation studies can be performed, and show how we
can define and execute such studies with AUTOABLATION?.
Below, we first evaluate the performance of AUTOABLATION
in two different experiments: (i) feature ablation and (ii)
model ablation, and then we show how it performs in various
levels of parallelization.

EXP1: Feature Ablation of the Titanic Dataset. In this
experiment, we perform feature ablation on a customized
version of the Titanic dataset®. There are six features in the
dataset in addition to the label, so we will have seven trials
(including one base trial that contains all the features). The
model we use is a simple Keras Sequential model with two
hidden Dense layers. We keep 20% of the data as the test set
and train on the rest for 10 epochs. Listing 3 shows the code
required to define this experiment.

from maggy.ablation import AblationStudy

study = AblationStudy('titanic_train_dataset', label_name='survived')

list_of_features = ['pclass', 'fare', 'sibsp', 'sex', 'parch', 'age']
study.features.include(list_of_features)

Listing 3. Defining the feature ablation experiment.

After repeating the experiment five times, we can rank the
features in terms of their average effect on the test accuracy,
as shown in Table 1. For example, we observe that training
the model with all the features (None) results in the worst test
accuracy, while removing the fare feature from the training
dataset leads to the best performance.

EXP2: Model Ablation of a Keras Sequential Model. In
this experiment, we train a CNN to classify handwritten dig-
its of the MNIST dataset [12]. The network has two Conv2D

2The reproducible experiments: https://github.com/ssheikholeslami/ablation-
paper-experiments
Shttps://www.kaggle.com/c/titanic/data

EuroMLSys’21, April 26, 2021, Online, United Kingdom

Table 1. Average accuracy on the test set resulting from
excluding each feature from the training set.

Excluded Feature | Test Accuracy

None (base trial) 0.583
pclass 0.596

sex 0.609

sibsp 0.616

age 0.667

parch 0.672

fare 0.695

layers, followed by one MaxPooling2D layer, one Dropout
layer, a Flatten layer, one Dense layer, another Dropout
layer, and one Dense output layer. Our target is to investi-
gate the relative contribution of the second Conv2D layer, the
Dense layer, and the first and second Dropout layers to the
performance of the model. The study can be defined using
the code shown in Listing 4. After repeating the experiment
five times, we can rank the selected layers in terms of their
average effect on the test accuracy, as shown in Table 2. We
can see that removing the second Conv2D layer has the worst
effect on the test accuracy, while removing the Dropout lay-
ers results in a better performance than the performance of
the base model.

from maggy.ablation import AblationStudy

study = AblationStudy("mnist", 1, "number",)
study.model.layers.include('second_conv',
'first_dropout', 'dense_layer', 'second_dropout')

Listing 4. Defining the CNN model ablation experiment.

Table 2. Average accuracy on the test set resulting from
excluding layers of interest from the base model.

Excluded Layer | Test Accuracy
second_conv 0.913
dense_layer 0.954

None (base trial) 0.969

second_dropout 0.982
first_dropout 0.988

EXP3: Model Ablation of Inception-v3. With this experi-
ment, we demonstrate the near-linear scalability achieved by
parallel execution of ablation trials with AuToABLATION. We
perform an ablation study on seven modules of the Inception-
v3 network [25] in a transfer learning task on a subset of the
TenGeoPSAR dataset [26]. This subset contains 5000 Syn-
thetic Aperture Radar (SAR) images. We split the dataset into
train (3200 images), validation (800 images), and test (1000
images) sets. The images are labeled with one of 10 classes,
each representing a geophysical phenomena.

We load the network using Keras Applications API with
pre-trained ImageNet [6] weights, and replace its output
layer to suit our 10-class classification task. The Inception-
v3 network consists of 11 blocks also known as “inception
modules”, and we are interested to know how each of the

Sheikholeslami and Meister, et al.

Time to execute 8 ablation trials with AutoAblation

203 203 = AutoAblation
Linear Scalability

2 114
£ 101
: 100
S 75 69
51
50
25
[
1 2 4

Number of Executors

Figure 3. AUTOABLATION provides near-linear scalability
by parallelizing the execution of ablation trials.

first seven modules affect the performance of the network
(measured by the accuracy on the test set). Since this is a
predefined network, we first compile it to find out about
the names of the layers, and identify the entrance and end
point of each module either by plotting the architecture
or observing the model.summary() output information in
Keras. Once we identify the layers, defining the ablation
study can be done with the code shown in Listing 5.

from maggy.ablation import AblationStudy

study = AblationStudy("TenGeoPSARwv", 1, "type",)
study.model.add_module('max_pooling2d_1"', 'mixedd')
study.model.add_module('mixed@', 'mixedl')
study.model.add_module('mixedl', 'mixed2")
study.model.add_module('mixed5', 'mixed6')

Listing 5. Defining the Inception-v3 module ablation exper-
iment.

Each trial consists of 40 epochs of training, and we run the
experiment in three settings: (i) a single executor (sequential,
no parallelization), (ii) two executors, and (iii) four executors.
The total run-time for each of these settings is reported
in Figure 3. We take the run-time of the sequential run as
a baseline to approximate linear scalability; however, we
should keep in mind that the ablation trials differ in their run-
time since their model architectures are different from one
another. We can conclude from Figure 3 that AUTOABLATION
provides near-linear scalability by parallelizing the execution
of ablation trials.

6 Related Work

Recently there have been many efforts to build frameworks,
libraries, and tools to inquire insights regarding the per-
formance of DL models or the effect of different dataset
configurations in their performance. Many of such efforts
address the problem of Interpretability and Explainability of
ML/DL models?. Libraries such as LIME [21], SHAP [14], and
TensorFlow’s What-If Tool [27] provide extensive tools and
visualizations for explaining the behaviour and outputs of
ML/DL models through post-hoc analysis. DeepBase [23] is a
system for deep neural inspection that provides a declarative

A list of related open-source projects can be found in:
https://github.com/EthicalML/awesome-production-machine-learning

AUTOABLATION: Automated Parallel Ablation Studies for Deep Learning

API for defining hypothesis functions and then evaluates
those hypotheses over a sequence of inputs. DeepBase is
similar to AUTOABLATION as it shares a design requirement
to reduce the amount of effort for performing model inspec-
tions, but with AUTOABLATION the same code can be used
for hyperparameter tuning, distributed training, and other
types of DL experiments [16]. LOFO-Importance [7] is a li-
brary that provides Leave-One-Feature-Out importance for
datasets used to train models, by excluding one feature out
of the training set at a time, and retraining the model on
that subset. However, it does not provide support for model
ablation experiments.

7 Conclusion and Future Work

In this paper, we introduced AUTOABLATION, a new frame-
work for the design and parallel execution of ablation studies
of deep learning models. We formulated an ablation study as
an experiment that consists of several trials, where each trial
represents a specific model architecture or dataset schema.
We also presented a new programming model for design-
ing an experiment that is based on the decoupling of model
creation and dataset creation from the training function.
We introduced the concept of the ablation policy that spec-
ifies what should be the trials that make up an ablation
experiment, implemented in form of an ablator. Moreover,
we showed how we leverage parallel execution of trials to
speed up the total study time and increase resource utiliza-
tion, through our Python-based execution framework called
Magay. Through the experiments, we showed that AUTOAB-
LATION provides near-linear scalability. Our next step would
be to develop a generalized approach for handling shape mis-
match issues, and to support automatic generation of more
complex ablation trials and policies, e.g., cases in which re-
moval of a layer requires other changes in the components of
amodel. As AUTOABLATION gets picked up by more users, we
will use their feedback to provide support for more common
ablation scenarios.

Acknowledgments

This work is supported by the ExtremeEarth’ project funded by European
Union’s Horizon 2020 Research and Innovation Programme under Grant
Agreement No. 825258. The authors would like to thank Farzad Nozarian
and Desta Hagos for their detailed feedback on the draft of this paper.

References

[1] M. Abadi et al. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 265-283.

[2] D. Berthelot et al. 2019. MixMatch: A Holistic Approach to Semi-
Supervised Learning. arXiv preprint arXiv:1905.02249 (2019).

[3] N. Carlson et al. 2009. Psychology: the Science of Behavior. Pearson.

[4] B. Chambers and M. Zaharia. 2018. Spark: The Definitive Guide: Big
Data Processing Made Simple. O’Reilly Media, Inc.

SExtremeEarth project website: http://earthanalytics.eu .

EuroMLSys’21, April 26, 2021, Online, United Kingdom

[5] E. Chollet et al. 2015. Keras.

[6] J. Deng et al. 2009. Imagenet: A Large-Scale Hierarchical Image Data-
base. In 2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 248-255.

[7] A. Erdem et al. 2019. Leave One Feature Out Importance. https:
//github.com/aerdem4/lofo-importance.

[8] W. A. Falcon et al. 2019. PyTorch Lightning. GitHub.
https://github.com/PyTorchLightning/pytorch-lightning 3 (2019).

[9] R. Girshick et al. 2014. Rich Feature Hierarchies for Accurate Ob-
ject Detection and Semantic Segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 580-587.

[10] M. Hessel et al. 2018. Rainbow: Combining improvements in deep
reinforcement learning. In 33 AAAI Conference on Artificial Intelligence.

[11] E.Horvitz et al. 2003. Learning and reasoning about interruption. In
Proceedings of the 5th International Conference on Multimodal Interfaces.
ACM, 20-27.

[12] Y. LeCun. 1998. The MNIST Database of Handwritten Digits.
http://yann.lecun.com/exdb/mnist/.

[13] Z. C. Lipton and J. Steinhardt. 2018. Troubling trends in machine
learning scholarship. arXiv preprint arXiv:1807.03341 (2018).

[14] S. M. Lundberg and SI. Lee. 2017. A Unified Approach to Interpreting
Model Predictions. Advances in Neural Information Processing Systems
30 (2017), 4765-4774.

[15] M. Meister et al. 2020. Maggy: Scalable Asynchronous Parallel Hy-
perparameter Search. In Workshop on Distributed Machine Learning.
28-33.

[16] M. Meister et al. 2020. Towards Distribution Transparency for Super-
vised ML With Oblivious Training Functions. In Workshop on MLOps
Systems.

[17] R. Meyes et al. 2019. Ablation Studies in Artificial Neural Networks.
arXiv preprint arXiv:1901.08644 (2019).

[18] P. Moritz et al. 2018. Ray: A Distributed Framework for Emerging Al
Applications. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). 561-577.

[19] T. O’Malley et al. 2019. Keras Tuner. https://github.com/keras-team/
keras-tuner.

[20] A.Paszke et al. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. Advances in Neural Information Processing
Systems 32 (2019), 8026-8037.

[21] M. T. Ribeiro et al. 2016. "Why Should I Trust You?": Explaining the
Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
1135-1144.

[22] M. Richardson et al. 2006. Beyond PageRank: Machine Learning for
Static Ranking. In Proceedings of the 15th International Conference on
World Wide Web. ACM, 707-715.

[23] T. Sellam et al. 2019. DeepBase: Deep Inspection of Neural Networks.
In Proceedings of the 2019 International Conference on Management of
Data. 1117-1134.

[24] S. Sheikholeslami. 2019. Ablation Programming for Machine Learning.
Master’s thesis.

[25] C. Szegedy et al. 2016. Rethinking the Inception Architecture for
Computer Vision. In IEEE Conference on Computer Vision and Pattern
Recognition. 2818-2826.

[26] C. Wang et al. 2019. A labelled ocean SAR imagery dataset of ten
geophysical phenomena from Sentinel-1 wave mode. Geoscience Data
Journal 6, 2 (2019), 105-115.

[27] J. Wexler et al. 2019. The What-If Tool: Interactive Probing of Machine
Learning Models. arXiv preprint arXiv:1907.04135 (2019).

[28] L. Yang et al. 2017. Open Sourcing TensorFlowOnSpark: Distributed
Deep Learning on Big-Data Clusters.

[29] M. Zaharia et al. 2010. Spark: Cluster Computing with Working Sets.
HotCloud 10, 10-10 (2010), 95.

https://github.com/aerdem4/lofo-importance
https://github.com/aerdem4/lofo-importance
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 A Formal Definition of Ablation Study
	2.2 Parallel Execution of Trials

	3 AutoAblation
	3.1 Defining the Training Components
	3.2 Defining the Ablation Study
	3.3 Launching the Experiment

	4 Implementation
	4.1 Implementing the LOCO Ablator
	4.2 Parallel Execution of Trials

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

