
1

BAZIGOOSHI: A Hybrid Model of Reinforcement
Learning for Generalization in Gameplay

Sara Karimi ∗†, Sahar Asadi†, Amir H. Payberah∗
∗ KTH Royal Institute of Technology, Sweden

† King.com Ltd., Sweden
sara.karimi@king.com, sahar.asadi@king.com, payberah@kth.se

Abstract—While Reinforcement Learning (RL) is gaining pop-
ularity in gameplay, creating a generalized RL model is still
challenging. This study presents BAZIGOOSHI, a generalized RL
solution for games, focusing on two different types of games: (i)
a puzzle game Candy Crush Friends Saga and (ii) a platform
game Sonic the Hedgehog Genesis. BAZIGOOSHI rewards RL
agents for mastering a set of intrinsic basic skills as well as
achieving the game objectives. The solution includes a hybrid
model that takes advantage of a combination of several agents
pre-trained using intrinsic or extrinsic rewards to determine the
actions. We propose an RL-based method for assigning weights
to the pre-trained agents. Through experiments, we show that the
RL-based approach improves generalization to unseen levels, and
BAZIGOOSHI surpasses the performance of most of the defined
baselines in both games. Also, we perform additional experiments
to investigate further the impacts of using intrinsic rewards and
the effects of using different combinations in the proposed hybrid
models.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has gained popularity
in the development of games. However, it still faces several
challenges, such as slow learning due to the sparse reward
signals (rewarding the agent solely based on the win-or-lose
outcome at the end of a game round) and difficulties in
generalizing to new levels. Two intriguing games to study
the above challenges are Candy Crush Friends Saga (CCFS)1

and Sonic the Hedgehog Genesis (Sonic)2 (Figure 1). CCFS
is a match-3 puzzle game that presents properties such as
stochasticity in state transitions, a large action space, and
diversity in features and objectives across different levels.
On the other hand, Sonic is a platform game that presents
a challenge across various levels, wherein the player must
perform specific actions, such as jumping to open doors to
progress through the game map.

To overcome the sparsity issue, studies [1] and [2] suggest
using denser reward functions that gradually reward agents
as they approach level objectives. Moreover, Stout et al. [3]
and Schmidhuber [4] propose incorporating a domain-specific
intrinsic reward along with the environment-based reward.
Another approach to address the challenges associated with
sparse rewards is to define a set of reward functions, each
reflecting specific strategies or skills possible in that game.

1https://www.king.com/
2Sonic the Hedgehog Genesis is the copyright product of SEGA and is

referenced for discussion purposes only. The authors of this paper have no
relationship with Sonic the Hedgehog Genesis or SEGA.

(a) (b)

Fig. 1. (a) a level in Candy Crush Friends Saga (© 2024 King.com), and (b)
two different levels in Sonic the Hedgehog Genesis.

Shin et al. [5] suggest defining a set of strategies and training
a DRL model to estimate the probability of each strategy
based on the state of the game. Lorenzo et al. [6] build on
this approach by proposing a set of basic skills that enable
agents to learn adaptable behaviors applicable across levels
with diverse objectives.

Seijen et al. [7] present an approach to generalize RL mod-
els, utilizing a hybrid architecture that decomposes the reward
function into multiple reward functions, with each function
influenced by only a small number of state variables. However,
these methods either employ a fixed reward function or use
multiple reward functions without considering a dynamic
combination. The dynamic combination could be achieved by
having state-conditioned dynamically changing weights that
control the extent of the impact of each reward. We investigate
how using dynamic weights to emphasize different agents’
decisions could lead to improved generalization across unseen
levels in the two games.

This work extends our previous research CandyRL [8], an
RL model for generalization in gameplay, aiming to over-
come the above-mentioned limitations. This approach involves
training multiple RL agents referred to as pre-trained agents
incentivized to learn a set of basic skills that are learned
through the use of different extrinsic rewards or intrinsic
rewards. These pre-trained agents are then combined using
a hybrid model to allow approaching new levels without re-



2

training from scratch on those levels. The extrinsic rewards
are provided by the game environment to incentivize the agent
to achieve the level objectives. The intrinsic rewards, on the
other hand, are self-rewarded by the agent for fulfilling a
more generalized goal that is not directly tied to the level
objective. The combination of pre-trained agents is performed
by taking a weighted average of their decisions. We explore
three approaches for assigning weights to the pre-trained
agents: (1) assigning static equal weights to all pre-trained
agents, (2) assigning non-equal static weights using a heuristic,
and (3) assigning non-equal dynamic weights to the pre-trained
agents that a trained RL agent determines.

BAZIGOOSHI also extends CandyRL [8] by performing
additional experiments and providing comparisons with addi-
tional baselines to verify the generalization of BAZIGOOSHI
to a different type of game. This paper makes the following
main contributions:

1) Assessment of BAZIGOOSHI, a hybrid RL approach of
combining the decision of multiple pre-trained agents
using different weighting methods on two distinct types
of game environments, i.e., CCFS and Sonic, to verify
the generalization ability of the proposed method com-
pared to a number of defined or state-of-the-art baseline
models.

2) An ablation study on BAZIGOOSHI to understand the
impact of different combinations of pre-trained agents on
model performance and verify the consistency of results
across the games.

3) Analysis on the impacts of using intrinsic reward func-
tions versus extrinsic rewards through empirical evalua-
tion.

Based on the experimental results, BAZIGOOSHI shows
superior performance compared to the pre-trained agents (used
as the building blocks of the hybrid models) and performs
comparably to the three considered baseline models across
most levels of CCFS and Sonic. The experiments demonstrate
that among proposed hybrid models, the heuristic approach
of assigning weights results in, on average, a higher training
win-rate on CCFS. However, the RL-based model that dynam-
ically determines the weights shows a better test performance
on unseen levels. These findings confirm that our proposed
approach of learning dynamic weights through an RL model
provides better generalizability for gameplay.

II. PRELIMINARY

This section provides an overview of the two games, CCFS
and Sonic, including their objectives and environments.

A. Candy Crush Friends Saga

CCFS is a puzzle game that involves matching three or
more objects of the same color to progress toward a specific
objective, such as reaching a score threshold. The game board
comprises a 9 × 9 tile grid that contains multiple types of
game elements, including candies of various colors and types
(as shown in Figure 1 (a)). In the game, a basic action is
matching, which is defined as swapping two candies on the
board to create a sequence of three or more candies of the

Fig. 2. Different types of special candies in CCFS game (© 2024 King.com).

Fig. 3. Different types of blocker layers in CCFS game (© 2024 King.com).

same color lined up across the horizontal or vertical axis. Once
matched, candies are removed from the board and replaced
with new ones from the top or randomly spawned candies.

The game board in CCFS comprises three main types
of elements: regular candies, special candies, and blockers.
Regular candies are the most frequently occurring elements
in seven colors. The second type, special candies with six
different variations shown in Figure 2 (in order from left
to right: color bomb, color bomb, vertical and horizontal
striped candy, wrapped candy, coloring candy, and fish), are
generated by matching at least four candies of the same color
creating specific shapes (e.g., “L” or “T” shapes) on the game
board. Each special candy has a distinct effect that can be
activated in different ways, including being involved in a
match of candies of the same color being swapped with an
adjacent candy or special candy. Blockers form the third type
of element and are represented by fixed-sized layers placed
on top of a candy on the board and block access to the
candy, thus limiting the interactability of the board (Figure 3).
Each layer of blocker is removed by making a match that
involves candies located in the neighboring tiles of the blocker.

The CCFS Environment and Objectives: The CCFS environ-
ment is episodic, with each episode corresponding to a full
round of gameplay on a level. The state space of the CCFS
environment is represented in a three-dimensional format with
dimensions of size 9× 9× 32, where the first two dimensions
represent the grid of the game board, and the third dimension
encodes each of the 32 different elements (including different
types of candies and blockers) using one-hot encoding chan-
nels. We use the same encoding as the one presented in [9]
(see Figure 4)). To map to the CCFS environment, we include
32 channels representing the game elements.

As mentioned before, the definition of action in CCFS is
swapping two arbitrary game elements located on adjacent tiles
in the 9 × 9 game board. Therefore, to encode the possible
actions in the action space, we assign a unique ID to the edges
between any pair of adjacent tiles, labeling the action that is
relevant between that pair of tiles. This encoding approach
results in an action space of size 144 (Figure 5) [9]. A policy
is a mapping from 9 × 9 × 32 states to the available 144
actions. Each level in CCFS has a specific objective, and there
are different categories of objectives in CCFS3. We focus on
the spread the jam objective category, which requires players
to cover the entire board with jam by making matches that
involve tiles already covered by jam within the level-specific

3https://candycrushfriends.fandom.com/wiki/Levels



3

Fig. 4. An example of game board representation and state encoding [9].

Fig. 5. Action space representation in the game board [9].

moves limit. We present our technique using the spreading jam
objective, but our approach also applies to other objectives.

B. Sonic the Hedgehog Genesis

Sonic the Hedgehog Genesis (Sonic) is a video game
originally released on the game console Sega 4. A lightweight
version of this game is released by Gym Retro [10], a project
aimed at creating RL environments from various emulated
video games for research purposes. Figure 1(b) shows a few
frames of the game representing part of the game map and
the playable character. In this game, the player controls the
playable character and drives the character towards a finish
line on the map while tackling a set of challenges, including
jumping over obstacles, triggering buttons to open doors,
avoiding enemies, etc.

The Sonic game is divided into zones, and each zone
includes several acts. We define a level as an act in a zone,
denoted by zone.act, e.g., GreenHillZone.Act1. Changing
acts in the same zone (e.g., GreenHillZone.Act1 and
GreenHillZone.Act2) has a minor impact on the levels
compared to changing zones (e.g., GreenHillZone.Act1
and StarLightZone.Act1). Each zone has a unique set of
textures and objects and acts inside a zone differ in spatial
layouts of these textures and objects. The rules and objectives
remain the same across different levels.

The Sonic Environment and Objectives: The Sonic environ-
ment is episodic, where each episode can end on three con-
ditions: (i) the player completes a level successfully (in this
benchmark, completing a level corresponds to passing a certain
horizontal offset within the level), (ii) the player loses a life,
or (iii) if 4500-time steps (approximately five minutes) have
elapsed in the current episode. The observations returned by
the environment are 24-bit RGB images of 320 pixels wide

4https://www.sega.com/

and 224 pixels tall. In the preprocessing step, we convert the
observation images to grayscale, then crop them to a square
shape and resize them to size 84×84 pixels.

In Sega games, the action space contains 12 buttons,
represented as a vector: [B, A, MODE, START, UP, DOWN,
LEFT, RIGHT, C, Y, X, Z]. The actions are then encoded
as binary vectors of size 12, where 1 means “pressed”
and 0 means “not pressed.” For example: {LEFT} to
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], and {DOWN, B} encodes to
[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]. However, in Sonic, only the
following button combinations are valid actions [11]:
{{}, {LEFT}, {RIGHT}, {LEFT, DOWN}, {RIGHT, DOWN}, {DOWN},
{DOWN, B}, {B}}.

III. METHOD

This section introduces the reward functions utilized in
training RL agents for the games CCFS and Sonic, followed
by an explanation of the BAZIGOOSHI method that combines
pre-trained agents with a hybrid architecture.

A. Reward Functions

Below, we explain the reward functions to train the
pre-trained RL agents for the games CCFS and Sonic.

1) CCFS Rewards: For CCFS, we establish two types of
rewards: extrinsic rewards that reflect the progress towards
fulfilling level objectives provided by the environment, and
intrinsic rewards that aid the agents in acquiring general skills.

In this study, we employ two extrinsic reward functions for
CCFS, namely Progressive Jam (PJ) and Delta Jam (DJ) [1].
If an agent’s action spreads jam to at least one additional tile,
the reward function PJ grants the agent a reward equivalent
to the total number of tiles currently covered by jam, denoted
by J . The reward is then normalized by the total number of
tiles on the board, B. Let j be the number of new board tiles
covered by jam after the agent takes action a in state s. Using
these parameters, we define the reward R for the agent as:

R(s, a) =

{
J
B
, j > 0

0, j = 0
(1)

In contrast to PJ, DJ rewards the agent proportional to the
number of new tiles that are covered in jam:

R(s, a) =
j

B
(2)

The extrinsic rewards mentioned earlier are specific to
particular objectives (such as spreading jam). However, we
need to define more generalized rewards to create a more
adaptable system where agents can play different levels with
varying objectives. One approach to achieving this is to use
intrinsic rewards, allowing agents to reward themselves for
accomplishing goals that may not be directly related to the
level’s objective. These intrinsic rewards are modeled after
the fundamental skills that human players develop as they play
and progress through different levels of CCFS. In this paper,
we use three intrinsic rewards for CCFS: Damage Blocker



4

(DB), Candy Creation (CC), and Candy Usage (CU), which
we explain in detail below [6].

In CCFS, the blockers present at each level can vary in
type and number of layers. To account for this variation, we
introduce the DB reward function, which rewards the agents
based on the amount of damage inflicted on each blocker of
type b, which is further normalized by the initial number of
blockers b0 of that type. The DB function is formulated as
follows:

R(s, a) =
∑
b∈B

d(b)

b0
(3)

where B denotes the set of all blockers and d(b) represents
the number of blockers of type b damaged by action a.

Another intrinsic reward function used in this paper is CC,
which incentivizes agents based on the number of special
candies they create of each type following an action. Special
candies require a larger number of candies and particular
shapes in the match to be created. Due to the presence of
blockers and spatial constraints exposed by the board shape,
the occurrence of special candies has different frequencies
and is rare compared to regular candies. To account for this
variance and to prevent skewed results, we normalize the
values of each type of candy accordingly. The formula for
calculating CC is as follows:

R(s, a) =
∑
x∈X

c(x) ×
(
1− µ(x)∑

x′∈X µ(x′)

)
(4)

where c(x) is the number of special candies of type x that are
created after doing action a, µ(x) represents the average fre-
quency of creating that specific special candy type in a single
game episode. The denominator of the equation accounts for
the total frequency of creating all special candies. Empirical
evidence supporting the effectiveness of this intrinsic reward in
generating more special candies is presented in section IV-D.

Although the CC function increases the creation of special
candies, the ultimate goal is to use them in gameplay. There-
fore, we introduce the CU function, which rewards agents
based on their usage of special candies:

R(s, a) =
∑
x∈X

u(x) × (1− µ(x)∑
x′∈X µ(x′)

) (5)

where u(x) represents the number of special candies of type
x involved in the action a.

2) Sonic Rewards: In Sonic, we use the default extrinsic
reward functions provided by the game environment and
define a new intrinsic reward to train the agents. Below, we
explain these three rewards: Contest, X-position (x-pos), and
Progressive Rings (PR), where Contest and x-pos are extrinsic
reward functions, and PR is an intrinsic reward function.

The Contest reward function rewards the agent proportional
to the new horizontal progress (at each time-step) and incen-
tivizes the agent to make more horizontal progress in less time.
It consists of two components: a horizontal offset reward and a
completion reward. The horizontal offset reward is normalized
so that in all levels, the agent’s total reward will be 9000
when it reaches the end of the level. The completion bonus is

introduced to encourage the agent to finish the level quickly.
This is formulated as

R(st, at) =

{
(pt − pt−1)× 9000, pt < 1

(pt − pt−1)× 9000 + (1− ft)× 1000, pt ≥ 1
(6)

where pt is the x-axis progress (after doing action at) normal-
ized by the full horizontal length of the level, and ft is the
fraction of played frames at time t divided by the frame limit
(a number after which the completion reward drops to zero).
This part of the reward encourages the agent to finish faster
as in later time-steps ft gets closer to 1, and according to the
formula 6, the agent gets a smaller reward [11]. The x-pos
reward function, as shown in Equation (7), rewards the agent
by the amount of progress on the x-axis.

R(st, at) = xt − xt−1 (7)

where xt is the position of agent on the x axis after action at.
In the PR reward function, if the agent’s current action leads

to collecting one or more ring(s), the agent is rewarded with
the total number of collected rings. This is formulated as

R(s, a) =

{
C
T
, c > 0

0, c = 0
(8)

where c is the number of new rings collected after the doing
action a, C is the total number of rings collected so far, and T
is the total number of rings available to collect in that level. We
theorize that incentivizing the agent to collect rings encourages
it to use the jump actions more frequently, improving the
agent’s progression through the platforms and obstacles.

B. The Hybrid Models - BAZIGOOSHI

In the preceding section, we use the extrinsic and intrinsic
reward functions defined in Section III-A to build our model
BAZIGOOSHI. We define a pre-trained agent as an RL agent
trained using either an intrinsic or extrinsic reward function.
BAZIGOOSHI is a hybrid architecture that combines these pre-
trained agents to improve generalization. This paper outlines
three ways of combining pre-trained agents in BAZIGOOSHI:
(1) Average Bagging (AB) that utilizes an unweighted en-
semble of pre-trained agents, (2) Heuristic-based Average
Bagging (HAB) that incorporates heuristics to assign static
weights to the pre-trained agents based on their significance,
and (3) Meta Controller Average Bagging (MCAB) that uses
an RL controller to assign weights to each pre-trained agent
dynamically. In the following sections, we provide a detailed
explanation of these three hybrid approaches.

1) Average Bagging (AB): AB is a technique that combines
multiple pre-trained agents to enhance the agent’s generaliza-
tion ability and reduce variance [12]. As depicted in Figure 6,
the AB model receives the current game state and feeds it
simultaneously to each pre-trained agent, which generates a set
of Q-values for every possible action. The Q-values for each
action across different pre-trained agents are then aggregated



5

Fig. 6. Action selection in AB. The current game state is fed as input to
all the pre-trained agents, and each pre-trained agent returns a set of N Q-
values. Each set of Q-values is normalized before summing them with the
corresponding Q-values from other pre-trained agents.

by computing their average. Subsequently, an action with the
highest average Q-value is selected, as shown in (9).

a = argmax
a

(
1

K

K∑
k=1

Qk(s, an), n ∈ {1, 2, ..., N}

)
(9)

where Qk(s, an) represents the Q-value of action an generated
by the pre-trained agent k, and s denotes the input state. The
number of pre-trained agents is K, and N is the number
of actions in the action space. Since each pre-trained agent
uses different reward scales, their Q-value outputs may have
varying ranges, which could introduce bias when aggregating
them. To address this issue, we apply L2-normalization to
scale all the Q-values between [0, 1].

2) Heuristic-based Average Bagging (HAB): The AB
model is limited in assigning the same weight to all pre-
trained agents. However, our ablation study in Section IV-E
shows that some pre-trained agents perform better than others.
To further exploit this, we propose the HAB model, which
assigns different weights to pre-trained agents based on a
simple heuristic. This heuristic calculates the win-rate of each
pre-trained agent on specific levels after training for a fixed
number of episodes and returns weights proportional to these
values. Similar to AB, HAB feeds the current state to each
pre-trained agent and collects their Q-values. However, instead
of averaging the Q-values equally, HAB performs weighted
averaging using the calculated weights. This is formulated in
Equation (10):

a = argmax
a

(
1

K

K∑
k=1

wkQk(s, an), n ∈ {1, 2, ..., N}

)
(10)

where wk is in the range [0, 1] and is calculated as follows:

wk ∝ {training win-rate of the k-th agent} (11)

This heuristic highlights the significance of each pre-trained
agent on a specific level within the hybrid model.

3) Meta Controller Average Bagging (MCAB): In the HAB
model, we use a heuristic to assign static weights to pre-trained
agents based on their final training win-rates on specific levels.
However, this approach does not consider the importance
of different skills conditioned on the state of the game. To
address this, we propose the MCAB model, which uses a meta-
controller RL agent to dynamically learn a set of weights for

Fig. 7. Action selection in MCAB. The current game state is fed as input to
the pre-trained agents and the RL meta-controller agent. The meta-controller
agent returns a set of weights, and each pre-trained agent returns a set of N
Q-values. Each set of Q-values is normalized and multiplied by their weights
before they are summed with the corresponding Q-values from other pre-
trained agents.

combining pre-trained agents conditioned on the game’s cur-
rent state. At each game step, the meta-controller is given the
state as input and returns a set of weights that are then assigned
to the pre-trained agents used in the hybrid model. The weights
reflect the importance of the corresponding pre-trained agent.
The MCAB architecture is illustrated in Figure 7.

To train the meta-controller agent, we use policy gradient
methods like REINFORCE [13] and Proximal Policy Opti-
mization (PPO) [14] since they are suitable for continuous
action spaces. Specifically, in the experiments provided in this
paper, we use PPO on continuous action space to train the
meta-controller agent.

The meta-controller agent learns to output the parameters
of a Dirichlet distribution and draws a sample of size K
as the weights of pre-trained agents for computing a linear
combination over their Q-values. The MCAB model then
selects an action according to Equation (10) where the weights
(wk) are samples taken from a multivariate distribution, in our
case, a Dirichlet distribution with probability density function
as follows:

f(w1, . . . , wK ;α1, . . . , αk) =
1

B(α)

K∏
i=1

wαi−1
i (12)

where
∑K

k=1 wk = 1 (wk ≥ 0), α are the parameters of the
distribution, K is the number of pre-trained agents, and B is
the multivariate beta function.

IV. EVALUATION

This section provides details of the experiments conducted
on CCFS and Sonics, starting with the experiment settings
and introducing the baselines. We then present the results,
which are divided into five parts. First, we demonstrate the
effectiveness of using intrinsic rewards compared to extrinsic
rewards. Second, we conduct an ablation experiment to study
the impact of different combinations of pre-trained agents
in the hybrid model. Third, we compare different weighting
methods, including AB, HAB, and MCAB, in the hybrid
model. Fourth, we compare the hybrid models with agents



6

(a) level A (b) level B (c) level C (d) level D (e) level E (f) level F

(g) level G (h) level H (i) level I (j) level J (k) level K (l) level L

(m) level M (n) level N (o) level O

Fig. 8. The initial board representation of CCFS training and test levels. Levels A-F are training levels, and the rest are testing levels (© 2024 King.com).

trained with sparse rewards and agents pre-trained with in-
trinsic or extrinsic rewards. Finally, we draw a comparison
between BAZIGOOSHI and three baseline models. In this
work, we have executed over 2500 training and evaluation
runs, the compiled results of which are presented in tables in
this section.

A. CCFS Experimental Settings
The CCFS models are trained for 80,000 episodes, and each

episode consists of one round of gameplay resulting in a win or
loss. When evaluating the models, each episode is associated
with a unique random seed different from those used during
training. This randomness is essential when the agent is tested
on the levels it has been trained on. The win-rate is the metric
we use to evaluate the performance of the trained models. It
is computed as the proportion of episodes that result in a win
state over all the episodes in a given trial. The win-rate value
lies within the [0, 1].

We train the agents on six levels with different settings
(levels A, B, C, D, E, and F in Figure 8) and test them on
nine new unseen levels (levels G, H, I, J, K, L, M, N, and
O in Figure 8) with types of candies and blockers different
than the ones present in the training levels. The levels have
been selected in a way to cover a varied range of gameplay
difficulties and a varied selection of game elements. Figure 8
depicts the initial board representations of these levels. The
reported win-rate for each test level in Table IV is the average
of the win-rates obtained from evaluating all the trained
models on that level. Also, each evaluation of a test level has
been repeated using three different sets of random seeds. We
conducted all evaluation experiments by running 1000 game
rounds.

For training the pre-trained agents, we utilize DQN [15],
while for training the meta-controller agent in the MCAB
model, we use PPO [14]. The hyperparameters for our DQN
models are primarily based on those used in the original DQN
paper [15]. Nevertheless, certain hyperparameters, including
the target network update, prediction network update, and
discount factor, are sourced from a study on the CCFS envi-
ronment [1], where a hyperparameter search was conducted.
Similarly, we follow most PPO hyperparameters from the
original PPO paper [14]. Table I provides a detailed summary
of the DQN and PPO agents’ hyperparameters. Through a
limited architecture search, we came up with a network
architecture that is different from the original DQN paper for
CCFS. It consists of five convolutional layers of filter size 35
and kernel size 3 with ELU activation function followed by
two dense layers with sizes 999 and 144 (i.e., corresponding
to the number of actions). The same architecture is used in the
PPO agent on CCFS; however, the last layer in that network
is of size equal to the number of pre-trained agents.

B. Sonic Experimental Settings

In the Sonic environment, each training run comprises six
million game frames, ending in one of the conditions men-
tioned in Section II-B. To train the agents, we use four levels
from different zones (GHZ.Act1, SLZ.Act1, SYZ.Act2 and
MZ.Act1) and consider six unseen levels for testing (GHZ.Act2,
GHZ.Act3, SLZ.Act2, SLZ.Act3, SYZ.Act1 and MZ.Act2). We
use GHZ, SLZ, SYZ and MZ to abbreviate GreenHillZone,
StarLightZone, SpringYatdZone and MarbleZone zones,
respectively. The full map representations of GHZ.Act1 and
SLZ.Act1 are depicted in Figure 9.



7

(a)

(b)

Fig. 9. Sonic level example. The figures (a) and (b) show GHZ.Act1 and SLZ.Act1 levels, respectively.

TABLE I
THE HYPERPARAMETERS FOR TRAINING AGENTS USING DQN AND PPO.

hyperparameter DQN PPO
learning rate 5e-4 1e-4
epsilon 0.01 0.1
batch size 32 N/A
replay capacity 50000 N/A
network update step 100 10
discount factor 0.5 0.99
optimizer Adam Adam
GAE discount N/A 0.95
epochs per update N/A 10
actor sequence length N/A 128

We use average score to evaluate agents’ performance,
which is the average of the total reward per episode across all
episodes [11]. Each score reported for a test level in Table VI
is an average of the evaluation score of all the trained models
on that test level, and each evaluation on a test level has been
repeated using three different random seeds. The evaluation
experiments are performed over a maximum of 10,000 game
frames. We use Rainbow DQN [16] to train all Sonic’s pre-
trained agents. All Rainbow DQN hyperparameters, including
the network architecture, are adapted from the original Sonic
paper [11].

C. Baselines

This section briefly describes the baseline models to which
we compare our hybrid models.

Binary Hybrid Model: The Binary Hybrid Model (BHM)
is similar to the MCAB hybrid model with a minor weight
difference. The controller in this model, similar to the
controller in MCAB, returns a set of weights, but in the end,
only the pre-trained agent with the highest weight decides
the next action, and the decisions of other pre-trained agents

are ignored. This method is not introduced as part of the
BAZIGOOSHI models as it does not use an ensemble of
agents but rather learns to select one of the pre-trained agents
conditioned on the game’s current state. The motivation
for adding this model to the baselines is to highlight the
importance of a weighted hybrid model like MCAB.

Combined Reward Agent: The Combined Reward Agent
(CRA) is an agent that uses a linear combination of
the defined rewards as a reward function for each game
environment. For example, in CCFS, the reward is the
(normalized) sum of PJ, CC, CU, and DB reward functions.
CRA is another relevant baseline to benchmark against since
it is trained with reward information from all the different
subtasks (pre-trained agents).

Hybrid Reward Architecture: The Hybrid Reward Architecture
(HRA) [7] is a hybrid model that provides a strategy for
building easy-to-learn value functions. It decomposes the
reward function of the environment into k different reward
functions. These sub-rewards are assigned separate RL agents
trained in parallel using off-policy learning. More specifically,
a network with a shared body and k separate heads is used
to learn the value functions corresponding to each of the k
agents. The Q-values of the current state from each agent are
then (linearly) combined into a single value for each action.
The current action is chosen based on the combined Q-values.

We consider HRA as another baseline in our benchmarking
of hybrid models. It is worth mentioning that, in HRA,
the decomposition of the reward function should result in
many sub-rewards affected only by a small subset of state
space. However, to perform a fairer comparison in this study,
we consider the same set of reward functions used by the
BAZIGOOSHI models on each game environment and train the
HRA model for the same number of episodes as BAZIGOOSHI.



8

All hyperparameters are taken from the original HRA paper,
except for the network architecture, where we use the same
architectures mentioned in sections IV-A and IV-B for each
game.

D. Intrinsic vs Extrinsic

This experiment provides more transparency on the ef-
fectiveness of using intrinsic reward functions compared to
extrinsic rewards through empirical evidence. Figure 10 shows
the effect of using an intrinsic reward (CC) versus an extrinsic
reward (PJ) on the probability of the creation of special candies
(described in II-A) as well as the probability of a match-
3 action in CCFS. Figures 10(a)-10(g) show the significant
effect of using CC reward on increasing the number of special
candies. In Figure 10(h), we see an increase in the number of
created special candies, resulting in a higher win-rate in the
agent trained with an intrinsic reward function. In the rest of
this section, we show that this is also pivotal for achieving
generalization across levels of different objectives.

E. Ablation Study

In this section, we report on an ablation experiment per-
formed on both CCFS and Sonic environments. This study
investigates the impact of different combinations of pre-trained
agents (e.g., PJ, DJ, CC, CU, and DB in CCFS) in the AB
hybrid model. The results of this experiment on CCFS confirm
that assigning weights to these agents is necessary, as they
contribute to the overall performance differently. Figure 11
illustrates the win-rate of the AB model with each pre-trained
agent excluded from the combination. For instance, the line
labeled DB shows the win-rate of the AB model without the
pre-trained agent using the DB reward function, while the
decisions from the remaining pre-trained agents are combined
for the AB model. Each line in the plots presents an average of
three runs with different random seeds. Figure 11 demonstrates
that excluding specific pre-trained agents from the hybrid
model affects the overall win-rate differently. For instance,
removing CC decreases win-rate across all three levels, while
excluding DB distinctly impacts each level.

To further investigate this hypothesis, we conducted a simi-
lar ablation experiment on Sonic, and the results, presented in
Table II, further support our claim. Each score in the table is
an average of three runs with different seeds, and it shows that
excluding a pre-trained agent affects the overall scores. Similar
to the results of the ablation study on CCFS, the Sonic study
suggests that the hybrid model’s performance could be affected
significantly when different combinations of pre-trained agents
are used. These findings motivated the proposition of non-
uniform and trainable weights for the pre-trained agents in
the hybrid models.

F. Hybrid Model vs. Pre-Trained Agents

In this section, we compare the average win-rate and score
of the hybrid models with several pre-trained agents trained
using three rewarding approaches: (i) intrinsic skill-based
rewards, (ii) extrinsic objective-based rewards, and (iii) sparse

TABLE II
THE ABLATION STUDY IN SONIC: THE IMPACT OF EMPLOYING VARIOUS

PRE-TRAINED AGENT COMBINATIONS ON WIN-RATES IN THE AB MODEL.

Excluded agent Average score
PR 1733

x-pos 1917
Contest 1611

TABLE III
THE AGGREGATED WIN-RATES OF PRE-TRAINED AGENTS AND HYBRID

MODELS ON CCFS TRAINING LEVELS.

Agents Level

A B C D E F

Random 0.045 0.000 0.004 0.079 0.006 0.004
Sparse 0.066 0.008 0.008 0.126 0.003 0.003

DJ 0.136 0.010 0.030 0.141 0.016 0.007
PJ 0.098 0.029 0.024 0.250 0.018 0.014

DB 0.212 0.059 0.041 0.270 0.018 0.019
CU 0.085 0.038 0.039 0.263 0.019 0.023
CC 0.331 0.014 0.053 0.436 0.050 0.010

CRA 0.240 0.036 0.047 0.318 0.038 0.022
BHM 0.069 0.022 0.037 0.288 0.021 0.003
HRA 0.093 0.028 0.036 0.237 0.027 0.006

AB 0.400 0.063 0.135 0.323 0.076 0.040
HAB 0.533 0.066 0.159 0.560 0.037 0.045
MCAB 0.379 0.060 0.129 0.391 0.053 0.045

rewards. As shown in Table III, the three hybrid models (AH,
MCAB, and HAB) in CCFS surpass the pre-trained agents on
training performance. These results confirm that hybrid archi-
tectures enable more informed decision-making by considering
the choices of various pre-trained agents. Another interesting
observation is that the performance gap between the hybrid
model and the pre-trained agents increases on more difficult
levels (e.g., G and I in Table IV), underscoring the advantages
of hybrid architectures in tackling more complex challenges.
Moreover, when assessing the generalization performance of
the models on test levels (Table IV), the MCAB hybrid model
outperforms all of the pre-trained agents.

We can see a similar trend in the results of experiments on
the Sonic environment. As shown in Table V, the performance
of the hybrid models (especially MCAB) far surpasses that
of the pre-trained agents (PR, x-pos, and Contest) in all
but one case. On level SLZ.Act1, the PR agent receives a
slightly higher score than AB and MCAB. Also, looking at the
generalization performance on the unseen levels (Table VI),
the hybrid models outperform all pre-trained agents (used as
their building blocks) based on average scores across test
levels. These results confirm the benefits of hybrid models
compared to a single policy (pre-trained) agent in terms of
both training and test performance.

G. Comparison of Hybrid Models

Our study uses hybrid models to train agents in both
CCFS and Sonic environments. Specifically, we examine three
variations thoroughly explained in Section III (i.e., AB, HAB,
MCAB). Within CCFS, we focus on four pre-trained agents,



9

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. (a)-(g) Probability of a match-3 action and probability of creation of each type of special candy in CCFS using an agent trained with extrinsic reward
versus an agent trained with an intrinsic reward on level A. (h) Win-rates of these agents on level A. The x-axis shows the number of training episodes.

(a) Level A (b) Level B (c) Level C

Fig. 11. The ablation study in CCFS - Plots showing the impact of using various combinations of the pre-trained agents on win-rates of the AB model on
levels A, B, and C. Each line indicates the performance of an AB model with the specified pre-trained agent being excluded.

each with a distinct reward function: PJ, CC, CU, and DB.
After observing the high similarity between DJ and PJ and
the superior generalization ability of PJ, we decided to ex-
clude DJ and only consider PJ in our combinations. Our
analysis, detailed in Tables III and IV, involved evaluating
the models’ performance by measuring their average win-rate
on both training and new, unseen test levels to assess their
generalization ability.

As depicted in Table III, the HAB model, which selects
weights proportionally to the final training win-rate of pre-
trained agents, demonstrates superior performance on the
training levels (A-F) compared to the other hybrid models in
CCFS. This result confirms that the HAB model’s weighting
system more effectively highlights the importance of each pre-
trained agent on the seen levels, in contrast to the MCAB
model’s learned weights. However, upon evaluating the agents’
generalization abilities across unseen levels (levels G-O shown
in Table IV), the MCAB model outperforms the other hybrid
models on most levels. This outcome suggests that the MCAB

model learns a more generalized set of weights, which more
accurately reflect the overall importance of each pre-trained
agent across various levels. Despite the HAB model’s success
on the seen levels, it still falls short in terms of generalization
compared to the MCAB model. For instance, the HAB model
fails to secure a win on all five trials of level F.

We only consider AB and MCAB hybrid models for training
in the Sonic environment. In this environment, these hybrid
models combine pre-trained agents trained with each of the
three defined reward functions (e.g., Contest, x-pos, and PR).
We evaluate the performance of models in terms of the
average score on both the training and test levels. These
results are presented in Tables V and VI. For comparing the
performance of AB and MCAB hybrid models, we follow the
evaluation procedure provided in [11] and look at the average
performance of the agents across train and test levels (e.g.,
considering the average score of each agent on GHZ.Act1 and
SLZ.Act2 as the training score of that agent).

Considering this evaluation method, the agent trained with



10

TABLE IV
THE AGGREGATED WIN-RATES OF PRE-TRAINED AGENTS AND HYBRID MODELS ON CCFS TEST LEVELS.

Agents Level

G H I J K L M N O

Random 0.002 ± 0.001 0.002 ± 0.000 0.000 ± 0.000 0.002 ± 0.001 0.010 ± 0.002 0.002 ± 0.001 0.005 ± 0.001 0.000 ± 0.000 0.001 ± 0.001
Sparse 0.007 ± 0.001 0.004 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.015 ± 0.002 0.000 ± 0.000 0.008 ± 0.000 0.000 ± 0.000 0.001 ± 0.000

DJ 0.012 ± 0.001 0.008 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.025 ± 0.002 0.001 ± 0.000 0.017 ± 0.001 0.001 ± 0.001 0.002 ± 0.000
PJ 0.018 ± 0.002 0.014 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 0.033 ± 0.002 0.002 ± 0.000 0.029 ± 0.001 0.002 ± 0.001 0.007 ± 0.001

DB 0.017 ± 0.002 0.012 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.025 ± 0.003 0.000 ± 0.000 0.027 ± 0.001 0.001 ± 0.001 0.001 ± 0.000
CU 0.024 ± 0.000 0.019 ± 0.002 0.001 ± 0.000 0.001 ± 0.000 0.045 ± 0.001 0.003 ± 0.000 0.024 ± 0.002 0.003 ± 0.000 0.010 ± 0.002
CC 0.022 ± 0.001 0.011 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.038 ± 0.001 0.000 ± 0.000 0.028 ± 0.001 0.002 ± 0.000 0.002 ± 0.001

CRA 0.031 ± 0.002 0.022 ± 0.001 0.000 ± 0.000 0.001 ± 0.000 0.045 ± 0.001 0.002 ± 0.000 0.034 ± 0.003 0.003 ± 0.001 0.011 ± 0.002
BHM 0.033 ± 0.022 0.023 ± 0.011 0.001 ± 0.001 0.001 ± 0.001 0.045 ± 0.019 0.003 ± 0.002 0.042 ± 0.022 0.004 ± 0.002 0.013 ± 0.008
HRA 0.016 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.036 ± 0.000 0.002 ± 0.000 0.023 ± 0.000 0.004 ± 0.000 0.006 ± 0.001 0.017 ± 0.001

AB 0.063 ± 0.006 0.040 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 0.066 ± 0.003 0.004 ± 0.001 0.075 ± 0.004 0.005 ± 0.000 0.020 ± 0.001
HAB 0.066 ± 0.003 0.033 ± 0.002 0.001 ± 0.000 0.001 ± 0.000 0.064 ± 0.003 0.005 ± 0.000 0.073 ± 0.006 0.005 ± 0.000 0.021 ± 0.001
MCAB 0.063 ± 0.001 0.040 ± 0.002 0.001 ± 0.000 0.002 ± 0.000 0.067 ± 0.003 0.006 ± 0.000 0.076 ± 0.002 0.006 ± 0.000 0.023 ± 0.001

TABLE V
THE AGGREGATED SCORE OF PRE-TRAINED AGENTS AND HYBRID

MODELS ON SONIC TRAINING LEVELS.

Agents Level

GHZ.Act1 SLZ.Act1 SYZ.Act2 MZ.Act1

Random 366 449 449 196
PR 1729 3268 822 1989
x-pos 2386 2538 1041 1965
contest 2085 481 820 2376

CRA 1406 1551 987 2074
HRA 792 618 822 201

AB 1484 3203 1108 2098
MCAB 2742 3090 1401 2602

MCAB performs better than the AB model. The higher average
test score of the MCAB model indicates that the weights
learned by the meta-controller lead to better generalization,
confirming the benefits of using MCAB in combining different
agents. Looking at the test scores on each level individually,
the AB model achieves a higher test score on one test level,
SLZ.Act2. By looking at the level maps and comparing their
dynamics, we can see that SLZ.Act2 has significantly more
loops than the other test and train levels; therefore, the weight
distributions learned in the MCAB model do not work as well
on SLZ.Act2. In the next session, we compare the performance
of hybrid models with non-hybrid models.

H. Hybrid Model vs. Baselines

In this section, we compared the average win-rates of
the hybrid models to several baseline models, i.e., CRA,
BHM, and HRA, in the CCFS and Sonic environments. As
shown in Table III and IV, BAZIGOOSHI outperforms all the
baselines on most levels in CCFS. Based on the evaluation
results on unseen levels, we conclude that BAZIGOOSHI
provides a stronger generalizer than methods that consider a
single agent’s decision, such as CRA and BHM. Furthermore,
comparing BAZIGOOSHI to the state-of-the-art hybrid model
HRA, trained equally long on the levels from CCFS, we see
BAZIGOOSHI performs on average better than HRA. It is
worth mentioning that HRA outperforms BAZIGOOSHI on
three levels (J, L, and N). Based on this observation, one

might argue that an HRA model trained for a longer time or
using a more significant number of decomposed sub-rewards
might be able to surpass the performance of MCAB on more
levels. However, in situations where computational resources
are limited, training MCAB proves more straightforward than
HRA. This is because pre-trained agents do not need simul-
taneous training; moreover, they can be effectively used in
different combinations. Future works can focus on comparing
these models without time and computational limitations.

On Sonic, we have CRA and HRA baselines. The perfor-
mance comparison between BAZIGOOSHI and these baselines
confirms the CCFS conclusions. Interestingly, the CRA model
performs relatively well on Sonic and generalizes better than
MCAB to some unseen levels. We attribute the success of CRA
in Sonic to the setting of those levels 5. More specifically,
GHZ.Act2 and MZ.Act2 levels have less number of rings to
collect compared to the other levels, which affects the sparsity
of the PR reward. We believe the multi-reward model is more
prone to this sparsity as it combines several reward functions,
so the sparsity of one reward signal could affect the results
less dramatically. Whereas in the hybrid models, having a
low-performing pre-trained agent could directly affect the final
decision of the model.

I. CCFS vs. Sonic

In this section, we present an analysis of the results of
each game, draw comparisons between the results, and provide
insight into which type of games the hybrid models might best
suit. Considering the fundamental differences between CCFS
and Sonic in terms of game logic, dynamics, and state and
action space size, it is fair to expect a different trend in the
results of the studied models. While, on average, BAZIGOOSHI
shows a good performance in both games, the performance gap
between the pre-trained agents and hybrid models in the CCFS
is more meaningfully significant than that of Sonic. One aspect
that can explain this observation is how much each game is
affected by the order of actions performed in a game round.

In CCFS, performing certain actions must precede other
actions for the game to result in a win. For example, before
removing a blocker that covers a tile with candy, the candy

5Level settings can be found here: https://info.sonicretro.org



11

TABLE VI
THE AGGREGATED SCORE OF PRE-TRAINED AGENTS AND HYBRID MODELS ON SONIC TEST LEVELS.

Agents Test

GHZ.Act2 GHZ.Act3 SLZ.Act2 SLZ.Act3 SYZ.Act1 MZ.Act2

Random 295 ± 8 256 ± 7 476 ± 2 355 ± 10 273 ± 9 36 ± 9
PR 752 ± 41 673 ± 4 660 ± 6 1490 ± 28 272 ± 1 1189 ± 22
x-pos 1280 ± 81 1127 ± 82 738 ± 18 1406 ± 13 326 ± 7 1239 ± 12
contest 885 ± 18 788 ± 26 851 ± 14 1277 ± 7 278 ± 5 1377 ± 8

CRA 2113 ± 28 1198 ± 12 623 ± 4 1147 ± 13 446 ± 5 1736 ± 15
HRA 168 ± 0.6 135 ± 0.3 1854 ± 257 697 ± 2 158 ± 0 901 ± 03

AB 1047 ± 287 645 ± 33 1046 ± 26 1902 ± 31 381 ± 4 1482 ± 12
MCAB 1977 ± 29 1215 ± 9 864 ± 4 1948 ± 25 451 ± 4 1588 ± 12

underneath is not interactable. This translates into the impor-
tance of hybrid models that provide a more flexible decision-
making ability. However, the order of actions is less critical
in gaining higher scores in Sonic. For example, if the agent
misses a ring, it can always go back and perform a jump
action. So, the hybrid models in Sonic may not provide as
strong of an advantage as they do in CCFS. The hybrid models,
especially MCAB, could show their full potential when applied
to games where the interactions between elements are affected
by the order of actions, which could significantly affect the
gameplay.

V. RELATED WORK

In this section, we first review the state-of-the-art RL-based
solutions for gameplay-testing and then explore the recent
models for reward shaping and generalization.

A. Gameplay-testing with RL

One interesting application of RL in games is to perform
automated gameplay-testing. These automated tests can be
applied for different objectives, such as finding bugs in the
game application environments, checking the game’s feasi-
bility given the dynamics, assessing the difficulty of the
games, and building in-game Non-Playable Characters (NPC).
Bergdahl et al. [17] use RL to improve gameplay-testing to
find unintended video game exploits. Alonso et al. [18] train
an RL agent to develop skilled NPCs to navigate the 3D
environment or check the feasibility of procedurally generated
goals. Woillemont et al. [19] utilize RL for gameplay-testing
in games where they train an agent to emulate the players’
play styles, even on previously unseen levels, with little need
for human data. Moreover, Borovikov et al. [20] propose a
learning and planning framework based on RL to create intel-
ligent game agents in service of the development processes of
the game developers.

B. Reward Shaping and Generalization

In order to address the issue of sparse rewards, Florensa
et al. [21] introduce a framework for training a group of
agents using intrinsic rewards that demand minimal domain
knowledge about the tasks downstream. They additionally train
a model to select the best agent from this group. Another

approach that addresses the problem of sparse rewards is dis-
cussed in [22], where the authors suggest a linear method for
combining smaller rewards associated with in-game features.

Hierarchical learning is a common method for enhancing
the generalization of RL models. For instance, Van Seijen et
al. [7] introduce a hybrid reward architecture, decomposing
the reward function into various reward streams and utilizing a
multi-head network to learn the value functions of each stream.
Their approach effectively solves games with large state spaces
that are hard to learn and generalize. Another study by Sahni et
al. [23] explores the concept of recursively composing policies
to generate hierarchies displaying complex behaviors. They
suggest a network architecture that trains different composable
policies separately and combines their learned embedding into
a single embedding. The composition function demonstrates
good generalization performance to unseen tasks. Additionally,
Sutton et al. [24] suggest the idea of “options”, which are
temporally extended actions trained in parallel using intrinsic
reward functions. After training a set of options, a higher-level
agent, whose action space comprises these learned options,
evaluates them using its own reward function.

Kulkarni et al. [25] present a hierarchical approach that
consists of two stages: a meta-controller and a controller. The
meta-controller takes a state as input and selects an option,
which the controller then uses to choose an action based
on the state and the selected option. Bacon et al. [26] add
to the flexibility of options by introducing the option-critic
architecture that can learn the internal policies, termination
conditions, and policy over options without additional rewards.
In a recent study, Barreto et al. [27] propose a framework
that combines learned sequences of actions, called skills, to
generate a variety of behaviors. This approach learns options
associated with a set of pseudo-rewards and creates new
options induced by any linear combination of these pseudo-
rewards without the need for additional learning.

C. Cooperative Multi-Agent RL

BAZIGOOSHI shares ideas with some of the techniques
used in cooperative multi-agent RL. In this domain, achieving
centralized learning among agents has been demonstrated to be
effective through the learning of a joint action-value. However,
the optimal strategy for deriving decentralized policies remains
ambiguous. Sunehag el al. [28] introduce Value Decompo-



12

sition Networks (VDN), a learned value-decomposition ap-
proach applied to individual agents. VDN offers a method for
training individual agents within a multi-agent environment,
employing a network architecture specifically designed for
learning the decomposition of the team value function into
individual agent-wise value functions. Results highlight the
superiority of this value decomposition-based architecture over
prior state-of-the-art methods.

Building upon the insights of VDN, Rashid et al. [29]
introduce QMIX, a value-based approach capable of training
decentralized policies in a centralized end-to-end manner. In
QMIX, a network conditioned on local observations esti-
mates the joint action-values of agents through a non-linear
combination of each agent’s values. Evaluation of QMIX
across a set of tasks in the game of StarCraft II demonstrates
significant improvement over existing value-based multi-agent
RL methods.

Techniques that use an ensemble of various models or al-
gorithms often provide strong generalization capabilities [30].
Perepu et al. [31] apply such a technique to time series
forecasting. Their method uses RL to dynamically weigh
several different (non-RL) models in a hybrid architecture and
also compares RL-based and neural network-based methods
of learning the weights. They report good generalization per-
formance using this model. Similar to some of the mentioned
works, our work proposes a hierarchical model encompassing
multiple reward functions. However, unlike prior approaches
used in RL applications, our method considers the decisions
of all RL agents trained with various rewards to determine
the final action. Additionally, we utilize learnable weights
to combine the RL agents’ decisions in a weighted manner,
allowing us to emphasize the importance of each agent differ-
ently depending on the game state. We show that this flexibility
leads to improved generalization on new levels.

VI. CONCLUSIONS

This paper introduces BAZIGOOSHI, an extension of Can-
dyRL, which is a Reinforcement Learning (RL) framework
for gameplay. This framework leverages a hybrid architecture
for combining a set of pre-trained agents, each specializing
in acquiring basic skills, to determine the optimal actions
for each step in a game. BAZIGOOSHI incorporates three
distinct approaches for combining these pre-trained agents: (1)
Average Bagging (AB) that assigns static and equal weights
to all pre-trained agents, (2) Heuristic-based Average Bagging
(HAB) that employs a heuristic to assign non-uniform static
weights, and (3) Meta Controller Average Bagging (MCAB)
that utilizes a meta-controller RL agent to allocate weights to
the pre-trained agents dynamically.

To assess the adaptability and broader applicability of
BAZIGOOSHI, we selected two different types of game en-
vironments, Candy Crush Friends Saga (CCFS) and Sonic the
Hedgehog Genesis (Sonic), as our experimental platforms. In
evaluating the generalization capabilities of the hybrid models
on unseen levels, it becomes evident that dynamic weight
assignment using the meta-controller RL in MCAB yields a
higher win-rate than most static weighting approaches across

the games. However, results are inconclusive when comparing
MCAB with the Hybrid Reward Architecture (HRA) baseline
in CCFS and with the Combined Reward Agent (CRA)
baseline on Sonic, as HRA outperforms MCAB on two levels
in CCFS and CRA gives comparable results to MCAB on
some unseen levels in Sonic. Moreover, we conducted ablation
studies on both games to further explore our initial hypothesis
regarding the positive influence of dynamic weights on the
agents’ generalizability. The results demonstrated that varying
combinations of agents had distinct effects on BAZIGOOSHI’s
performance.

One limitation of our proposed hybrid models is the re-
quirement for handcrafted reward functions. Future research
in this domain may delve into automatic reward function
discovery, thereby eliminating the need for handcrafted reward
functions. One approach to achieve this is to leverage offline
datasets from various sources, such as player gameplay data.
Moreover, CCFS offers a vast array of diverse levels, and
attaining strong performance on more intricate levels proves
to be more challenging for certain agents than others. Another
interesting direction for future work involves the exploration
of the transferability of skills and learnings from agents trained
to play more straightforward levels to train agents with better
performance on more complex levels.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the thesis work
of Francesco Lorenzo conducted at King Ltd. This work
was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.

REFERENCES

[1] A. Karnsund, “DQN tackling the game of candy crush friends saga: A
reinforcement learning approach,” Master’s thesis, KTH Royal Institute
of Technology, 2019.

[2] M. Fischer, “Using reinforcement learning for games with nondetermin-
istic state transitions,” Master’s thesis, Linköping University, 2019.

[3] A. Stout, G. D. Konidaris, and A. G. Barto, “Intrinsically motivated
reinforcement learning: A promising framework for developmental robot
learning,” 2005.

[4] J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic motiva-
tion (1990–2010),” IEEE Transactions on Autonomous Mental Develop-
ment, vol. 2, no. 3, pp. 230–247, 2010.

[5] Y. Shin et al., “Playtesting in match 3 game using strategic plays via
reinforcement learning,” IEEE Access, vol. 8, pp. 51 593–51 600, 2020.

[6] F. Lorenzo et al., “Use all your skills, not only the most popular ones,”
in 2020 IEEE Conference on Games (CoG). IEEE, 2020, pp. 682–685.

[7] H. Van Seijen et al., “Hybrid reward architecture for reinforcement
learning,” in Advances in Neural Information Processing Systems, 2017,
pp. 5392–5402.

[8] S. Karimi, S. Asadi, F. Lorenzo, and A. H. Payberah, “CandyRL:
A hybrid reinforcement learning model for gameplay,” in 2022 21st
IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE, 2022, pp. 567–572.

[9] S. Gudmundsson et al., “Human-like playtesting with deep learning,”
in 2018 IEEE Conference on Computational Intelligence and Games
(CIG). IEEE, 2018, pp. 1–8.

[10] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta
learn fast: A new benchmark for generalization in rl,” arXiv preprint
arXiv:1804.03720, 2018.

[11] ——, “Gotta learn fast: A new benchmark for generalization in rl,” arXiv
preprint arXiv:1804.03720, 2018.

[12] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.



13

[13] R. Sutton et al., “Policy gradient methods for reinforcement learning
with function approximation,” in Advances in neural information pro-
cessing systems, 2000, pp. 1057–1063.

[14] J. Schulman et al., “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

[15] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[16] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” in Thirty-
second AAAI conference on artificial intelligence, 2018.

[17] J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gisslén, “Augmenting
automated game testing with deep reinforcement learning,” in 2020 IEEE
Conference on Games (CoG). IEEE, 2020, pp. 600–603.

[18] E. Alonso, M. Peter, D. Goumard, and J. Romoff, “Deep reinforce-
ment learning for navigation in aaa video games,” arXiv preprint
arXiv:2011.04764, 2020.

[19] P. L. P. de Woillemont, R. Labory, and V. Corruble, “Automated play-
testing through rl based human-like play-styles generation,” in Proceed-
ings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, vol. 18, no. 1, 2022, pp. 146–154.

[20] I. Borovikov, Y. Zhao, A. Beirami, J. Harder, J. Kolen, J. Pestrak,
J. Pinto, R. Pourabolghasem, H. Chaput, M. Sardari et al., “Winning
isn’t everything: Training agents to playtest modern games,” in AAAI
Workshop on Reinforcement Learning in Games, 2019.

[21] C. Florensa et al., “Stochastic neural networks for hierarchical reinforce-
ment learning,” arXiv preprint arXiv:1704.03012, 2017.

[22] G. Lample et al., “Playing fps games with deep reinforcement learning,”
in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[23] H. Sahni et al., “Learning to compose skills,” arXiv preprint
arXiv:1711.11289, 2017.

[24] R. Sutton et al., “Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning,” Artificial intelligence,
vol. 112, no. 1-2, pp. 181–211, 1999.

[25] T. Kulkarni et al., “Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation,” Advances in neural
information processing systems, vol. 29, 2016.

[26] P. Bacon et al., “The option-critic architecture,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.

[27] A. Barreto et al., “The option keyboard: Combining skills in reinforce-
ment learning,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[28] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv preprint arXiv:1706.05296, 2017.

[29] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster,
and S. Whiteson, “Monotonic value function factorisation for deep
multi-agent reinforcement learning,” The Journal of Machine Learning
Research, vol. 21, no. 1, pp. 7234–7284, 2020.

[30] Y. Song, P. Suganthan, W. Pedrycz, J. Ou, Y. He, and Y. Chen, “Ensem-
ble reinforcement learning: A survey,” arXiv preprint arXiv:2303.02618,
2023.

[31] S. K. Perepu, B. S. Balaji, H. K. Tanneru, S. Kathari, and V. S. Pinna-
maraju, “Reinforcement learning based dynamic weighing of ensemble
models for time series forecasting,” arXiv preprint arXiv:2008.08878,
2020.


	Introduction
	Preliminary
	Candy Crush Friends Saga
	Sonic the Hedgehog Genesis

	Method
	Reward Functions
	CCFS Rewards
	Sonic Rewards

	The Hybrid Models - BaziGooshi
	Average Bagging (AB)
	Heuristic-based Average Bagging (HAB)
	Meta Controller Average Bagging (MCAB)


	Evaluation
	CCFS Experimental Settings
	Sonic Experimental Settings
	Baselines
	Intrinsic vs Extrinsic
	Ablation Study
	Hybrid Model vs. Pre-Trained Agents
	Comparison of Hybrid Models
	Hybrid Model vs. Baselines
	CCFS vs. Sonic

	Related work
	Gameplay-testing with RL
	Reward Shaping and Generalization
	Cooperative Multi-Agent RL

	Conclusions
	References

