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ABSTRACT

ExtremeEarth is a three-year H2020 ICT research and
innovation project. Its main objective is to develop Artificial
Intelligence and big data technologies that scale to the large
volumes of big Copernicus data, information and knowledge,
and apply these technologies in two of the European Space
Agency (ESA) Thematic Exploitation Platforms (TEP): Food
Security and Polar.

Index Terms— ExtremeEarth, Earth Observation, Linked
Geospatial Data, Artificial Intelligence, Deep Learning,
Copernicus, Food Security, Polar Regions

1. INTRODUCTION

Copernicus data is a paradigmatic case of big data giving rise to
all relevant challenges, the so-called 5-Vs: volume, velocity,
variety, veracity, and value, as it is documented in recent reports,
such as the 2019 Copernicus Sentinel Data Access Report and
the Copernicus Market Report of the same year. Copernicus data
today is freely available not only through the Copernicus Open
Access Hub but also through the five Data and Information
Access Services (DIAS), where computing power is also
available close to the data. Some related facilities of the Earth
Observation (EO) ecosystem in Europe are the Thematic
Exploitation Platforms (TEPs) of the European Space Agency
(ESA), which enable user communities to collaborate using a
virtual workspace where EO data, non-EO data, tools, and
computing power are available. Today most of the TEPs run on a
DIAS (e.g., the Food Security and Polar TEPs run on
CREODIAS).

This work is supported by the ExtremeEarth project funded by European
Union’s Horizon 2020 Research and Innovation Programme under Grant
Agreement No. 825258.

ExtremeEarth1 is positioned in this prosperous European EO
ecosystem and has three objectives: (i) extracting information
and knowledge from big Copernicus data using scalable
algorithms, (ii) managing this information and knowledge
efficiently, and (iii) integrating it with other data sources to
develop demo applications of economic, environmental and
societal value.

ExtremeEarth is currently in its final year. Its main
achievements so far are the following: (i) two implemented use
cases focusing on Food Security and the Polar Regions, (ii) new
deep learning architectures for crop type mapping in the context
of the Food Security use case, (iii) new deep learning
architectures for sea ice mapping in the context of the Polar use
case, (iv) the development and open publication of very large
datasets for training the deep architectures, (v) scalable semantic
technologies for managing, as big linked geospatial data, the
information and knowledge extracted from Copernicus data, and
(vi) the ExtremeEarth platform that brings all the above
technologies together and is used to implement the two use
cases.

The rest of the paper presents the above contributions.

2. THE FOOD SECURITY USE CASE

Food Security is a very challenging issue of this century,
especially given the changing Earth environment. Irrigation is an
important dimension of it requiring reliable water resources
either from ground water or from surface water. A large portion
of fresh water is linked to snowfall, snow/ice storage and
seasonal release. Therefore, water availability maps are an
important EO-based product that can support farmers in decision
making and irrigation information management.

1http://earthanalytics.eu/
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The goal of the Food Security use case of ExtremeEarth is to
develop high resolution water availability maps for agricultural
areas, allowing a new level of detail for wide-scale irrigation
support for farmers [11]. The Danube river basin is the area
where the results of the use case have been demonstrated so far.
This area was selected for the following reasons: (i) variability
in water supply due to changing precipitation patterns leading to
extremes events (floods and droughts), (ii) significant portion of
irrigated agriculture, (iii) significant water supply from water
storage by snow in the Alps, (iv) large interest of demo users,
and (v) strong economic, environmental and societal value.

The first stage of this use case was the collection of user
requirements during a workshop which was organized by VISTA
in Munich in March 2019. The user requirements drove the
design and implementation of the Food Security use case which
is shown graphically in Figure 1.

Fig. 1: The Food Security use case

The implementation of the use case draws on the following
information: (i) crop type and leaf area index computed using
Sentinel-2 images, (ii) biomass, water demand, soil moisture,
snow storage, snow run off and groundwater computed using
the proprietary land surface modelling software PROMET of
VISTA, (iii) snowmelt from Sentinel-1 data, (iv) snow cover
products from the Copernicus CryoLand service, and (v) snow
water equivalent from in-situ sensors.

The outputs of the use case are field specific irrigation
recommendations for specific demo applications in Austria,
Hungary and Romania. These consist of recommendations
regarding when and how much to irrigate, and yield forecasts
with and without optimized irrigation plans.

The implementation of the processing chain of the Food
Security use case has been done in the Food Security TEP using
the ExtremeEarth platform (see Section 7 and [3]). The deep
learning algorithms used for crop type mapping are discussed in
Section 4. The semantic technologies that are used are discussed
in Section 6.

3. THE POLAR USE CASE

The anticipated economic development of the Arctic, partially
driven by reductions in sea ice cover, will see an increase in
maritime shipping activity. High quality, timely and reliable
information about sea ice and iceberg conditions is vital to ensure
that vessels can navigate efficiently and safely with minimal
risk to the environment. This information is required by vessels
in many sectors, including cargo transport, fisheries, tourism,
research vessels, resource exploration and extraction, destination
shipping and national coast guard vessels.

The goal of the ExtremeEarth Polar use case is to produce
high resolution ice charts from massive volumes of
heterogeneous Copernicus data. The first stage of the use case
was the collection of user requirements during the user
workshop of March 2019. Two key technical requirements that
resulted from this workshop were: (i) SAR data (Sentinel-1 and
other third party missions) were considered the most reliable
source of information for the use case, since they are already
used widely for operational sea ice charting, and (ii) automatic
products to be produced by ExtremeEarth had to maintain the
high resolution of this data and the ice charts derived from it
(300 meters or better). The technical requirements drove the
design and implementation of the Polar use case which is shown
graphically in Figure 2.

Fig. 2: The Polar use case

The implementation of the use case draws on the following
information: (i) Level-1 Sentinel-1 images, (ii) training data
compiled manually by expert ice analysts from a variety of
sources including other satellite data such as Sentinel-2 and -3
visible and infrared optical, COSMO SkyMed and RADARSAT-2
SAR, and ICESat-2 sea ice freeboard, and in addition shipboard
observations from Ice Watch2.

The outputs of the use case are sea ice concentration and
type maps, displaying stages of development (in accordance with
the World Meteorological Organization Sea Ice Nomenclature),
including fraction of leads and ridges, over the Polar Regions, at
a resolution of 300 meters or better.

The implementation of the processing chain of the Polar use
case has been done in the Polar TEP [2] using the ExtremeEarth
platform (see Section 7 and [3]). The deep learning algorithms
used for sea ice classification are discussed in Section 5. The
semantic technologies that are used are discussed in Section 6.

2https://icewatch.met.no
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4. DEEP LEARNING FOR CROP TYPE MAPPING

The determination of crops using satellite images is an important
component of the pipeline of the Food Security use case
discussed in Section 2. For this task, University of Trento
developed a deep neural network architecture for crop type
mapping using Sentinel-2 image time series [13]. This
classification task presents many challenges: (i) the considered
time series are noisy, due to the presence of clouds that corrupts
the multi-temporal spectral signature, thus affecting the
classification results, (ii) time series of different tiles are made
up of images acquired in different dates (different temporal
sampling), and (iii) a large training dataset of labeled samples is
needed to train the deep model.

To address these challenges, the methodology of [13] consists
of three main steps: (i) a preprocessing step that generates
temporally homogeneous time series of images across tiles that
accurately represent the phenological behavior of the crops,
(ii) an extraction step that automatically establishes a large
training dataset leveraging publicly available crop type maps
based on farmer declarations in a large area of Austria, and (iii)
a multi-temporal deep learning classification algorithm based
on a Long Short Term Memory neural network. The proposed
approach achieves more balanced classification results compared
to existing state-of-the-art methods obtaining a mean F1 score of
78.32% and an overall accuracy of 85.86%. The approach of [13]
has recently been implemented in Hopsworks (see Section 7)
and has been deployed in the Food Security TEP.

An important contribution of ExtremeEarth in this context is
the development of the training dataset mentioned above which
consists of around 1 million pixels of 16 Sentinel-2 images
located in Austria, where each pixel is labelled with one of 13
crop types. The dataset will soon be available in the web site of
the project.

5. DEEP LEARNING FOR SEA ICE CHARTING

The core of the Polar use case of ExtremeEarth is sea ice
classification. For this task, UiT, KTH and DLR have developed
multiple deep neural network architectures (LDA, CNNs,
variational auto-encoders, GANs, etc.) described in more detail
in [5, 6, 7]. Some of these architectures have been implemented
in Hopsworks (see Section 7) and have been deployed in the
Polar TEP.

An important contribution of ExtremeEarth in this context is
the development of three training datasets for sea ice
classification: (i) A training dataset consisting of 63,048 patches
of 30 Sentinel-1 images located in the European Arctic where
each patch is labelled with one of 6 ice types. This dataset was
developed by expert photo-interpretation and it was used to train
three of the CNNs. (ii) A training dataset consisting of around
62 million patches of 24 Sentinel-1 images located in the
Belgica Bank of the Greenland Sea, where each patch is labelled
with one of 11 ice types. This dataset was developed using active

learning and it was used to train the LDA model and one of the
CNNs. (iii) A training dataset consisting of 18,000 patches of 12
Sentinel-1 images located in the Danmarkshavn (East coast of
Greenland), where each patch is labelled with one of 2 classes
(ice or water). This dataset was developed by expert
photo-interpretation and it was used to train one of the CNNs.

The first and the third of the above datasets are publicly
available on the web site of the project3 and the same will be
true for the second one very soon.

To advance the international state of the art in this area,
ExtremeEarth also organized a workshop on “Machine learning
for operational sea ice charting” during ESA’s Φ-week 2020.

6. BIG DATA TECHNOLOGIES

The previous sections presented the two use cases of
ExtremeEarth and the deep learning algorithms deployed in
these use cases. The other technical dimension of the project,
which is important in the development of the two use cases, is
the utilization of linked data technologies that scale to large
volumes of heterogeneous geospatial data available in
geographically dispersed data sources. To tackle this important
challenge, University of Athens and Demokritos have developed
the following big data systems:

• GeoTriples-Spark, a scalable implementation of
GeoTriples [8] on top of Apache Spark for transforming
geospatial data from their legacy formats (e.g., shapefiles)
into RDF.

• JedAI-spatial, a scalable system for interlinking RDF
data sources by discovering topological relations among
geographic features present in these sources [12].

• Strabo 2, a scalable geospatial RDF store developed using
Apache Spark and Apache Sedona.

• A scalable extension of the system SemaGrow [1] for
federating geospatial data sources.

To evaluate Strabo 2 and SemaGrow, the same partners have
developed and published two benchmarks: Geographica 2 [4]
and GeoFedBench [14].

All of the above systems are deployed in the two use cases.
In both use cases, information and knowledge extracted from
satellite images (e.g., crop type maps) together with data from
auxiliary data sources are encoded in RDF using the ontology of
the relevant use case. Then, the use case is implemented using
the above big data systems. For example, in the Food Security
use case, we use an ontology to model data sources such as
water availability, crop conditions and irrigation information (see
Section 2). The ontology also integrates these data sources with
the results of the deep learning algorithms and the PROMET
model, so that we can provide irrigation recommendations for
specific crop fields in an area of interest.

Another example of the use of the above linked geospatial
data technologies in ExtremeEarth is [10], where we show how

3http://earthanalytics.eu/datasets.html
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to use geospatial interlinking algorithms, such as the ones
implemented in JedAI-spatial, to produce automatic workflows
for combining in-situ observational data with satellite images.
For the Polar use case, this has been done using observations
from the Ice Watch system of MET Norway, which collects data
from ships performing visual sea ice observations while
navigating the Arctic. This in-situ observational data record the
time, point locations, and other important properties of sea ice.
Interlinking these observations with satellite images has enabled
MET Norway to validate and improve the interpretation of
satellite images, improve routine ice charts, and assist in
building deep learning algorithm training datasets.

7. THE EXTREMEEARTH PLATFORM

The ExtremeEarth platform brings together the deep learning
architectures and the big data technologies presented above and
applies them to the development of the two use cases.

The platform is based on Hopsworks, a data intensive AI
platform from Logical Clocks. Hopsworks4 is an open-source
framework for the development and operation of machine
learning models, available as a managed platform on AWS and
Azure and self-managed (open-source or Enterprise version). It
has certain unique features that makes it appropriate for the
development of deep learning algorithms for EO data: it
provides tools to build end-to-end machine learning pipelines, a
feature store, management of machine learning artifacts and
assets such as experiments and models, first-class support for
popular open-source machine learning frameworks such as
TensorFlow, PyTorch, Keras and Scikit-Learn, integration with
data science tools such as Jupyter notebooks, and infrastructure
monitoring functionalities. Hopsworks provides a horizontally
scalable platform for deep learning with GPUs and SDKs for
hyper-parameter tuning and elastic model serving.

ExtremeEarth has demonstrated that Hopsworks is an
excellent platform for developing the two use cases using the big
linked geospatial data systems presented above, as it offers a
convenient collaborative environment for building data pipelines.
For example, a user can import a specific dataset in a project,
transform it into RDF and securely share the results with
specific other users or projects, who then can perform further
processing, such as interlinking or querying. Hopsworks
supports dynamic roles for users accessing and processing such
datasets, which enables data owners to securely give access to
datasets in a project, knowing the data cannot be exported
outside the project or cross-linked with other data sources
outside the project. This security model is built on TLS
certificates and enables Hops5 to operate as the only
multi-tenant Hadoop platform. In order to perform these tasks,
users and developers only need to interact through the
human-usable interface of the platform, that offers ready-to-use

4https://www.logicalclocks.com/
5https://hopsworks.readthedocs.io/en/stable/

overview/introduction/what-hops.html

deployments of popular cloud data storage and processing tools
like Apache Hive, Apache Spark and Apache Kafka. Also, using
this interface the users can collaborate in order to specify and
execute their data pipeline in a Jupyter Notebook and effortlessly
monitor the execution progress and inspect the results.

Finally, we have shown that by implementing the big data
systems of Section 6 using Hopsworks, we can outperform
competitor systems and scale to TBs of geospatial data [9].

8. SUMMARY

We gave an overview of ExtremeEarth and its main
contributions up to today. As the project reaches its conclusion,
the ExtremeEarth team is working on the following problems:
validation of the deep learning models, detailed experimental
evaluation of the implemented big linked geospatial data
systems using Geographica 2 and GeoFedBench, and integrating
all available technologies to build demos of the two use cases in
the Food Security and Polar TEPs.
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