
CANDYRL: A Hybrid Reinforcement Learning
Model for Gameplay

Sara Karimi ∗†, Sahar Asadi†, Francesco Lorenzo†, Amir H. Payberah∗
∗ KTH Royal Institute of Technology, Sweden

† King.com Ltd., Sweden
sara.karimi@king.com, sahar.asadi@king.com, francescolorenzo1996@gmail.com, payberah@kth.se

Abstract—Although Reinforcement Learning (RL) is becoming
increasingly popular in gameplay, making a generalized RL
model is still challenging. This paper presents CANDYRL, a
generalized RL solution for match-3 games, particularly Candy
Crush Friends Saga. CANDYRL rewards RL agents not only for
achieving the game objectives but also for learning some intrinsic
basic skills, which are not directly related to the game objectives.
CANDYRL also includes a hybrid model that combines several
pre-trained agents to determine the actions. We propose two
approaches to determine the weights of the pre-trained agents
in the hybrid model to reflect their importance by using (i) a
heuristic method and (ii) an RL-based approach. We show that
the hybrid model outperforms all the pre-trained agents used as
its building blocks through the experiments. Moreover, the RL-
based approach of learning weights in the hybrid model shows
better generalization than the other approaches as it performs
better on unseen new game levels.

I. INTRODUCTION

Reinforcement Learning (RL) is a popular approach in game
development that can speed up the process of play-testing
and gameplay. However, developing RL models for match-
3 games, such as Candy Crush Friends Saga (CCFS) 1, is
challenging. Match-3 games, particularly CCFS, present prop-
erties such as large action space, stochastic transitions, and
a large variety of in-game features and objectives that make
them a challenging but interesting testbed for RL research [1].
Applying RL models using sparse reward functions in such
environments faces (i) slow learning and (ii) challenges in
generalization to new unseen levels.

To address the sparsity issue, Stout et al. [2] and Schmid-
huber [3] propose adding a domain-specific intrinsic reward
to the reward coming from the environment. To enhance the
generalization of RL models, Shin et al. [4] define a set of
strategies and train an RL model to return a probability value
for each strategy at different game states. Inspired by this
work, Lorenzo et al. [5] propose using a set of basic skills on
CCFS that allow agents to learn more versatile behaviors that
work across levels with different objectives. Another work on
generalizing RL models is proposed by Seijen et al. [6], where
they present a hybrid architecture to decompose the reward
function into multiple reward functions where each function
is only affected by a small number of state variables. However,
these solutions either consider a fixed reward function or
use multiple reward functions but do not allow a dynamic

1Hidden due to anonymity

combination of their decisions. We theorize that dynamically
weighting agents’ decisions while combining them could lead
to better generalization over different levels.

In this work, we present CANDYRL, a generalized RL
model for gameplay, particularly for CCFS, that addresses the
limitation mentioned above. The main idea of CANDYRL is to
teach an RL agent a set of skills and combine them to enable
the agent to approach new levels without starting tabula rasa.
To this end, in addition to giving extrinsic rewards to the agent
for achieving the objective of a level, we use some intrinsic
rewards to teach the agent a set of basic skills. Using extrinsic
reward, the agent is rewarded by the environment for getting
closer to achieving the levels’ objectives. While using intrinsic
rewards, the agent rewards itself for achieving a more general
goal that is not directly related to the level objective.

CANDYRL presents a hybrid model for combining multiple
pre-trained agents (using extrinsic or intrinsic rewards) to
improve the generalization by taking advantage of different
skills in different game steps. The pre-trained agents in the
hybrid model are weighted. To this end, we consider three
different ways of assigning weights to them: (i) assigning equal
weights statically to all the pre-trained agents, (ii) assigning
static non-equal weights using a heuristic that reflects the
importance of each pre-trained agent, and (iii) using an RL
agent to learn weights for the pre-trained agents dynamically.

The main contributions of this paper are: (i) Proposing
CANDYRL, a hybrid model that combines different pre-trained
agents using different weighting techniques (i.e., static and dy-
namic) to reflect their importance. (ii) Conducting an ablation
study to show how different combinations of pre-trained agents
could affect the performance of the hybrid models (in terms
of win-rate in CCFS). (iii) Comparing the performance of the
hybrid models with each of the pre-trained agents trained using
intrinsic and extrinsic rewards.

Through the experiments, we observe that the hybrid models
outperform all the pre-trained agents used as the building
blocks of the hybrid models. Moreover, the experiments show
that our heuristic approach for assigning the weights provides
the highest win-rate for training levels. However, our RL-
based model that dynamically determines the weights performs
better on the unseen and new levels. These results confirm
that defining the weights using the RL model provides a more
generalized solution for gameplay.



Fig. 1. An example of CCFS game board encoding.

II. PRELIMINARY

In this section, we present the basic concepts of the game,
the environment, the objectives, and the reward functions.

A. Candy Crush Friends Saga

Candy Crush Friends Saga (CCFS) is a match-3 puzzle
game where a player needs to match three or more objects
of the same color to advance toward a specified goal (e.g.,
reaching a specified score). The game board is a grid of 9× 9
tiles that hold multiple types of game elements. A basic action
in the game is matching, where swapping two candies on the
board creates a horizontal or vertical sequence of three or
more candies of the same color. The matched candies are then
eliminated from the board and replaced with new ones above
them or with random candies re-spawned from the top of the
board.

There are three main types of elements in the CCFS game
board: regular candies, special candies, and blockers. Regular
candies are the most common type in the game, with seven
different colors. Special candies are created by matching at
least four candies of the same color. There are six different
types of special candies, each with a different effect. Different
special candies have different recipes for getting activated.
Blockers are the third type of CCFS element that prevent
players from using the tile they are located on. Each blocker
has a fixed number of layers, and each layer is removed by
making a match that involves its adjacent tiles.

B. Environment and Objectives

The CCFS environment is episodic, where each episode
corresponds to a round of complete gameplay on a level. We
represent the state space of the environment with a three-
dimensional representation of the board, i.e., 9× 9× 32. The
first two dimensions (9×9) represent the game board grid, and
the third dimension is a one-hot encoding channel of any of
the 32 different elements (including different types of candies
and blockers, etc.), each associated with a binary layer that
describes if that element is present or not on each cell of
the 9 × 9 grid [7]. Figure 1 depicts an example of the three-
dimensional representation of the board [7].

We define an action as swapping the elements on any two
adjacent cells of the game board. Thus, if we uniquely index
the edges between the tiles as the labels of the actions, then
for a 9 × 9 board, the action space consists of 144 actions,

Fig. 2. Representation of possible actions in the game board.

as shown in Figure 2 [7]. A policy is then a mapping from
9× 9× 32 states to 144 actions.

Each level in CCFS is associated with an objective, and
there are five different objectives in CCFS2. Players win a level
if they fulfill the objective within the level-specific moves-
limit. In this paper, we consider the levels with a specific
objective type, called spread the jam, where players should
cover the entire board with jam. The jam is initially present
in only a few tiles and spreads by making matches involving
tiles already covered by jam. In this paper, we only experiment
on levels with this objective to make the presentation more
precise, but we can easily apply our technique to the other
objectives.

C. Reward functions

To train the RL agents, we use several extrinsic and intrinsic
reward functions as explained below.

1) Extrinsic Rewards: An extrinsic reward is a reward de-
fined based on the objective of the levels, and the environment
gives it to the agents. In this work, to train baseline agents,
we use two extrinsic reward functions proposed by Karnsund
[8] for CCFS, Progressive Jam (PJ) and Delta Jam (DJ) [8].
According to PJ, if the agent’s action spreads at least one tile
with jam, it is rewarded with the entire amount J of tiles
covered with jam at that moment, normalized by the total
number B of tiles on the board (i.e., 9 × 9). If we show the
number of new tiles covered by jam after the action by j, then
we define the reward R for taking action a in a state s as:

R(s, a) =

{
J
B
, j > 0

0, j = 0
(1)

On the other hand, DJ rewards the agent equal to the number
of new tiles covered by the jam normalized by the total number
of tiles on the board.

2) Intrinsic Reward: The above extrinsic rewards are de-
fined for specific objectives (e.g., spread the jam), but we need
to define the rewards such that the agents are generalized
enough to play on various levels with different objectives.
One approach to making more generalized models is to use
intrinsic rewards, where an agent rewards itself for achieving
goals that are not necessarily directly related to the objective
of a level. The intrinsic rewards are inspired by the general
basic skills humans gain after playing many levels of CCFS.

2https://candycrushfriends.fandom.com/wiki/Levels



Below, we explain three intrinsic rewards for CCFS we use
in this work, which are Candy Creation (CC), Candy Usage
(CU), and Damage Blocker (DB) [5].

The CC function rewards the agent by the number of
special candies of each type it creates after each action.
However, these values are normalized due to the different
frequency of occurrence of different types of special candies.
The formulation of CC is as follows:

R(s, a) =
∑
x∈X

c(x) ×
(
1− µ(x)∑

x′∈X µ(x′)

)
(2)

where c(x) is the number of special candies of type x created
by action a, µ(x) is the mean episodic frequency of creating
special candy of type x. The denominator is the sum of all
the frequencies of creation of all special candies.

The CC reward function leads to creating more special
candies, but the ultimate goal of creating such candies is to
use them to increase the chance of possible moves. Thus, the
CU function rewards the agent when they use special candies
in action:

R(s, a) =
∑
x∈X

u(x) × (1− µ(x)∑
x′∈X µ(x′)

) (3)

where u(x) is the number of special candies of type x involved
in the action a.

The blockers in CCFS can be presented in different types,
characteristics, and quantities across different levels. DB re-
ward function rewards the agents for damaging each blocker
of type b, normalized by the initial number b0 of blockers of
that type. DB is formulated as:

R(s, a) =
∑
b∈B

d(b)

b0
(4)

where B is the set of all blockers and d(b) is the number of
blockers of type b damaged by action a.

III. METHOD

In the previous section, we introduced several extrinsic (e.g.,
PJ and DJ) and intrinsic (e.g., CC, CU, and DB) reward
functions. We define a pre-trained agent as an RL agent
trained using either an extrinsic or intrinsic reward function.
Lorenzo et al. [5] show that using intrinsic rewards to train
agents improves the model’s winning rate performance. This
paper extends that work and shows that we can make a more
generalized model by combining pre-trained agents using a
hybrid architecture. We call our hybrid model CANDYRL. To
this end, we introduce three ways of combining pre-trained
agents in CANDYRL: (i) Average Bagging (AB) that uses an
un-weighted ensemble of pre-trained agents, (ii) Heuristic-
based Average Bagging (HAB) that uses some heuristics
to assign static weights to the pre-trained agents, reflecting
their importance, and (iii) Meta Controller Average Bagging
(MCAB) that uses an RL controller for assigning weights to
each pre-trained agent dynamically. In the rest of this section,
we explain these three hybrid approaches.

Fig. 3. Action selection in AB.

A. Average Bagging

Average Bagging (AB) is an ensemble model that combines
multiple pre-trained agents to decrease variance and enhance
the agent’s generalization ability [9]. As Figure 3 shows, in
the AB model, first, the current state of the game is fed to
each pre-trained agent simultaneously, each of which returns
a set of Q-values (144 Q-values for 144 possible actions).
Then, we aggregate the generated Q-values for each action (by
computing the average Q-value for each action across different
pre-trained agents) and select an action corresponding to the
highest average Q-value, as shown in (5). Here, Qk(s, an) is
the Q-value of action an generated by the pre-trained agent k,
and s is the input state. K is the number of pre-trained agents,
and N is the number of actions, i.e., 144.

a = argmax
a

(
1

K

K∑
k=1

Qk(s, an), n ∈ {1, 2, ..., N}

)
(5)

Since each pre-trained agent uses different reward scales,
their outputted Q-values may have different ranges, adding
bias when aggregating them. To combat this issue, we apply
L2-normalization to bring all the Q-values in the range [0,1].

B. Heuristic-based Average Bagging

One limitation of the AB model is using the same weight
(or coefficients) for all the pre-trained agents when averaging
their Q-values. However, through an ablation study IV-B,
we observe that some pre-trained agents are more effective
than others. Therefore, we propose Heuristic-based Average
Bagging (HAB), which uses a heuristic to set different weights
for the pre-trained agents. This heuristic takes the final training
win-rate of each pre-trained agent trained for a fixed number
of episodes on specific levels and returns a set of weights
proportional to these win-rates values. This model follows the
same procedure as in AB, but instead of un-weighted aggre-
gation, it uses the calculated weights to perform a weighted
aggregation over the Q-values of different pre-trained agents.
Mathematically, this weighted aggregation is formulated in (6):

a = argmax
a

(
1

K

K∑
k=1

wkQk(s, an), n ∈ {1, 2, ..., N}

)
(6)

where wk ∝ {training win-rate of k-th agent} (range [0,1]).
Intuitively, this heuristic emphasizes the importance of each

pre-trained agent in the hybrid model on a specific level.



Fig. 4. Action selection in MCAB.

C. Meta Controller Average Bagging

In HAB, we assign fixed static weights to the pre-trained
agents. However, different actions may have different impacts
in different game steps; thus, we adjust the weights dynami-
cally for the game’s current state in the third model. To this
end, we propose Meta Controller Average Bagging (MCAB),
where we use an RL agent, called the meta-controller agent,
for learning a set of dynamic weights for combining the pre-
trained agents. In MCAB, at each game step (consisting of
choosing and performing an action in the environment), the
meta-controller agent takes the game’s current state as input
and returns a set of weights for the pre-trained agents in
the hybrid model. The weights learned by the meta-controller
reflect the importance of their corresponding pre-trained agent.
Figure 4 depicts the MCAB architecture.

To this end, we need an algorithm to train the meta-
controller agent to generate continuous values as the pre-
trained agents’ weights. Policy gradient methods, such as RE-
INFORCE [10] and Proximal Policy Optimization (PPO) [11],
are good candidates when it comes to continuous action
spaces. In the policy gradient methods, the meta-controller
agent learns the policy in the form of a distribution over its
action space. Here, we use PPO on continuous action space for
training the meta-controller agent. The meta-controller agent
first learns the parameters of a multivariate distribution, i.e.,
Dirichlet distribution. After creating such a distribution using
these parameters, the meta-controller agent draws a sample
of size K (where K is the number of pre-trained agents)
as the weights of pre-trained agents for computing a linear
combination over their Q-values. The MCAB model, then,
chooses an action according to (6) where the weights (wk) are
samples taken from the Dirichlet distribution. The probability
density function of Dirichlet distribution is as follows:

f(w1, . . . , wK ;α1, . . . , αk) =
1

B(α)

K∏
i=1

wαi−1
i (7)

where
∑K

k=1 wk = 1 (wk ≥ 0), α is the parameters of the
distribution, and B is the multivariate beta function.

IV. EVALUATION

In this section, we first describe the experimental settings
and then explain the conducted experiments and analyze the
results.

A. Experimental Settings

All models are trained for 80,000 episodes, and each episode
is one round of gameplay, resulting in winning or losing
that level. We evaluate each model using five random seeds
different from those used during training, exposing the agent
to a new board initialization. For performance metric, we use
win-rate, the ratio of the number of episodes ending in a win
state over all the played episodes (ranging between [0, 1]).

We select three levels for training the models (levels A, B,
and C) and six new unseen levels for testing (levels D, E,
F, G, H, and I). We select these levels such that to include
various difficulties and board features. We also select the test
levels with game elements and blockers different from those
in the training levels. Each win-rate reported for a test level
in Table I is an average of the evaluation win-rate of the three
trained models on the test level. All the evaluation experiments
are performed over 1000 episodes.

We use Deep Q-Networks (DQN) [12] for training all the
pre-trained agents and PPO for training the meta-controller
agent in the MCAB model. The DQN hyperparameters are
mostly taken from the DQN paper [12]. However, we adapt
some DQN hyperparameters based on [8] that performs a
hyperparameter search on the CCFS environment. We set the
discount factor to 0.5 and the network update step to 100. We
also take most PPO hyperparameters from the original PPO
paper [11] but change the horizon to size 128.

In the following sub-sections, we summarize the results
of the experiments consisting of three parts: (i) an ablation
experiment to study the effects of using different combinations
of pre-trained agents in the hybrid model, (ii) a comparison of
different weighting methods (i.e., AB, HAB, and MCAB) in
the hybrid model, and (iii) comparison of hybrid models with
the baselines including agent trained with sparse reward and
agents trained with intrinsic or extrinsic rewards.

B. Ablation Study

Here, we present the results of an ablation experiment to
show the effects of using different combinations of pre-trained
agents (i.e., PJ, DJ, CC, CU, and DB) in the AB hybrid
model. This experiment aims to highlight the need for weights
as different agents have different levels of influence on the
results. In Figure 5, each plot line presents the win-rate of the
AB model that excludes the mentioned pre-trained agent from
the combination. For example, “DB” means that the agent
pre-trained with the DB reward function is excluded from
the combination, and only the decisions from the rest of the
available pre-trained agents are combined when performing
AB. As Figure 5 shows, excluding different pre-trained agents
from the combinations has a different influence on the overall
win-rate. For example, removing CC causes a drop in win-rate
across all three levels, while removing DB affects each level



(a) Level A (b) Level B (c) Level C

Fig. 5. The effect of using different combinations of pre-trained agents in the AB model on win-rates on levels A, B, and C.

differently. The results of this ablation study inspired the idea
of non-equal and learnable weights in the hybrid models.

C. Comparison of Hybrid Models

As explained in Section III, we consider three variations
of hybrid models (i.e., AB, HAB, MCAB) to combine the
pre-trained agents. This experiment considers four pre-trained
agents with PJ, CC, CU, and DB reward functions in the hybrid
model. Due to the similarity between DJ and PJ and better
generalization of PJ, we only keep PJ in the combinations. As
reported in Table I, to assess the generalization of the models,
we evaluate their performance in terms of average win-rate on
both the training and new unseen test levels.

Table I shows that the HAB model outperforms the other
hybrid models on the training levels (i.e., A, B, and C). This
confirms that the weights used in the HAB model better
emphasize the importance of each pre-trained agent on the
seen levels compared to the learned weights in the MCAB
model. However, looking at the generalization abilities of
agents over the unseen levels (i.e., D, E, F, G, H, and I),
the MCAB model shows better performance on most levels.
The better generalization performance of the MCAB model
compared to the other hybrid models indicates that the MCAB
model learns a more generalized set of weights, meaning that
they correspond more accurately to the general importance
of each pre-trained agent across different levels. Although the
HAB model performs best on the seen levels, it does not reach
the generalization performance of the MCAB model.

D. Hybrid Model vs. Pre-Trained Agents

Here, we compare the average win-rate of the hybrid models
with some baselines, including agents trained using (i) intrinsic
skill-based rewards (consisting of CC, CU, and DB), (ii)
extrinsic objective-based rewards (consisting of PJ and DJ),
and (iii) the sparse reward (+1/-1 for winning/losing the
level). As we see in Table I, all the proposed hybrid models
outperform the baseline models in training performance. These
results confirm that the hybrid architectures allow the agent to
make a more informed decision by considering the decisions of
multiple pre-trained agents. Interestingly, the performance gap
between the hybrid and non-hybrid models increases on more

challenging levels (e.g., G and I), highlighting the benefits
of hybrid architectures in solving more complex levels. Also,
considering the generalization performance on the unseen
levels in Table I, the MCAB hybrid model outperforms all
the baselines in terms of win-rate when evaluated on the test
levels.

V. RELATED WORK

To tackle the sparsity of rewards, Florensa et al. [13]
propose a framework to train a set of agents using intrinsic
rewards that only require minimal domain knowledge about
the downstream tasks. On top of them, they train a model to
select an agent among the set of agents. Another work that
addresses the sparsity of rewards is [14], where the authors
propose a linear method for combining smaller intermediate
rewards corresponding to in-game features.

A common approach to improving the generalization of RL
models is hierarchical learning. For example, Van Seijen et
al. [6] propose a hybrid reward architecture that decomposes
a reward function into multiple different reward functions
and uses a multi-head network to learn the value functions
of each reward stream. They show the effectiveness of their
approach in solving games with large state spaces that are
hard to learn and generalize across. Sahni et al. [15] study the
idea of recursively composing policies to create hierarchies
that display complex behaviors. They propose a network
architecture that trains various composable policies in isolation
and composes their learned embedding into a single embed-
ding. The composition function shows a good generalization
performance to unseen tasks. Sutton et al. [16] propose the idea
of “options”, which are temporally-extended actions trained in
parallel based on intrinsic reward functions. After training a
set of options, a higher-level agent whose action space consists
of these learned options, evaluates them using its own reward
function.

Kulkarni et al. [17] propose a two-stage hierarchy consisting
of a controller and a meta-controller. The meta-controller
receives a state and chooses an option, and then the controller
selects an action using the state and the selected option. To
further increase the flexibility of options, Bacon et al. [18]
propose the option-critic architecture capable of learning the



TABLE I
AGGREGATED TRAINING WIN-RATES. SPARSE REWARD, OBJECTIVE-BASE, AND SKILL-BASED AGENTS ARE COMPARED WITH THE HYBRID MODELS.

Agents Train Test

A B C D E F G H I

Sparse 0.066 0.008 0.008 0.003 0.003 0.0 0.0 0.011 0.0

DJ 0.136 0.010 0.030 0.013 0.008 0.0 0.0 0.021 0.001
PJ 0.098 0.029 0.024 0.017 0.012 0.0 0.0 0.025 0.002

DB 0.212 0.059 0.041 0.016 0.011 0.0 0.0 0.019 0.0
CU 0.085 0.038 0.039 0.023 0.022 0.001 0.001 0.041 0.003
CC 0.331 0.014 0.053 0.021 0.009 0.0 0.0 0.038 0.0

AB 0.400 0.063 0.135 0.059 0.044 0.001 0.001 0.061 0.004
MCAB 0.379 0.060 0.129 0.065 0.039 0.002 0.002 0.065 0.005
HAB 0.533 0.066 0.159 0.065 0.039 0.0 0.001 0.061 0.005

internal policies, the termination conditions of options, and the
policy over options without the need to provide any additional
rewards. In a more recent paper, Barreto et al. [19] propose a
framework for combining learned sequences of actions (a.k.a
skills) to generate many distinct behaviors. It does so by
learning options associated with a set of pseudo-rewards and
generating new options induced by any linear combination of
these pseudo-rewards without any learning involved.

In our work, we also make a hierarchical model of multiple
different reward functions; however, unlike the above models,
our approach accounts for the decision of all agents trained
with different reward functions to choose the final action.
Moreover, we perform a weighted combination of the agents’
decisions using learnable weights that give more freedom in
highlighting the importance of each agent at different steps
of play. We theorize that this freedom could lead to better
generalization over unseen levels.

VI. CONCLUSIONS

In this work, we introduced CANDYRL, a generalized RL
model for match-3 games. This work is inspired by how human
players learn basic skills and combine them to play different
game levels. These skills do not necessarily correspond ex-
plicitly to the objective of a level, but they still help players
achieve the game objective. After training a set of RL agents
based on these basic skills and the game objectives, CAN-
DYRL combines the pre-trained agents in a hybrid architecture
to pick the best action at each game step. Since the pre-
trained agents have different impacts, we proposed two main
weighting approaches to combine them, a heuristic method
and an RL-based one. In the experiments, we observed that
the heuristic approach of defining weights showed a better
win-rate on levels that the agents were trained on. However,
when evaluating the generalizability of CANDYRL on unseen
levels, the RL-based weighting resulted in a higher win-rate,
highlighting the benefits of having learned weights.

ACKNOWLEDGEMENTS

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] I. Kamaldinov et al., “Deep reinforcement learning in match-3 game,”
in 2019 IEEE conference on games (CoG). IEEE, 2019, pp. 1–4.

[2] A. Stout et al., “Intrinsically motivated reinforcement learning: A
promising framework for developmental robot learning,” Massachusetts
Univ Amherst Dept of Computer Science, Tech. Rep., 2005.

[3] J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic motiva-
tion (1990–2010),” IEEE Transactions on Autonomous Mental Develop-
ment, vol. 2, no. 3, pp. 230–247, 2010.

[4] Y. Shin et al., “Playtesting in match 3 game using strategic plays via
reinforcement learning,” IEEE Access, vol. 8, pp. 51 593–51 600, 2020.

[5] F. Lorenzo et al., “Use all your skills, not only the most popular ones,”
in 2020 IEEE Conference on Games (CoG). IEEE, 2020, pp. 682–685.

[6] H. Van Seijen et al., “Hybrid reward architecture for reinforcement
learning,” in Advances in Neural Information Processing Systems, 2017,
pp. 5392–5402.

[7] S. Gudmundsson et al., “Human-like playtesting with deep learning,”
in 2018 IEEE Conference on Computational Intelligence and Games
(CIG). IEEE, 2018, pp. 1–8.

[8] A. Karnsund, “DQN tackling the game of candy crush friends saga: A
reinforcement learning approach,” Master’s thesis, KTH Royal Institute
of Technology, 2019.

[9] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[10] R. Sutton et al., “Policy gradient methods for reinforcement learning
with function approximation,” in Advances in neural information pro-
cessing systems, 2000, pp. 1057–1063.

[11] J. Schulman et al., “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

[12] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[13] C. Florensa et al., “Stochastic neural networks for hierarchical reinforce-
ment learning,” arXiv preprint arXiv:1704.03012, 2017.

[14] G. Lample et al., “Playing fps games with deep reinforcement learning,”
in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[15] H. Sahni et al., “Learning to compose skills,” arXiv preprint
arXiv:1711.11289, 2017.

[16] R. Sutton et al., “Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning,” Artificial intelligence,
vol. 112, no. 1-2, pp. 181–211, 1999.

[17] T. Kulkarni et al., “Hierarchical deep reinforcement learning: Integrating
temporal abstraction and intrinsic motivation,” Advances in neural
information processing systems, vol. 29, 2016.

[18] P. Bacon et al., “The option-critic architecture,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.

[19] A. Barreto et al., “The option keyboard: Combining skills in reinforce-
ment learning,” Advances in Neural Information Processing Systems,
vol. 32, 2019.


	Introduction
	Preliminary
	Candy Crush Friends Saga
	Environment and Objectives
	Reward functions
	Extrinsic Rewards
	Intrinsic Reward


	Method
	Average Bagging
	Heuristic-based Average Bagging
	Meta Controller Average Bagging

	Evaluation
	Experimental Settings
	Ablation Study
	Comparison of Hybrid Models
	Hybrid Model vs. Pre-Trained Agents

	Related work
	Conclusions
	References

