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Abstract—Peer-to-peer (P2P) video streaming is an emerging
technology that reduces the barrier to stream live events over
the Internet. Unfortunately, satisfying soft real-time constraints
on the delay between the generation of the stream and its actual
delivery to users is still a challenging problem. Bottlenecks in
the available upload bandwidth, both at the media source and
inside the overlay network, may limit the quality of service
(QoS) experienced by users. A potential solution for this problem
is assisting the P2P streaming network by a cloud computing
infrastructure to guarantee a minimum level of QoS. In such
approach, rented cloud resources (helpers) are added on demand
to the overlay, to increase the amount of total available bandwidth
and the probability of receiving the video on time. Hence, the
problem to be solved becomes minimizing the economical cost,
provided that a set of constraints on QoS is satisfied. The main
contribution of this paper is CLIVE, a cloud-assisted P2P live
streaming system that demonstrates the feasibility of these ideas.
CLIVE estimates the available capacity in the system through
a gossip-based aggregation protocol and provisions the required
resources from the cloud to guarantee a given level of QoS at
low cost. We perform extensive simulations and evaluate CLIVE

using large-scale experiments under dynamic realistic settings.

I. INTRODUCTION

Peer-to-peer (P2P) live streaming is becoming an increas-

ingly popular technology, with a large number of academic [1],

[2], [3], [4], [5] and commercial [6], [7] products being

designed and deployed.

In such systems, one of the main challenges is to provide

a good quality of service (QoS) in spite of the dynamic

behavior of the network. For live streaming, QoS means high

playback continuity and short playback delay. There is a trade-

off between these two properties: it is possible to increase the

playback continuity by adopting larger stream buffers, but at

the expense of delay. On the other hand, improving playback

delay requires that no bottlenecks are present in either the

upload bandwidth of the media source and the aggregated

upload bandwidth of all peers in the swarm, i.e., the peers

forming the P2P streaming overlay [8], [9].

Increasing the bandwidth at the media source is not always

an option, and even when possible, bottlenecks in the swarm

have proven to be much more disruptive [8]. An interesting

approach to solve this issue is the addition of auxiliary helpers

to accelerate the content propagation. A helper could be an

active computational node that participates in the streaming

protocol, or it could be a passive storage service that just

provides content on demand. The helpers increase the total

upload bandwidth available in the system, thus, potentially

reducing the playback delay. Both types of helpers could be

rented on demand from an IaaS (Infrastructure as a Service)

cloud provider, e.g., Amazon AWS. Considering the capacity

and the cost of helpers, the problem consists in selecting the

right type of helpers (passive vs. active), and provisioning their

number with respect to the dynamic behavior of the users. If

too few helpers are present, it could be impossible to achieve

the desired level of QoS. On the other hand, renting helpers

is costly, and their number should be minimized.

This P2P-cloud hybrid approach, termed cloud-assisted P2P

computing, has already been pursued by a number of P2P

content distribution systems. For example, CLOUDANGEL [9]

dynamically places active helpers in the swarm to optimize

data delivery, and CLOUDCAST [10] employs a single passive

helper and enforces strict limits on the number of (costly) in-

teractions with it that originate from peers. However, adapting

the cloud-assisted approach to P2P live streaming is still an

open issue. Live streaming differs from the content distribution

for its soft real-time constraints and a higher dynamism in the

network, as the users may be zapping between several channels

and start or stop to watch a video at anytime [11], [12].

The contribution of this paper is the design and evaluation

of CLIVE, a novel cloud-assisted P2P live streaming system

that guarantees a predefined QoS level by dynamically renting

helpers from a cloud infrastructure. We model our problem

as an optimization problem, where the constraints are given

by the desired QoS level, while the objective function is to

minimize the total economic cost incurred in renting resources

from the cloud. We provide an approximate, on-line solution

that is (i) adaptive to dynamic networks and (ii) decentralized.

CLIVE extends existing mesh-pull P2P overlay networks for

video streaming [2], [5], [13], in which each peer in the swarm

periodically sends its data availability to other peers, which

in turn pull the required chunks of video from the neighbors

that have them. The swarm is paired with a CLIVE manager

(CM), which participates with other peers in a gossip-based

aggregation protocol [14], [15] to find out the current state of

the swarm. Using the collected information in the aggregation

protocol, the CM computes the number of active helpers

required to guarantee the desired QoS. CLIVE includes also a

passive helper, whose task is to provide a last resort for peers

that have not been able to obtain their video chunks through

the swarm.

A delicate balance between the amount of video chunks

obtained from the passive helper and the number of active

helpers in the system must be found. Either approaches are

associated with an economical cost, that depends on (i) the



running time for active helpers, (ii) the storage space and

number of data requests for passive helpers, and (iii) the

consumed bandwidth for both.

To demonstrate the feasibility of CLIVE, we performed

extensive simulations and evaluate our system using large-

scale experiments under dynamic realistic settings. We show

that we can save up to 45% of the cost by choosing the right

number of active helpers compared to only using a passive

helper to guarantee the predefined QoS.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider a network consisting of a dynamic collection of

nodes that communicate through message exchanges. Nodes

could be peers, i.e., edge computers belonging to users watch-

ing the video stream, helpers, i.e., computational and storage

resources rented from an IaaS cloud, and the media source

(source for short), which generates the video stream and starts

its dissemination towards peers.

Each peer is uniquely identified by an ID, e.g., composed

by IP address and port, required to communicate with it. We

use the term swarm to refer to the collection of all peers.

The swarm forms an overlay network, meaning that each peer

connects to a subset of nodes in the swarm (called neighbors).

The swarm is highly dynamic: new peers may join at any time,

and existing peers may voluntarily leave or crash. Byzantine

behavior is not considered in this work.

There are two types of helpers: (i) an active helper (AH)

is an autonomous virtual machine composed of one or more

computing cores, volatile memory and permanent storage, e.g.,

Amazon EC2, and (ii) a passive helper (PH) is a simple

storage service that can be used to store (PUT) and retrieve

(GET) arbitrary pieces of data, e.g., Amazon S3. We assume

that customers of the cloud service are required to pay for

computing time and bandwidth in the case of AHs, and

for storage space, bandwidth and the number of PUT/GET

requests in the case of PHs. This model follows the Amazon’s

pricing model [16], [17].

We assume the source generates a constant-rate bitstream

and divides it into a number of chunks. A chunk c is uniquely
identified by the real time t(c) at which is generated. The

generation time is used to play chunks in the correct order, as

they can be retrieved in any order, independently from previous

chunks that may or may not have been downloaded yet.

Peers, helpers and the source are characterized by different

bounds on the amount of available download and upload

bandwidth. A node can create a bounded number of download

connections and accept a bounded number of upload connec-

tions over which chunks are downloaded and uploaded. We

define the number of download slots, Down(p), and upload

slots, Up(p), of a peer p as its number of download and

upload connections, respectively. Thanks to the replication

strategies between different data centers currently employed

in clouds [18], we assume that the PH has an unbounded

number of upload slots and can serve as many requests as it

receives. Preliminary experiments using PlanetLab and Ama-

zon Cloudfront show that this assumption holds in practice,

as adding as many clients as possible has not saturated the

upload bandwidth.

We assume that nodes are approximately synchronized; this

is a reasonable assumption, given that some cloud services,

like Amazon AWS, are already synchronized and sometimes

require the client machines to be synchronized as well.

The goal of CLIVE peers is to play the video with predefined

playback delay (the time between the generation of the video

and its visualization at the peer) and playback continuity (the

percentage of chunks that are correctly streamed to users). To

reach this goal, CLIVE is allowed to rent a PH and/or AHs

from the cloud.

Deciding about which and how much resources to rent from

the cloud can be modeled as an optimization problem, where

the objective function is to minimize the economic cost and

the constraints are the following:

1) the maximum playback delay should be less than or

equal to Tdelay , meaning that if a chunk c is generated

at time t(c) at the source, no peers will show it after

time t(c) + Tdelay ;

2) the maximum percentage of missing chunks should be

less than or equal to Ploss .

Note that different formulations of this problem are possible,

such as fixing a limit on the amount of money to be spent

and trying to maximize the playback continuity. We believe,

however, that a company, willing to stream its videos, should

not compromise on the users’ experience, but rather exploit

peers whenever possible and fall back to the cloud when peers

are not sufficient.

III. SYSTEM ARCHITECTURE

The basic elements forming CLIVE have been already

introduced: the media source, a swarm of peers, a single

passive helper (PH), and a number of active helpers (AH).

Aim of this section is to discuss how a such diverse collection

can be organized and managed. We present two architectural

models, illustrated in Figures 1 and 2. The baseline model

(Figure 1) can be described as a P2P streaming protocol,

where peers revert to the PH whenever a chunk cannot be

retrieved from other peers. The enhanced model (Figure 2)

builds upon the baseline, by considering AHs and by provid-

ing a distributed mechanism to provision their number and

appropriately organizing them.

In the rest of the section, we first discuss the baseline model,

introducing the underlying P2P video streaming protocol and

showing how it can be modified to exploit a PH. Then, we add

the AHs into the picture and illustrate the diverse architectural

options available when including them.

A. The baseline model

The baseline model can be seen as a P2P streaming service

associated with a server – as simply as that. We introduce

this model as a baseline for comparison and validation of our

enhanced architectural model.

Note that the idea of augmenting a P2P video streaming

application by renting cloud resources is general enough to



Fig. 1. The baseline model.

be applied to several existing video streaming applications.

We adopt a mesh-pull approach for data dissemination [19],

meaning that peers are organized in an unstructured overlay

and explicitly ask the missing chunks from their neighbors.

Peers discover each other using a gossip-based peer-sampling

service [20], [21], [22], [23]; then, the random partial views

created by this service can be used by any of the existing

algorithms to build the streaming overlay [2], [4], [24], [25].

In this model, neighboring peers exchange their data avail-

ability with each other, and the peers use this information to

schedule and pull the required chunks. There are a number of

studies [26], [27] on chunk selection policies, but here we use

the in-order policy, as in COOLSTREAMING [13], where peers

pull the missing chunks with the closest playback time first.

The baseline model builds upon this P2P video streaming

protocol by adding a PH (Figure 1). The source, apart from

pushing newly created video chunks to the swarm, temporary

stores them on the PH. In order to guarantee a given level of

QoS, each peer is required to have a predefined amount of

chunks buffered ahead of its playback time, called last chance

window (LCW), corresponding to a time interval of length

Tlcw . If a given chunk has not been obtained from the swarm

Tlcw time units before the playback time, it is retrieved directly

from the PH.

B. The enhanced model

If the P2P substrate does not suffice, the baseline model

represents the easiest solution, but as our experiments will

show, this solution could be too expensive, as an excessive

number of chunks could end up being retrieved directly from

the PH. However, even if the aggregate bandwidth of the

swarm may be theoretically sufficient to serve all chunks to all

peers, the soft real-time constraints on the playback delay may

prevent to exploit entirely such bandwidth. No peer must lag

behind beyond a specified threshold, meaning that after a given

time, chunks will not be disseminated any more. We need to

increase the amount of peers that receive chunks in time, and

this could be done by increasing the amount of peers that are

served as early as possible. The enhanced model pursues this

goal by adding a number of AHs to the swarm (Figure 2).

AHs receive chunks from the source or from other AHs,

and push them to other AHs and/or to peers in the swarm. To

discover such peers, AHs join the peer sampling protocol [23]

and obtain a partial view of the whole system. We use a

modified version of CYCLON [23], such that peers exchange

Fig. 2. The enhanced model.

their number of upload slots along with their ID. AH chooses

a subset of root peers (Figure 2) from their partial view and

establish a connection to them, pushing chunks as soon as

they become available. Root peers of an AH are not changed

over time, unless they fail or leave the system, or AH finds

a peer with more upload slots than the existing root peers.

Clearly, a peer could accept to be a root peer only for one

AH, to avoid to receive multiple copies of the same chunk.

The net effect is an increase in the number of peers that

receive the video stream early in time. The root peers also

participate in the P2P streaming protocol, serving a number

of peers directly or indirectly. PH still exists in the enhanced

model to provide chunks upon demand, but it will be used less

frequently compared to the baseline model.

Architecturally speaking, an important issue is how to

organize multiple AHs and how to feed chunks to them. There

are two possible models:

• Flat: the AHs receive all their chunks directly from the

source and then push them to peers in the swarm, acting

just as bandwidth multipliers for the source.

• Hierarchical: the AHs are organized in a tree with one

AH at the root; the source pushes chunks to the root,

which pushes them through the tree.

The advantage of the flat model is that few intermediary

nodes cause a limited delay between the source and the

peers. However, the source bandwidth could end up being

entirely consumed to feed the AHs; and more importantly, any

communication to the cloud is billed, including the multiple

ones from the source to the AHs. We, thus, decided to adopt

the hierarchical model, also considering that communication

inside the cloud is (i) extremely fast, given the use of gigabit

connections, and (ii) free of charge [28].

One important question in the enhanced model is: how

many AHs to add? Finding the right balance is difficult; too

many AHs may reduce the PH load, but cost too much,

given that they are billed hourly and not only per bandwidth.

Too few AHs also increases the PH load, and as we show

in the experiments, increases the cost. The correct balance

dynamically depends on the current number of peers in the

swarm, and their upload bandwidth.

The decision on the number of AHs to include in the system

is taken by the CLIVE manager (CM), a unit that is responsible

for monitoring the state of the system and organizing the AHs.



By participating in a decentralized aggregation protocol [14],

the CM obtains information about the number of peers in the

system and the distribution of upload slots among them. Based

on this information, it adds new AHs or remove existing ones,

trying to minimize the economic cost. The CM role can be

played either directly by the source, or by one AH. A detailed

description of the CM is provided in the next section.

IV. THE CLIVE MANAGER

Based on the swarm size and the available upload bandwidth

in the swarm, CM computes the number of AHs that have to be

active to minimize the economic cost. Then, depending on the

current number of AHs, new AHs may be booted or existing

AHs may be shutdown.

The theoretical number of AHs that minimize the cost is not

so straightforward to compute, because no peer has a global

view of the system and its dynamics, e.g., which peers are

connected and how many upload slots each peer has. Instead,

we describe a heuristic solution, where each peer runs a small

collection of gossip-based protocols, with the goal of obtaining

approximate aggregate information about the system. CM joins

these gossip protocols as well, and collects the aggregated

results. It exploits the collected information to estimate a lower

bound on the number of peers that can receive a chunk either

directly or indirectly from an AH or the source, but not from

PH. The CM, then, uses this information to detect whether the

current number of AHs is adequate to the current size of the

swarm, or if correcting actions are needed by adding/removing

AHs.

The participating swarm peers and CM in the gossip-based

aggregation protocol collect the following information:

• the current size of the swarm;

• the probability density function of the upload slots avail-

able at peers in the swarm.

The rest of this section provides the details about the

protocols used to collect the required information and the

model used to compute the number of peers reachable from

an AH or the source.

The swarm size estimation. The size of the current swarm,

Nswarm , is computed, with high precision, through an existing

aggregation protocol [14]. This information is made available

to all peers in the system, including CM that participates in

the aggregate computation.

Upload slots estimation. Knowing the number of upload

slots of all peers is infeasible, due to the large scale of

the system and its dynamism. However, we can obtain a

reasonable approximation of the probability density function

of the number of upload slots available at all peers.

Assume ω is the actual upload slot distribution among all

peers. We adopt ADAM2 [29] to compute Pω : N → R,

an estimate probability density function of ω. ADAM2 is a

gossip-based algorithm that provides an estimation of the

cumulative distribution function of a given attribute across

all peers. Pω(i), then, represents the proportion of peers that

Fig. 3. Live streaming time model.

have i upload slots w.r.t. the total number of peers, so that
∑

i
Pω(i) = 1. For ADAM2 to work, we assume that each

peer is able to estimate its own number of upload slots, and

the extreme values of such distribution are known to all.

Chunk lifetime. The number of peers that can receive a

chunk from either the swarm, the source or one of the AHs

is bounded by the time available to the dissemination process.

This time depends on a collection of system and application

parameters:

• Tdelay : No more than Tdelay time units must pass between

the generation of a chunk at the source and its playback

at any of the peers.

• Tlatency : The maximum time needed for a newly gener-

ated chunk to reach the root peers, i.e., the peers directly

receive the chunks from AHs or the source, is equal

to Tlatency . While this value may depend on whether a

particular root peer is connected to the source or to an

AH, we consider it as an upper bound and we assume

that the latency added by AHs is negligible.

• Tlcw : If a chunk is not available at a peer Tlcw time units

before its playback time, it will be retrieved from the PH.

Therefore, a chunk c generated at time t(c) at the source

must be played at peers no later than t(c) + Tdelay , otherwise

the QoS contract will be violated. Moreover, the chunk c
becomes available at a root peer at time t(c) + Tlatency , and

it should be available in the local buffer of any peer in the

swarm by time t(c)+Tdelay −Tlcw , otherwise the chunk will

be downloaded from the PH (Figure 3). This means that the

lifetime Tlife of a chunk from the root peer on is equal to:

Tlife = (Tdelay − Tlatency)− Tlcw (1)

Modeling the dissemination process. Whenever a root peer

r receives a chunk c for the first time, it starts disseminating

it in the swarm. Biskupski et al. in [30] show that a chunk

disseminated by a pull mechanism through a mesh overlay

follows a tree-based diffusion pattern. We define the diffusion

tree DT (r, c) rooted at a root peer r of a chunk c as the set

of peers defined as follows: (i) r belongs to DT (r, c), and
(ii) q belongs to DT (r, c) if it has received c from a peer

p ∈ DT (r, c).
Learning the exact diffusion tree for all chunks is difficult,

because this would imply a global knowledge of the overlay

network and its dynamics, and each chunk may follow a

different tree. Fortunately, such precise knowledge is not

needed. What we would like to know is an estimate of the

number of peers that can be theoretically reached through the



Algorithm 1: Lower bound for the diffusion tree size.

procedure size(DENSITY Pω, int depth)
int min ← +∞;

repeat k times
min ← min(min, recSize(Pω, depth));

return min;

procedure recSize(DENSITY Pω, int depth)
int n← 1;
int slots ← random(Pω);
for i← 1 to slots do

n← n+ recSize(Pω, depth − 1);

return n;

source or the current population of AHs.

The chunk generation execution is divided into rounds of

length Tround . Chunk uploaded at round i becomes available

for upload to other peers at round i + 1. The maximum

depth, depth , of any diffusion tree of a chunk over its Tlife is

computed as: depth = ⌊Tlife/Tround⌋. We assume that Tround

is bigger than the average latency among the peers in the

swarm. Given depth and the probability density function Pω ,

we define the procedure size(Pω, depth) that executes locally
at CM and provides an estimate of the number of peers of a

single diffusion tree (Algorithm 1). This algorithm emulates

a large number of diffusion trees, based on the probability

density function Pω , and returns the smallest value obtained

in this way. Emulation of a diffusion tree is obtained by the

recursive procedure recSize(Pω, depth). In this procedure,

variable n is initialized to 1, meaning that this peer belongs

to the tree. If the depth of the tree is larger than 0, another
round of dissemination can be completed. The number of

upload slots is drawn randomly by function random() from the

probability density function Pω. Variable n is then increased

by adding the number of peers that can be reached by recursive

call to recSize(), where the depth is decremented by 1 at

each step before the next recursion.

At this point, the expected number of the total peers that

can receive a chunk directly or indirectly from AHs and the

source, but not from PH, Nexp , is given by the total number

of root peers times the estimated diffusion tree size, Ntree =
size(Pω, depth). The number of root peers is calculated by

the sum of the upload slots at the source Up(s) and AHs

Up(h), minus the number of slots used to push chunks to the

AHs themselves, as well as to the PH, which is equal to the

number of AHs plus one. Formally,

Nexp =

(

Up(s) +
∑

h∈AH

Up(h)− (|AH|+ 1)

)

·Ntree (2)

where AH is the set of all AHs.

AHs management model. We define the cost Cah of an AH

in one round (Tround ) as the following:

Cah = Cvm +m · Cchunk (3)

Fig. 4. Calculating the number of peers that is economically reasonable to serve with
PH utilization instead to run an additional AH.

where Cvm is the cost of running one AH (virtual machine)

in a round, Cchunk is the cost of transferring one chunk from

an AH to a peer, and m in the number of chunks that one AH

uploads per round. Since we utilize all the available upload

slots of an AH, we can assume that m = Up(h). Similarly,

the cost Cph of pulling chunks from PH per round is:

Cph = Cstorage + r · (Cchunk + Creq) (4)

where Cstorage is the storage cost, Creq is the cost of retrieving

(GET) one chunk from PH and r is the number of chunks

retrieved from PH per round. Cchunk of PH is the same as in

AH. Moreover, since we store only a few minutes of the live

stream in the storage, Cstorage is negligible.

Figure 4 shows how Cah and Cph (depicted in Formulas 3

and 4) changes in one round (Tround ), when the number

of peers increases. We observe that Cph increases linearly

with the number of peers (number of requests), while Cah is

constant and independent of the number of peers in the swarm.

Therefore, if we find the intersection of the cost functions, i.e.,

the point δ in Figure 4, we will know when is economically

reasonable to add a new AH, instead of putting more load on

PH.

δ ≈
Cvm +m · Cchunk

Cchunk + Creq

(5)

CM considers the following thresholds and regulation be-

havior:

• Nswarm > Nexp+δ: This means that the number of peers

in the swarm is larger than the maximum size that can be

served with a given configuration, thus, more AHs should

be added to the system.

• Nswarm < Nexp+δ−Up(h)·Ntree : Current configuration

is able to serve more peers than the current network size,

thus, extra AHs can be removed. Up(h) ·Ntree shows the

number of peers served by one AH.

• Nexp + δ−Up(h) ·Ntree ≤ Nswarm ≤ Nexp + δ: In this

interval the system has adequate resource and no change

in the configuration is required.

CM periodically checks the above conditions, and takes

the necessary actions, if any. In order to prevent temporary

fluctuation, it adds/removes only single AH in each step.

V. EXPERIMENTS

In this section, we evaluate the performance of CLIVE using

KOMPICS [31], a framework for building P2P protocols that
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Fig. 5. The percentage of the peers receiving 99% playback continuity with different
values of Tlcw (measured in number of chunks). Top: join scenario, bottom: churn
scenario (1% churn rate).

TABLE I
SLOT DISTRIBUTION IN FREERIDER OVERLAY.

Number of slots Percentage of peers

0 49.3%

1 18.7%

2 8.4%

3-19 5.2%

20 6.8%

Unknown 11.6%

provides a discrete event simulator for testing the protocols

using different bandwidth, latency and churn scenarios.

A. Experimental setting

In our experimental setup, we set the streaming rate to

500kbps, which is divided into chunks of 20kb; each chunk,

thus, corresponds to 0.04s of video stream. Peers start playing

the media after buffering it for 15 seconds, and Tdelay equals

25 seconds. We set the bandwidth of an upload slot and

download slot to 100kbps. Without loss of generality, we

assume all peers have enough download bandwidth to receive

the stream with the correct rate. In these experiments, all peers

have 8 download slots, and we consider three classes of upload

slot distributions: (i) homogeneous, where all peers have 8
upload slots, (ii) heterogeneous, where the number of upload

slots in peers is picked uniformly at random from 4 to 13,
and (iii) real trace (Table I) based on a study of large scale

streaming systems [11]. As it is shown in Table I, around

50% of the peers in this model do not contribute in the data

distribution. The media source is a single node that pushes

chunks to 10 other peers. We assume PH has infinite upload

bandwidth, and each AH can push chunks to 20 other peers.
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Fig. 6. Average playback latency across peers with different values of Tlcw (measured
in number of chunks). Top: join scenario, bottom: churn scenario (1% churn rate).

Latencies between peers are modeled using a latency map

based on the King data-set [32].

In our experiments, we used two failure scenarios: join-

only and churn. In the join-only scenario, 1000 peers join the

system following a Poisson distribution with an average inter-

arrival time of 10 milliseconds, and after joining the system

they will remain till the end of the simulation. In the churn

scenario, approximately 0.01%, 0.1% and 1% of the peers

leave the system per second and rejoin immediately as newly

initialized peers [33]. However, unless stated otherwise, we did

the experiments with 1% churn rate to show how the system

performs in presence of high dynamism.

B. The effect of Tlcw on system performance

In the first experiment, we evaluate the system behavior with

different values for Tlcw , measured in number of chunks. In

this experiment, we measure playback continuity and playback

latency, which combined together reflect the QoS experienced

by the overlay peers. Playback continuity shows the percentage

of chunks received on time by peers, and playback latency

represents the difference, in seconds, between the playback

point of a peer and the source.

For a cleaner observation of the effect of Tlcw , we use the

homogeneous slot distribution in this experiment. Figure 5

shows the fraction of peers that received 99% of the chunks

before their timeout with different Tlcw in the join-only and

churn scenarios (1% churn rate). We changed Tlcw between 0
to 40 chunks, where zero means peers never use PH, and 40
means that a peer retrieves up to chunk c+40 from PH, if the

peer is currently playing chunk c. As we see, the bigger Tlcw

is, the more peers receive chunks in time. Although for any

value of Tlcw > 0 peers try to retrieve the missing chunks from
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(b) Churn (1% churn rate).
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Fig. 7. The cumulative PH load with different values of Tlcw and churn rates.
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Fig. 8. Avg. estimation error.

PH, the network latency may not allow to obtain the missing

chunk in time. As Figure 5 shows, all the peers retrieve 99%

of the chunks on time when Tlcw = 40. Given that each chunk

corresponds to 0.04 seconds, Tlcw = 40 implies 1.6 seconds.

The average playback latency of peers is shown in Figure 6.

In the join-only scenario, playback latency does not depend on

Tlcw , while in the churn scenario we can see a sharp increase

when Tlcw is small.

C. PH load in different settings

Here, we measured PH load or the amount of fetched

chunks from PH with different Tlcw values and churn rates.

Figures 7(a) and 7(b) show the cumulative load of PH in the

join-only and churn scenarios (1% churn rate), respectively.

As we see in these figures, by increasing Tlcw , more requests

are sent to PH, thus, increasing its load. Figure 7(c) depicts

the cumulative PH load over time for four different churn

rates and Tlcw equals 40 chunks. As the figure shows, there

is no big change in PH load under low churn scenarios

(0.01% and 0.1%), which are deemed realistic in deployed P2P

systems [33]. However, it sharply increases in the presence of

higher churn rates (1%), because peers lose their neighbors

more often, thus, they cannot pull chunks from the swarm in

time, and consequently they have to fetch them from PH.

D. Upload slot distribution estimation

In the next experiment, we evaluate the estimation of upload

slots distribution in the system. We adopt the Kolmogorov-

Smirnov (KS) distance [34], to define the upper bound on

the approximation error of any peer in the system. The KS

distance is given by the maximum difference between the

actual slot distribution, ω, and the estimated slot distribution,

E(ω). We compute E(ω) based on Pω for different number

of slots. Since the maximum error is determined by a single

point (slot) difference between ω and E(ω), it is sensitive to

noise. Hence, we measure the average error at each peer as

the average error contributed by all points (slots) in ω and

E(ω). The total average error is then computed as the average

of these local average errors.

We consider three slot distributions in this experiment:

(i) the uniform distribution, (ii) the exponential distribution

(λ = 1.5), and (iii) the Pareto distribution (k = 5, xm = 1).
Figure 8(a) shows the average error in three slot distributions,

and Figure 8(b) shows how the accuracy of the estimation

changes in different churn rates.

E. Economic cost

In the last experiment, we measure the effect of

adding/removing AHs on the total cost. Note, in these exper-

iments we set Tlcw to 40 chunks, therefore, regardless of the

number of AHs, all the peers receive 99% of the chunks before

their playback time. In fact, AHs only affect the total cost of

the service. In Section IV, we showed how CM estimates the

required number of AHs. Figure 9 depicts how the number

of AHs changes over time. In the join-only scenario and the

homogeneous slot distribution (Figure 9(a)), the CM estimates

the exact value of the peers that receive the chunks on time

using the existing resources in the system, and consequently
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(a) Homogeneous.
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(b) Heterogeneous.
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Fig. 9. Number of AHs in different settings and scenarios.
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(b) Heterogeneous.
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Fig. 10. PH load in different scenarios with dynamic changes of the number of AHs.

the exact number of required AHs. Hence, as it is shown,

the number of AHs will be fixed during the simulation time.

However, in the heterogeneous and real trace slot distributions

(Figures 9(b) and 9(c)), CM estimation changes over time, and

based on this, it adds and removes AHs. In the churn scenario

(1% churn rate), CM estimation also changes over the time,

thus, the number of AHs fluctuates.

Relatively, we see how PH load changes in different sce-

narios in the baseline and enhanced models (Figure 10).

Figure 9(a) shows that three AHs are added to the system in

the join-only scenario and the homogeneous slot distribution.

On the other hand, we see in Figure 10(a), in the join-only

scenario, with the help of these three AHs (enhanced model),

the load of PH goes down nearly to zero. It implies that three

AHs in the system are enough to minimize PH load, while

preserving the promised level of QoS. Hence, adding more

than three AHs in this setting does not have any benefit and

only increases the total cost. Moreover, we can see in the

join-only scenario, if there is no AH in the system (baseline

model), PH load is much higher than the enhanced model,

e.g., around 90mb, 40mb, and 130mb per second in the

homogeneous, heterogeneous, and real trace, respectively. The

same difference appears in the churn scenario.

Figure 11 shows the cumulative total cost over the time in

different scenarios and slot distributions. In this measurement,

we use Amazon S3 as PH and Amazon EC2 as AHs. Accord-

ing to the price list of Amazon [16], [17], the data transfer

price of S3 is 0.12$ per GB, for up to 10 TB in a month. The

cost of GET requests are 0.01$ per 10000 requests. Similarly,

the cost of data transfer in EC2 is 0.12$ per GB, for up to

10 TB in a month, but since the AHs actively push chunks,

there is no GET requests cost. The cost of a large instance of

EC2 is 0.34$ per hour. Considering the chunk size of 20kb
(0.02mb) in our settings, we can measure the cost of PH in

Amazon S3 per round (second) according to the Formula 4:

Cph ≈ r · (Cchunk + Creq)

≈
r × 0.02× 0.12

1000
+

r × 0.01

10000
(6)

where r is the the number of received requests by PH in one

round (second). The cost of storage is negligible. Given that

each AH pushes chunks to 20 peers with the rate of 500kbps
(0.5mbps), then the cost of running one AHs in Amazon EC2

per second according to Formula 3 is:

Cah = Cvm +m · Cchunk

=
0.34

3600
+

20× 0.5× 0.12

1000
(7)

Figure 11 shows the cumulative total cost for different slot

distribution settings. It is clear from these figures that adding

AHs to the system reduces the total cost, while keeping the

QoS as promised. For example, in the high churn scenario

(1% churn rate) and the real trace slot distribution the total

cost of system after 600 seconds is 24$ in the absence of AHs

(baseline model), while it is close to 13$ if AHs are added

(enhanced model), which saves around 45% of the cost.
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Fig. 11. The cumulative total cost for different setting and scenarios.

VI. RELATED WORK

A. Content distribution

Although P2P algorithms are emerging as promising so-

lutions for large scale content distribution, they are still

subject to a number of challenges [19]. The bottleneck in the

aggregated upload bandwidth in the overlay is one of the main

problems [8]. One possible approach to increase the upload

capacity is to use helpers [35], [36]. The helper role can be

played by idle [37] or restricted [38] users. Idle users are peers

with spare upload capacity not interested in any particular

data, while restricted users are users with limited rights in

the network service.
Another approach suggests to exploit dedicated servers

as helpers to accelerate content distribution [9], [39], [40],

where the servers cache and forward content to other peers.

Montresor and Abeni [10] introduced an alternative way to

use dedicated servers. They proposed to merge P2P and cloud

storage to support information diffusion.as a passive node.
In addition to these solutions, Wu et al. proposed a queuing

model in [41] to predict the dynamic demands of the users

of a P2P video on demand (VoD) system and provide elastic

amounts of computing and bandwidth resources on the fly with

a minimum cost. Similarly, Jin et al. present a cloud assisted

system architecture for P2P media streaming among mobile

peers to minimize energy consumption [42].
Unlike all the described approaches, our work proposes to

use the cloud computing and storage resources as a collection

of active and passive helpers. The combination of both types

of helpers together with an effective resource management,

distinguishes our approach from previous work.

B. Self-monitoring and self-configuration systems

Self-monitoring and self-configuration mechanisms are es-

sential to manage large, complex and dynamic systems in an

effective way. Self-monitoring detects the current states of

system components, while self-configuration is aimed to adapt

system configuration according to the received information.
Self-monitoring allows the system to have a view on its

current use and state. One of the popular approaches for

monitoring P2P overlays is decentralized aggregation [14].

For example, ADAM2 [29] presents a gossip-based aggrega-

tion protocol to estimate the distribution of attributes across

peers. Similarly, Van Renesse and Haridasan [43] propose a

distribution estimation mechanism, which can be used when

peers are not aware of the extreme value of the distribution.

Self-configuration is the process that autonomously config-

ures components and protocols according to specified target

goals, e.g., reliability and availability. To self-tune according

to on-going state, the system can use an external component

that controls the system either via control loops [44] or in

a decentralized way [45], [46], [47]. A relevant example of

a self-configuration mechanism is TMAN [45], an overlay

topology management that uses a ranking function exploited

locally by each peer to choose its neighbors.

Another system, proposed by Kavalionak and Montre-

sor [46], considers a replicated service on top of a mixed

P2P and cloud system. This protocol is able to self-regulate

the amount of cloud storage resources utilization according

to available P2P resources. However, the main goal of the

proposed approach is to support a given level of reliability,

while in our work we are interested in an effective data

dissemination that allows to self-configure the amount of

active and passive cloud resources utilization.

VII. CONCLUSIONS

The main contribution of this paper is CLIVE, a P2P live

streaming system that integrates cloud resources (helpers),

whenever the peer resources are not enough to guarantee a

predefined QoS with a low cost. Two types of helpers are used

in CLIVE, (i) active helper (AH), which is an autonomous

virtual machine, e.g., Amazon EC2, that participates in the

streaming protocol, and (ii) passive helper (PH), which is a

storage service, e.g., Amazon S3, that provides content on

demand. CLIVE estimates the available capacity in the system

through a gossip-based aggregation protocol and provisions the

required resources (AHs/PHs) from the cloud provider w.r.t the

dynamic behavior of the users.

We are currently implementing a prototype CLIVE system

based on Amazon’s services like EC2, S3 and Cloudfront.

In particular, Cloudfront extends S3 by replicating read-only

content to a number of edge locations, in order to put clients

closer to the data and reduce the communication latency.

Altogether, these edge locations (currently there are 34 of them
around the world) can be seen as a unique PH, from where



chunks can be pulled. From the point of view of the source, the

interface remain the same: content is originally pushed to S3

and from there is replicated across geographically-dispersed

data centers.
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