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Abstract—Nowadays, we can find machine learning (ML)
applications in nearly every aspect of modern life, and we see
that more developers are engaged in the field than ever. In order
to facilitate the development of new ML applications, it would
be beneficial to provide services that enable developers to share,
access, and search for source code easily. A step towards making
such a service is to cluster source code by functionality. In this
work, we present COCLUBERT, a BERT-based model for source
code embedding based on their functionality and clustering them
accordingly. We build COCLUBERT using CuBERT, a variant
of BERT pre-trained on source code, and present three ways
to fine-tune it for the clustering task. In the experiments, we
compare COCLUBERT with a baseline model, where we cluster
source code using CuBERT embedding without fine-tuning. We
show that COCLUBERT significantly outperforms the baseline
model by increasing the Dunn Index metric by a factor of 141,
the Silhouette Score metric by a factor of two, and the Adjusted
Rand Index metric by a factor of 11.

Index Terms—Source Code Clustering, NLP, BERT, CuBERT

I. INTRODUCTION

We recently witnessed a significant increase of open source
code, particularly machine learning (ML) code, in public plat-
forms such as GitHub. Given so many ML code repositories,
it would be beneficial to provide a service for orchestrating
them to enable users to search for code easily. However, many
of the available source code in public repositories are not
labeled, meaning that they do not have any metadata or extra
information to describe their functionality. So the question is
how to categorize unlabeled source code by their functionality?

One approach to manage and understand source code is
to use software clustering technique [1], [2]. Grouping and
clustering source code according to their similarities makes it
easier to find and manage relevant pieces of code and helps
ML engineers to understand code more easily. Many of the
existing works leverage source code metadata, documentation,
or imported packages to group them [3]. However, we aim to
cluster source code based on their functionality. For example,
Figure 1 shows two methods in Python with the same function-
ality (creating generators for a dataset), which are implemented
differently. While this similarity is relatively easy to spot for
an experienced developer, the same cannot be said for a model
that faces the same task.

In this work, we investigate the possibility of learning
representations of source code for the downstream task of
clustering them by their functionality. To achieve this, we use a
BERT-based approach [4] for making source code embedding.
Recently, many works use such embedding for various tasks,
such as code summarization [5]–[8], code search [9]–[11], and

def create_tf_datasets(filepath):
df = pd.read_csv(filepath)

train, test = train_test_split(df,
test_size=0.20, shuffle=True)

train_ds = tf.data.Dataset.from_tensor_slices(
(train.features, train.label))

test_ds = tf.data.Dataset.from_tensor_slices(
(test.features, test.label))

return train_ds, test_ds

(a) Program A

def create_torch_datasets(path, params):
dataset = Dataset(path)

train_set, test_set =\
torch.utils.data.random_split(dataset, [
int(dataset.__len__() * (1 - params.test_size)),
int(dataset.__len__() * params.test_size)

])

train_dataloader = torch.utils.data.DataLoader(
train_set, batch_size=params.batchsize,
shuffle=True,

)

test_dataloader = torch.utils.data.DataLoader(
test_set, batch_size=params.batchsize,
shuffle=True,

)

return train_dataloader, test_dataloader

(b) Program B

Fig. 1: An example of two source code with similar function-
ality, but with different implementations.

code generation [12], [13], to name a few. However, to the best
of our knowledge, there is no work on clustering source code
based on their functionality. To this end, we introduce Code
Clustering BERT (COCLUBERT) based on CuBERT [14] (a
variant of BERT pre-trained on source code), and present
three different frameworks for fine-tuning it for the clustering
task: (i) COCLUBERT-Triple, where we use a triplet loss
function [15], [16], (ii) COCLUBERT-Unsupervised, where
we use an unsupervised clustering loss function [17], and
(iii) COCLUBERT-DRC, where we use the Deep Robust
Clustering (DRC) loss function [18].

The experimental results confirm that we can learn to embed
source code that encode functional similarities between meth-
ods. Through the experiments, we observe that COCLUBERT
outperforms a baseline model, where we cluster code using
the embedding created by CuBERT without fine-tuning it.
Moreover, the results indicate that the contrastive learning



fine-tuning techniques in COCLUBERT-Triplet and COCLU-
BERT-DRC are better suited for clustering source code com-
pared to COCLUBERT-Unsupervised. We also achieve the
most compact and well-separated clusters when fine-tuning
CuBERT in COCLUBERT-Triplet.

II. BACKGROUND

In this section, first, we present some of the existing
models for language modeling, in particular, BERT [4] and
CuBERT [14], and then review the clustering techniques we
use in this work.

A. Language Modeling

Embedding is a technique in which an object that is pos-
sibly non-numeric and discrete (e.g., words and sentences)
is encoded into a real-valued fixed-size vector [9]. These
types of representations can encode semantic similarities and
analogies between objects [19]. Intuitively, we can say that in
this space, the meaning of an object is distributed across the
vector components and the goal of the encoding is to learn
vector representations such that semantically similar objects
have vectors close to each other [20]–[22].

Word2Vec [23] and GloVe [24] are examples of embedding
models that are trained on large text corpora based on co-
occurrence statistics to generate semantic representations of
words. However, these models generate context-free word em-
bedding, meaning that the representation of a word they create
is irrespective of the meaning of the word in that sentence. To
overcome this limitation, many learning techniques have been
proposed to generate contextualized representation [25]–[28],
among which Bidirectional Encoder Representations from
Transformers (BERT) [4] shows ground-breaking performance
in a various Natural Language Processing (NLP) tasks.

BERT [4] is a language embedding model that learns
contextual representations of words in a sentence. BERT is
pre-trained on a large corpus of text in an unsupervised setting,
with two different learning objectives: Masked Language Mod-
eling (MLM) and Next Sentence Prediction (NSP). In MLM,
some words in the input sentence are masked (hidden) from the
model, and the model should predict the original word of the
masked token based on the context of the other non-masked
words in the sentence. In NSP, BERT is given two sentences,
A and B, as input, and the objective is to make BERT predict
whether sentence A is followed by sentence B. Once BERT is
pre-trained, it can be applied to various downstream tasks, such
as question-answer tasks [29] and sentence classification [30].
This is done by adding an extra task-specific output layer to
the pre-trained model and fine-tune it.

CuBERT [14] is an adaption of BERT to learn contextual
embeddings of source code. CuBERT’s architecture and pre-
training process are the same as BERT; however, the corpus
that the models are pre-trained on and tokenization step are
different. CuBERT is pre-trained on a large corpus of 7.4
million Python files extracted from GitHub. Moreover, the
BERT tokenization technique is unsuitable for source code
since it is mainly designed for natural languages and does

not preserve many of the important syntactic elements in
programming languages (e.g., newlines and indentations) and
special characters (e.g., parentheses, semicolons, and arith-
metic operators). By preserving these elements in the training
data, CuBERT can gain a deeper understanding of the meaning
and context of different elements in the source code.

B. Clustering Methods

There are various clustering techniques in literature, but
in this work, we consider centroid-based, density-based, and
hierarchical clustering.

Centroid-based clustering methods partition the data points
in a dataset by finding the centers for the given number of
clusters and assigning each data point to its closest cluster
center in such a way that the squared distances between the
points and their cluster center are minimized. K-means [31] is
a well-known clustering algorithm in this category.

Density-based clustering methods assign clusters based on
the density of regions in the data. The underlying assumption
is that the data points that lie within high-density regions are
more similar and different from points that lie in the lower-
density regions of the space. Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [32] and Ordering
Points To Identify the Clustering Structure (OPTICS) [33]
are two techniques in this group. Unlike K-means, these
algorithms do not require the number of clusters specified
before running the algorithm.

Hierarchical clustering methods form clusters following a
tree-like structure based on the hierarchy in the data, and create
new clusters from the previously formed clusters. Hierarchical
Agglomerative Clustering (HAC) [34], as an algorithm in this
group, initially assigns each data point to a separate cluster,
and then the two most similar clusters are merged to form a
new cluster. Once the clusters are merged, the new similarity
measures are computed again, and the merging continues.

III. METHODOLOGY

Here, we present Code Clustering BERT (COCLUBERT),
in which we use CuBERT [14] and fine-tune it for source
code clustering based on their functionality. We take advantage
of three different loss functions for fine-tuning CuBERT: (i)
triplet loss function [15], [16], (ii) unsupervised clustering loss
function [17], and (iii) Deep Robust Clustering (DRC) loss
function [18]. Considering these loss functions, we call our
models COCLUBERT-Triplet, COCLUBERT-Unsupervised,
and COCLUBERT-DRC, respectively. As input, we give the
source code methods to the tokenizer and then give the
tokenized data to the model. In COCLUBERT-Triplet and CO-
CLUBERT-Unsupervised, we fine-tune CuBERT according to
the respective criterion and then perform the clustering (e.g.,
using K-means). In contrast, COCLUBERT-DRC follows an
end-to-end structure where a single model performs the source
code embedding and cluster assignment; thus, it does not
need any external clustering technique to obtain clusters. The
implementation of these models are available in GitHub1.

1https://github.com/ai-center-kth/cuBERT-source-code-clustering



A. COCLUBERT-Triplet
The triplet loss function, presented in [15], is used for

training models to learn sentence embedding while preserving
the semantic similarities among similar sentences. Inspired
by [15], in COCLUBERT-Triplet, we fine-tune CuBERT using
the triplet loss function to learn source code methods embed-
ding that encodes their functionalities. Our goal is to make the
embedding such that the distance between the embedding of
methods with similar functionality is small, while the distance
between different methods is large.

To form a triplet, we choose one sample as an anchor
method and two other samples as positive and negative
methods. The positive method has the same functionality
as the anchor method, while the negative one has different
functionality. Given the embedding of anchor, positive, and
negative methods (denoted by a, p, and n, respectively), we
define the triplet loss L(a, p, n) as:

L(a, p, n) = max(d(a, p)− d(a, n) + α, 0), (1)

where d(x, y) measures the distance between x and y, and
α is the margin that ensures the positive method is closer
to the anchor than the negative method. We can consider
different distance metrics for d, such as the Euclidean and
Cosine distances.

To construct a triplet of methods, we first choose a method
randomly from the dataset as an anchor and then select
a positive and a negative method for the anchor accord-
ingly. To choose a positive method, we find all methods
in the dataset that share one or more of the subwords
in the anchor method name. For instance, if the anchor
method name is train epoch, then train for epoch and
get model for training are its potential positive methods
and get dataset and normalize are potential negative
methods. To do this, we use the BLEU score [35] to compute
the similarity between the method names. A higher BLEU
score indicates a more similar method name. For example, the
BLUE scores between train epoch and train for epoch

and normalize are 0.92 and 0, respectively. For each anchor,
we select a positive method randomly, such that the methods
with higher BLEU scores are more likely to be chosen. A neg-
ative method is obtained by randomly sampling a method from
the dataset in the complement set of the positive candidates.

As Figure 2 (top-left corner) shows, the COCLUBERT-
Triplet consists of three instances of the same CuBERT model,
sharing the weights. However, in practice, we use only one
single instance of CuBERT with three different input channels
to adhere to the triplet structure. To train the model, first,
we tokenize each method in the triplet (anchor, positive, and
negative) and give them as input to CuBERT to compute the
features. We then use a pooling layer to aggregate the set
of features that CuBERT computes for each token to obtain
a single fixed-length vector representing the given method.
We consider the output of the first token (i.e., [CLS]) as the
representation of the method [15]. In the end, we use the
embedding of the anchor, positive, and negative methods (i.e.,
a, p, and n, respectively) to compute the triplet loss L(a, p, n).

L(a, p, n)

pa n
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Fig. 2: Top-left: COCLUBERT-Triplet, Bottom-left: COCLUBERT-
Unsupervised, Right: COCLUBERT-DRC.

B. COCLUBERT-Unsupervised

Huang et al. [17] propose an unsupervised fine-tuning
of BERT to learn representations of text for clustering. In
COCLUBERT-Unsupervised, we apply the same technique
for source code clustering using CuBERT as a pre-trained
model. We make an embedding z of a method by giving the
tokenized method to CuBERT and applying the mean-pooling
on CuBERT output [17]. Then, by computing the loss function
as explained below, we update the model. As Figure 2 (bottom-
left corner) shows, the loss function L has two parts: a Masked
Language Model (MLM) loss Lm and a Clustering loss Lc:

L = Lm + Lc. (2)

The MLM loss Lm is the same as the MLM loss in
BERT [4]. However, unlike the vanilla BERT that uses the
embedding of [CLS] token as the representation of input
samples, we use the mean-pooling to compute the embedding
z of the input source code method, where z = 1

M

∑M
i hi.

Here, hi is the hidden vector of ith token of the input sample
and M is the number of tokens.

In addition to Lm, we use the Clustering loss Lc for
better cluster separation and compactness [36], [37]. To define
Lc, we consider Q as the distribution of soft assignment
of the method embedding z to clusters by Student’s t-
distribution [38]. To be more precise, qzc shows the similarity
between the method embedding z and the clustering centroid
µc, which is obtained from the chosen clustering technique



(e.g., K-means) [36], [37]:

qzc =
(1 + ‖z − µc‖2)−1∑
c′(1 + ‖z − µc′‖2)−1

. (3)

We then use the distribution of soft assignment qzc to assign
the cluster label Cz to the method embedding z, such that
Cz = argmaxc qzc. Moreover, from Q we derive an auxiliary
target distribution P that puts more emphasis on samples
assigned with high confidence [17]:

pzc =
q2zc/fc∑
c′ q

2
zc′/fc′

, (4)

where fc =
∑

z qzc is the soft cluster frequency. Finally, we
express Lc as the Kullback-Leibler (KL) divergence between
two distributions Q and P [17]:

Lc = KL(P‖Q) =
∑
z

∑
c

pzc log
pzc
qzc

. (5)

To train CoCluBERT-Unsupervised, we need a set of initial
cluster centroids, µc. To achieve it, we first compute the
embedding of all the methods in the training set and then
use K-means to obtain an initial set of cluster centroids.

C. COCLUBERT-DRC

In COCLUBERT-DRC, we use Deep Robust Clustering
(DRC) technique [18] for fine-tuning CuBERT. DRC considers
both the embedding of samples and their clustering assignment
to decrease intra-class diversities while increasing inter-class
diversities simultaneously. DRC is an end-to-end model that
makes the data embedding and clustering together, so it does
not use any external clustering algorithm [18]. DRC makes use
of contrastive learning [39] and data augmentations for clus-
tering. It uses contrastive learning to separate positive samples
from negative ones and uses data augmentation to make more
robust embedding by maximizing mutual information between
samples and their embeddings [40]. Considering that a sample
and its augmentation have similar identity, it is expected that
they are assigned to the same cluster.

If the dataset consists of N samples drawn from K seman-
tically different classes, the objective of DRC is to assign the
samples to the different clusters, such that semantically similar
samples are assigned the same cluster while also maintaining
a robust clustering. The DRC loss function L is defined
based on three components: a contrastive loss based on the
Assignment Features (AF) LAF , a contrastive loss based on
the cluster Assignment Probability (AP) LAP , and a Cluster
Regularization (CR) loss LCR to prevent trivial solutions [18]:

L = LAF + LAP + λLCR, (6)

where λ is the regularization term weight.
The AF loss LAF preserves the similarity in the embedding

level, meaning that the embedding of a sample and its aug-
mentation, denoted by zi and z′i, respectively (Figure 2, the
right part), should be similar:

LAF = − 1

N

N∑
i=1

log
( eziz

′
i/T∑N

j=1 e
ziz′

j/T

)
, (7)

where T affects the probability distribution obtained from the
softmax, making it more or less certain about its predictions.

The AP loss LAP maximizes the similarity between the
predicted clusters of samples and the augmented samples. So,
if qc and q′c tell us that the samples and the augmented ones
are assigned to cluster c (Figure 2, the right part), then:

LAP = − 1

K

K∑
c=1

log
( eqcq

′
c/T∑K

c′=1 e
qcq′c′/T

)
, (8)

The CR loss prevents the model from falling into local
optimum.

LCR = − 1

N

K∑
c=1

( N∑
i=1

qc(i)
)2
. (9)

To train the model, first, we select a method randomly
from the dataset. Then, we use the same procedure as in
COCLUBERT-Triplet, leveraging the BLEU score between
method names, to find a positive sample as an augmented
method for the chosen method. Next, we give the method
and its augmentation to CuBERT and then apply a mean-
pooling aggregation to reduce the set of features into a single
vector representing the method. In the next step, we use a fully
connected layer to reduce the feature space into K, where K
is the number of desired clusters. The output from the fully
connected layer is the AF vector for the method (the method
embedding, which are denoted by z and z′). Finally, we apply
the softmax function to the method embedding to obtain their
cluster AP (denoted by q and q′).

IV. EVALUATION

In this section, first, we present the dataset and explain the
evaluation metrics, and then we study the performance of our
proposed models, i.e., COCLUBERT-Triplet, COCLUBERT-
Unsupervised, and COCLUBERT-DRC.

A. Datasets

We make the dataset by downloading a large set of ML
source code from publicly available repositories on GitHub.
We only download Python projects with two or more stars
containing the “machine-learning” tag. We then discard none
Python files and keep Jupyter notebooks and convert them into
equivalent Python scripts. Finally, we set the code granularity
at the method level and take their Abstract Syntax Trees (AST)
as their identity.

Among all the methods, we keep only those with the
method names containing one of the sub-strings train,
save, process, forward and predict, and consider
them as labels indicating the functionality of the meth-
ods. For example, train epoch, train for epoch and
get model for training are all methods with train in
their method name. The reasoning for choosing these particular
words is that they are highly relevant and semantically mean-
ingful words in ML codes. They are frequently referenced
when writing the source code for the different steps of the
ML process. Therefore, the objective is to investigate whether
the clusters found in the embedding space are meaningful with



respect to these labels. In the experiments, we consider five
clusters (K = 5), one for each of these labels. However,
it is also possible that the function names do not represent
the functionally of the functions, e.g., if developers choose
improper names for the functions. Therefore, we formulate
the problem as an unsupervised setting to investigate how to
group code snippets based on their functionalities rather than
their names.

Our dataset consists of 8106 methods in total, and we shuffle
and split them into training, validation, and test sets using a
90-5-5 ratio. Table I shows the number of samples of each
type (i.e., with the specific word in the method name). All the
details of our implementation to make the dataset are available
on the following link2.

TABLE I: The number of methods containing specific words
in their method names.

Train Save Process Forward Predict Total

3131 1513 1908 282 1272 8106

B. Clustering Methods and Evaluation Metrics

For clustering, we conduct the experiments using K-
means [31], OPTICS [33], and HAC [34] techniques. The
choice of these algorithms is to choose one from the different
families of clustering techniques presented in Section II-B. To
evaluate the quality of the clusters created by these techniques,
we consider two types of metrics: (i) Dunn Index (DI) and
Silhouette Score (SS) that do not require labels of data to
evaluate the results, and (ii) Adjusted Rand Index (ARI) that
need labels of data.

The metrics, such as DI and SS that examine the quality of
clustering without requiring labels, generally provide insights
regarding the separability and compactness of the clusters and
determine the validity of the assigned clusters. DI identifies
if the clusters are compact and well-separated. The bigger DI
indicates that the clusters are separated better and are more
compact. SS is another technique for interpreting and validat-
ing the consistency of the clusters that provides information
about which samples are located well within their respective
clusters and which only lie somewhere between them. In other
words, SS indicates if the cluster assignments are reasonable
given the similarity (distances) between the samples. Values
closer to 1 suggest that the samples are well-clustered. In
contrast, values tending towards -1 imply that many samples
are assigned to wrong clusters given the distances/similarity
between them and the other samples in their assigned clusters.

DI and SS, however, do not show how meaningful the
clusters are. For this purpose and the qualitative evaluation
of the clusters, we use ARI to measure the similarity between
the assigned cluster labels and the inferred true labels of the
samples. It is computed by considering all pairs of samples and
counting pairs assigned to the same or different clusters in the
two partitions. In this work, we consider the method names
to be a sort of fuzzy label for clusters. It is not unreasonable

2https://github.com/ai-center-kth/ml-code-dataset

(a) True labels (b) K-means

Fig. 3: Methods clusters using the baseline model.

to assume that methods that provide similar functionality also
tend to have similar names. Suppose we can find a cluster
where most of the methods within that cluster have similar
method names. In that case, we also have some reason to
believe that these methods are functionally similar. ARI values
closer to 1 signifies a very high similarity between the two
cluster configurations. Values near 0 (or slightly below) show
that the cluster configurations are very dissimilar.

C. Experiments and Results

In the rest of this section, we evaluate the clustering of the
three COCLUBERT models using the metrics introduced in
Section IV-B. For all the COCLUBERT models, we use the
CuBERT large with 24 encoded layers, 16 attention heads,
and a hidden layer size of 1024. We also set the maximum
input sequence to 256. To visualize the resulting clusters, we
apply t-Distributed Stochastic Neighbor Embedding (t-SNE)
to reduce the dimensionality [41]. We also set the number
of the clusters to be K = 5, the number of semantically
different classes that the methods are chosen from (Table I).

Baseline: As the baseline, we use CuBERT without fine-
tuning for source code embedding, and then we give the
embedding of [CLS] token to the clustering algorithm (K-
means in our experiments). Table II shows the DI, SS, and ARI
of the baseline model are 0.002, 0.339, and 0.057, respectively,
and Figure 3a and 3b show the t-SNE of the distribution of
method names and the result of clustering using the baseline
model, respectively. As both Table II and Figure 3 show, the
baseline model does not provide a clear separation among
the clusters. We can see some weakly defined regions where
methods with similar method names are located in the sample
cluster, however, there is a fair bit of noise and overlap
among these regions. So, CuBERT without fine-tuning does
not appear to be well suited for clustering, highlighting the
requirement for fine-tuning the model for this particular task.
Below, we show how to fine-tune the CuBERT for clustering.

COCLUBERT-Triplet: In the first set of experiments, we
evaluate COCLUBERT-Triplet by considering the Cosine sim-
ilarity as the distance metric d in the triplet loss function
(Equation 1). We trained the model using a batch size of four
and with an initial learning rate 3 × 10−5, which is reduced
with a factor of 0.1 if the validation loss stopped improving
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Fig. 4: Methods clustering using CoCluBERT-Triplet.

after three consecutive steps. Figures 4a and 4b depict the
distribution of the method names and the obtained clusters. We
use three different clustering techniques, K-means, OPTICS,
and HAC, but in Figure 4b we show only the result of K-
means. However, Table II shows DI, SS, and ARI for the three
clustering techniques.

As Figure 3 shows, CuBERT without fine-tuning cannot
learn an embedding to encode similarities among methods’
functionality. However, in Figure 4 we see that fine-tuning
CuBERT using the triplet loss function creates clusters more
compact and well-separated. The clustering labels assigned by
both K-means and HAC are very similar to the labels that we
expect. However, OPTICS does not perform well, likely due
to suffering from the curse of dimensionality. Looking at the
quantitative evaluation metrics in Table II, we can see further
evidence supporting that the clusters are meaningful. The high
ARI scores that K-means and HAC achieved indicate a high
level of accuracy concerning the method name labels. The
SS provides further reason to believe that cluster assignments
are reasonable given the distances between the data points
(methods).

COCLUBERT-Unsupervised: Here, we fine-tuned Cu-
BERT using the unsupervised loss function explained in Sec-
tion III-B. We train the model for ten epochs, using a batch size
of eight with the learning rate set to 3×10−5. The hypothesis
for fine-tuning CuBERT using the unsupervised loss function
is that the weakly defined regions that we see in Figure 3
become more distinct by considering the initial clusters and
the methods codes. Thus, better cluster separability and com-
pactness could be achieved through the KL component of the
loss function, while the MLM component would encourage
CuBERT to learn better contextual representations of the
words. However, in Figure 5 we see that the result is not
exactly as we expect. We observe that the loss converges very

TABLE II: The performance of each clustering method.

Embedding Clustering DI SS ARI
Model Algorithm

CuBERT K-means 0.002 0.339 0.057
CoCluBERT-Triplet K-means 0.282 0.772 0.657
CoCluBERT-Triplet HAC 0.277 0.753 0.643
CoCluBERT-Triplet OPTICS 0.000 -0.085 0.012
CoCluBERT-Unsupervised K-means 0.006 0.608 0.033
CoCluBERT-DRC – – 0.003 0.527 0.492

(a) True labels (b) K-means

Fig. 5: Method clustering using COCLUBERT-Unsupervised.

(a) True labels (b) K-means

Fig. 6: Method clustering using COCLUBERT-DRC.

quickly, indicating that the model already has a fairly good
contextual understanding of the words used in the methods.
This can likely be attributed to the narrow vocabulary used
within machine learning code. Therefore, the MLM loss does
not appear to impact the fine-tuning process significantly for
our dataset.

We also note that the KL component of the loss function
appears to have been fairly effective. We see that the resulting
clusters are more compact and slightly more separable than
those in the baseline model. However, these clusters do
not appear to be meaningful concerning the method names,
which is likely because the KL component of the loss pulls
data points towards the closest centroid. However, it does
so without considering the identities of the two samples.
Again, the base assumption is that similar methods should
have similar features. Although that is true for some of the
methods shown in Figure 5, it is not the case for most of
the methods, as many methods are pulled towards a cluster
centroid where the majority of the methods do not have the
same identity as the method being pulled.

COCLUBERT-DRC: Finally, we fine-tune CuBERT model
using the DRC loss function as explained in Section III-C. We
train the model for five epochs, using a batch size of four with
the learning rate set to 3×10−5. We also set λ = 0.5 in DRC
loss function, and considert T = 0.5 for AF (Equation 7) and
T = 1.0 for AP (Equation 8).

Table II demonstrates that COCLUBERT-DRC achieves
significantly better clustering than the baseline model. We
note that the DI is surprisingly low, given the good clustering.
The ARI is also relatively high, indicating a significant
overlap between the cluster assignments and the expected
cluster labels. Similarly, we note that the SS is fairly



high, providing further reason to confirm that the cluster
assignments are reasonable given the distances between the
samples (i.e., methods functionality). Figure 6 shows the
quantitative results, and we can see that the clusters from
the COCLUBERT-DRC are considerably more compact and
well-separated than that of the baseline model.

Discussion: Intuitively, the difference between the three
fine-tuning frameworks is that both the COCLUBERT-Triplet
and COCLUBERT-DRC use contrastive learning and enforce
similarity preserving embeddings by considering the method
names between samples in the dataset. This contrasts with
COCLUBERT-Unsupervised that attempts to enhance the nat-
ural clusters, which already exist in the data without finding
similar samples. From our results in this experiment, we
conclude that CuBERT, when fine-tuned with the triplet loss
function, is most suitable for clustering by functional simi-
larities. We obtain compact and well-separated clusters with
cluster assignments that are accurate concerning the inferred
labels of functionality. The experiment results confirm that
it is possible to learn source code embedding that encodes
the functional similarities among source code snippets. As we
observe, compared to the baseline model, clustering source
code using COCLUBERT-Triplet and K-means has increased
the DI metric by a factor of 141, the SS metric by a factor of
two, and the ARI metric by a factor of 11. As we explained
in Section IV-B, the bigger DI and SS values indicate that
the clusters are better separated, and the samples are assigned
more appropriately, respectively. Moreover, the bigger ARI
scores indicate a higher level of accuracy concerning the
method name labels.

V. RELATED WORK

Traditional source code embedding models have used AST.
For example, Code2Vec [42] decomposes the source code as
a bag of paths extracted from the code’s AST and makes
the representation by embedding and aggregating the paths
into code vectors. Based on Code2Vec, Alon et al. present
Code2Seq [5] that generates natural language representations
from source code. TravTrans/PathTrans [13], ASTNN [43],
and MTN [44] are others models that make use of AST for
source code embedding. NCS [11] uses Word2Vec [23] to
produce embeddings for both code and natural language. NCS
is a model for searching code using queries. UNIF [10] is
another work that learns the embedding of the codes and
queries for searching codes. It uses the Cosine similarity
between each query-code pair in the loss function.

BERT-based models are another family of models for source
code embedding. CuBERT [14] is a model that uses BERT
to learn contextual embedding from source code, and Code-
BERT [45] is a bimodal pre-trained model for both natural
language and programming language embedding. Fret [8] is
another BERT-based model that generates documentation from
source code. Unlike CuBERT and CodeBERT, Fret uses a
reinforcer-transformer architecture to emphasize the function

names that have a high probability of performing the task that
their name represents.

Although there are several works on source code embed-
ding, there is little work on clustering source code. Rousidis
and Tjortjis [46] present a model that extracts entities and
attributes from source code and uses HAC [34] to cluster
them. Kuhn et al. introduce a model for source code com-
prehension [47]. Their model converts the source code into
a term-document matrix and then applies Latent Semantic
Indexing [48] to create document embeddings and finally
clusters the documents. Theeten et al. propose Lib2Vec [3] to
cluster source code by the libraries imported in the code. They
adapt the skip-gram model from Word2Vec [23] to generate
library embedding. To the best of our knowledge, our model
is the first BERT-based model for source code clustering.

VI. CONCLUSIONS

In this work, we have explored the question is CuBERT
applicable to cluster source code by functionality? We found
out that using an out-of-the-box pre-trained CuBERT model
does not produce good clusters, therefore we introduced CO-
CLUBERT, based on CuBERT, and presented three learning
models, COCLUBERT-Triplet, COCLUBERT-Unsupervised,
and COCLUBERT-DRC that fine-tune CuBERT for creat-
ing clusters. After conducting experiments, we realized that
COCLUBERT-Triplet and COCLUBERT-DRC could success-
fully group source code by functionality, while COCLUBERT-
Unsupervised failed. We also observed that COCLUBERT-
Triplet showed superior performance by showing that it can
produce more compact, well-separated clusters, which corre-
lated better with the true labels of the source code (the method
names in our experiments). In summary, we have shown how
to group source codes by functionality in an unsupervised way.
We hope this work opens the door to more approaches that
can help users understand and interpret undocumented source
code.
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