
ContrastNER: Contrastive-based Prompt Tuning for
Few-shot NER

Amirhossein Layegh†, Amir H. Payberah†, Ahmet Soylu‡, Dumitru Roman§, Mihhail Matskin †
†KTH Royal Institute of Technology, Sweden ‡Oslo Metropolitan University, Norway §SINTEF AS, Norway

†{amlk, payberah, misha}@kth.se ‡ahmet.soylu@oslomet.no §dumitru.roman@sintef.no

Abstract— Prompt-based language models have produced
encouraging results in numerous applications, including Named
Entity Recognition (NER) tasks. NER aims to identify entities
in a sentence and provide their types. However, the strong
performance of most available NER approaches is heavily de-
pendent on the design of discrete prompts and a verbalizer
to map the model-predicted outputs to entity categories, which
are complicated undertakings. To address these challenges, we
present ContrastNER, a prompt-based NER framework that
employs both discrete and continuous tokens in prompts and
uses a contrastive learning approach to learn the continuous
prompts and forecast entity types. The experimental results
demonstrate that ContrastNER obtains competitive performance
to the state-of-the-art NER methods in high-resource settings and
outperforms the state-of-the-art models in low-resource circum-
stances without requiring extensive manual prompt engineering
and verbalizer design.

Index Terms—Prompt-based learning, Contrastive learning,
Language Models, Named Entity Recognition

I. INTRODUCTION

Named Entity Recognition (NER) aims to recognize and
classify named entities, such as person and location, into
the appropriate concept classes. NER plays a crucial role
in various applications, including information extraction, on-
tology population, question answering, machine translation,
and semantic annotation, to name a few. Despite extensive
research in this area, the state-of-the-art solutions still need
more generalization and extensibility due to their reliance
on domain-specific knowledge resources such as annotated
training corpus. Considering that resources for data annotation
are scarce in many domains and annotating a large corpus of
text labeled in some domains requires the expertise of experts,
low-resource NER tasks become a complex problem.

Pre-training a model on a rich-resource dataset and fine-
tuning it on a low-resource downstream task is becoming
more prevalent [1]. Typically, in the context of NER, the pre-
trained step includes training a model using Masked Language
Modeling (MLM) to predict the probability of the observed
textual data. Then, the fine-tuning stage fine-tunes the Pre-
trained Language Model (PLM) developed in the preceding
step to predict the type of identified entities (Figure 1(a) and

The work in this paper was partially funded by the projects DataCloud
(H2020 101016835), enRichMyData (HE 101070284), Graph-Massivizer (HE
101093202), UPCAST (HE 101093216), and BigDataMine (NFR 309691).
The experiments were enabled by resources provided by the Swedish National
Infrastructure for Computing (SNIC) at Chalmers Centre for Computational
Science and Engineering (C3SE) partially funded by the Swedish Research
Council through grant agreement no. 2018-05973.

America is a beautiful country.Input Sentence

PLM Backbone

MLM Head

beautiful

country

great

….

is

Vocabulary
0.02

0.95

0.00
.
.
.
0.01

Steve Jobs was born in America.Input Sentence

Entity Types

PLM Backbone

PER PER O O O LOC

Label Classifier

a) MLM pre-training b) Fine-tuning PLM on NER task

Steve Jobs was born in America.Input Sentence

PLM Backbone

MLM Head

person

location

organization

not

another

Answer Words

0.02

0.95

0.00

0.01

0.00

PER

LOC

ORG

O

MISC

Class Labels
Verbalizer

Template

c) Prompt-based learning for NER

[CLS] Steve Jobs was born in America. [SEP][CLS] America is a beautiful [MASK] . [SEP]

[CLS] Steve Jobs was born in America. [SEP] America is a [MASK] entity . [SEP]

Fig. 1. Illustration of two different paradigms for solving NER task. The top
image shows pre-training a language model using the MLM objective (1a)
and fine-tuning it for a NER task to predict the entity type for each word in
an input sentence (1b). The bottom image shows prompting the input sentence
with a template to transform the NER task into an MLM problem to predict
the type of a candidate entity in the input sentence (1c).

1(b)). Recent NER models based on this methodology have
demonstrated exemplary performance on NER tasks [2], [3].
However, to ensure high-quality learning, the downstream task
requires a substantial amount of labeled data for satisfactory
performance. Thus, if no annotated resources exist in the
target domain, the model cannot identify the corresponding
entity types, indicating poor generalization in low-resource
circumstances.

Existing pre-training and fine-tuning NER models have an
additional obstacle in the presence of two distinct pre-training
and fine-tuning objectives (i.e., MLM in the pre-training and
predicting the entity types in the fine-tuning). Initiated by GPT-
3 [4], a prompt-based technique is one solution to bridging the
gap between two different objectives. In this approach, the
objectives of both the pre-training and fine-tuning stages are
formulated as an MLM problem where the model directly
predicts a textual answer to a given prompt [5], [6]. The
generated answer will then be mapped to a class label using a
verbalizer [7] (Figure 1(c)). A recent body of work investigates
the setting of low-resource NER by applying prompt-based
approaches to integrate the objectives of pre-training and
fine-tuning phases [8]–[10]. However, these solutions depend

significantly on expensive discrete prompt engineering.
To address these challenges, we present ContrastNER for

the NER task that leverages the few-shot learning capabilities
of PLMs without manual prompt engineering and verbalizer
design. To this end, we introduce soft-hard prompt tuning for
automatic prompt search in a mixed space of continuous and
discrete prompts. Moreover, we employ contrastive learning
to combine learning the soft-hard prompt and predicting the
entity type without explicitly designing a verbalizer.

In summary, we present the following contributions:
• We propose ContrastNER, a prompt-based model for

NER learning using a low-resource dataset and with-
out manual search for appropriate prompts and creation
verbalizers. To the best of our knowledge, our work is
the first model that uses soft-hard prompt tuning and
contrastive learning for prompt-based NER learning.

• We conduct experiments on four publicly available NER
datasets demonstrating that our method outperforms the
state-of-the-art low-resource prompt-based NER learning
techniques.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this section, first, we introduce the basic concepts of
NER and then explain the fine-tuning of standard NER and
prompt-based learning for few-shot NER.

A. Named Entity Recognition (NER)

NER aims to identify entities in a sentence and provide their
entity types. Entities (e.g., noun/verb phrases) are the main
parts of a sentence, and entity types are the labels for each
entity, which are characterized based on predefined categories,
such as place, person, organization, and suchlike.

In a NER dataset, an example typically is a pair of (X,Y),
where X = {x1, · · · , xm}, is a sentence containing m words,
and Y = {y1, · · · , ym} are the corresponding labels for each
word in X that specify their entity types. For instance, the
labels for X = {"Steve", "Jobs", "was", "born",
"in", "America", "."}, are Y = {"PERSON",
"PERSON", "O", "O", "O", "LOCATION", "O"},
where "PERSON", "O", and "LOCATION" indicate the
organization entity type, not a named entity, and location
entity type, respectively. The goal of a NER task is to predict
the label (entity type) yi for each word xi. There are various
methods for creating a NER task, which are discussed in the
following sub-sections.

B. Pre-training and Fine-tuning Models for NER

One approach to training a model for a NER task involves
fine-tuning PLM on a downstream NER task. This procedure
usually entails two steps: (1) pre-training and (2) fine-tuning.
In the first step, a model is trained using massive unlabeled
text data. To this end (as illustrated in Figure 1(a)), a certain
percentage of the input tokens (words) are randomly corrupted
(replaced with [MASK] token), and the final corresponding
vectors are given into a softmax over the vocabulary to
predict these masked tokens. This process is known as Masked

Language Modeling (MLM). Finally, the checkpoint of the
trained model, L, is saved as a PLM and will be fine-tuned
on different downstream tasks.

In the second stage, using a NER dataset, the PLM L
is fine-tuned on a downstream NER task. To do this, each
input sentence X = {x1, · · · , xm} in the dataset is first
converted into the input sequence as {[CLS], x1, · · · , xm,
[SEP]}, where [CLS] is a special token and [SEP] is
the end of the sequence. Then L encodes all tokens of X
into an input embedding {h[CLS], hx1

, hx2
, · · · , hxm

, h[SEP]}.
Typically, a label-specific classifier is employed to compute
the probability distribution of h[CLS] over the entity label space
{"PER", "ORG", "MISC", · · ·} to assign correct entity
types (Figure 1(b)). Finally, L is fine-tuned by minimizing the
cross-entropy of the loss function.

C. Prompt-based Learning for Few-shot NER

A rich-resource dataset is usually required to train a NER
model, which is not always available. Therefore, we should
examine few-shot NER, where very few examples of each label
(entity type) in the dataset are available. A common strategy
for few-shot NER is to adapt a PLM L trained with MLM on
a rich-resource dataset to a low-resource target NER dataset
containing few examples per entity type [9], [11], [12].

One method to train a model for few-shot NER is to
use prompt-based learning [13]. This approach reformulates
the downstream NER task as an MLM problem using a
textual prompt template. To this end, it is necessary to
define two functions: (1) a prompt template T and (2) a
verbalizer M. The prompt template T organizes the input
sentence X, masked token, and prompt tokens as T (X)
= {X ⟨candidate_entity⟩ is a [MASK] entity}
(see Figure 1(c)). For instance, in a NER task with X
= {Steve Jobs was born in America.}, the T (X)
= {Steve Jobs was born in America. America
is a [MASK] entity}, where America represents
⟨candidate_entity⟩.

After constructing T (X) for each entity (e.g., Steve and
America), the PLM L will predict the mask token [MASK],
which will be translated into an entity type by a verbalizer
M. For example, a verbalizer M can be defined as below:

M("organization") → ORG
M("person") → PER

M("location") → LOC
· · ·

Handcrafting prompt templates using discrete tokens in
natural language (e.g., "⟨candidate_entity⟩ is") is chal-
lenging. An alternative approach is to use soft prompts, where
continuous tokens are added to the input and are updated rather
than discrete tokens [14]. P-tuning [6] is a model that uses
prompt tuning to prevent prompt engineering with discrete
tokens. P-tuning applies T on an input X and creates {X
h0 · · ·hn [MASK]}, where {h0 · · ·hn} are continues prompts.

Consequently, P-tuning uses PLM L to create an embed-
ding of [MASK] and applies a lightweight neural network,
called prompt encoder, to learn the embedding of continuous
prompts. During fine-tuning, L’s parameters are frozen, and
only the parameters of the prompt encoder and {h0 · · ·hn}
are updated. [6].

For example, for the input sentence X = {Steve Jobs
was born in America.} and the trainable continuous
prompt {h0 · · ·hn}, the prompt template is T (X) = {Steve
Jobs was born in America. h0 · · ·hi [MASK]}.
During fine-tuning, L predicts the [MASK] embedding. They
use sequence tagging to solve NER tasks by assigning labels
marking at the beginning and the end of some entity classes,
and the prompt encoder learns the embedding of {h0 · · ·hn}.

III. RELATED WORK

A. Named Entity Recognition

Using sequence labeling and Conditional Random Fields
(CRF) [15] to associate each word in the input text with a
label is a popular method to formulate NER tasks. Earlier
works investigated utilizing several neural architectures such
as BiLSTM [16] or CNN [17] and training the model in a
supervised learning paradigm, which often involves a large
amount of annotated data [18] [19] [20] [21]. Recently, PLMs
have shown significant improvements in NER by using large-
scale transformer-based architectures as the backbone for
learning text representation [2]. The state-of-the-art results
achieved by [3], [22] propose a new pre-trained contextualized
representation of words with a transformer-based architecture
pre-trained on a large set of the entity-annotated corpus.
Despite the satisfactory performance achieved by PLMs in
NER tasks, these approaches are primarily developed for
supervised rich-resource NER datasets, which have limited
generalization capability in low-resource datasets [23].

A more recent line of work has focused on enhancing
model learning capabilities to maximize the use of existing
sparse data and reduce reliance on data examples. One line
of earlier work on low-resource NER has included prototype-
based techniques that apply meta-learning [24] to few-shot
NER. The majority of these approaches [12], [25], [26] employ
a prototype-based metric, often k-nearest neighbor, to learn
the representation of similar entities from different domains.
However, in these approaches, the network parameters of the
NER model cannot be updated, resulting in poor performance
when adapting the model to a target domain with few available
examples.

B. Prompt-based Learning

Recently, starting from GPT-3 [4], prompt-based learning
has arisen to bridge the gap between the objectives of pre-
training and fine-tuning. These approaches reformulate the
downstream task by incorporating a template that transforms
the input sentence into one that resembles the examples solved
during pre-training. This strategy aims to fully apply acquired
knowledge from pre-training to the downstream task. As stated
in [27], a well-chosen prompt can be equivalent to hundreds

of data points; hence, prompt-based learning can be highly
advantageous for solving low-resource tasks. Another line
of research studied a lightweight alternative to fine-tuning
known as prompt-tuning, which optimizes a continuous task-
specific vector as a prompt while leaving the parameters of the
language model unchanged [28] [6]. However, the efficiency
of prompt-tuning for complex sequence labeling tasks such as
NER has yet to be verified.

Regarding NER, TemplateNER [11] is a template-based
prompt method using BART [8] that treats the NER task
as a language model ranking problem. This model manually
creates a template for each class and separately populates each
created template with all candidate entity spans extracted from
the input sentence. The model then assigns a label to each
entity candidate span based on the respective template score.
In contrast to TemplateNER, instead of manually searching
for an appropriate template, which is labor-intensive and time-
consuming, we propose inserting some adjustable tokens into
the template to search automatically for the ideal prompt tem-
plate. LightNER [9] introduces prompt-tuning to the attention
layer by incorporating continuous prompts into the attention
layer. Moreover, LightNER constructs a unified semantic
aware space to remove label-specific classifiers placed on top
of encoders. Like LightNER, we eliminate the label-specific
layers that map the generated answer to a class label. Instead
of the attention layer, we insert soft prompts into the input
sentence, and the creation of an answer space is no longer
required.

C. Contrastive Learning

Recent works have studied contrastive learning for visual
representation [29] [30], graph representations [31], and a
variety of NLP tasks including sentence-level text represen-
tation [32] [33], relation extraction [34], machine transla-
tion [35], sentiment analysis [36], knowledge graph embed-
dings [37], caption generation [38]. Contrastive representation
learning is intuitively similar to learning by comparison in
that it aims to project similar samples close together in the
embedding space while mapping dissimilar samples further
apart [39]. Khosla et al. [40] study applying contrastive
learning in a fully supervised setting and demonstrated that
batch contrastive techniques outperform the cross-entropy loss
and traditional contrastive losses, such as triplet [41], max-
margin [42], and the N-pairs [43] loss. This work applies
supervised batch contrastive learning to prompt-based few-shot
NER to differentiate between different classes (entity types) in
a sentence.

IV. OVERVIEW OF CONTRASTNER

In this section, we introduce ContrastNER, our proposed
prompt-based model for few-shot NER, using two main
techniques: (1) soft-hard prompt tuning (IV-A) and (2) a
verbalizer-free mechanism (IV-B). In the following subsec-
tions, we explain the details of ContrastNER (depicted in
Figure 2).

Fig. 2. Overview of ContrastNER.

A. Soft-Hard Prompt Tuning

Finding appropriate discrete prompt (a.k.a. hard prompt)1

templates in natural language for NER models is challeng-
ing [5], [11], [44], [45]. Existing hard prompt-based NER
models, such as LAMA [46], have shown that a single word
change in prompts can cause an extreme difference in the
results; hence an approach that is not sensitive to different dis-
crete prompts would be advantageous in prompt-based learn-
ing models. As explained in Section II-C, continuous prompts
(a.k.a. soft prompts) and tuning them using a prompt encoder
is an approach to solve the hard prompt challenges [28] [6]
[14]. However, this approach leads to two challenges: (1) it is
still inferior to fine-tuning approach when the model size is
not significant [47], and (2) adding a prompt encoder to learn
the soft prompt results in learning extra parameters related to
the prompt encoder.

To address these challenges, we propose the soft-hard
prompt, where we use both soft (continuous) and hard (dis-
crete) prompts in the fine-tuning paradigm. To this end, we
transform a given input sentence X = {x1, · · · , xm}, into m
new input sentences using a prompt template T , such that
each new sentence has three parts: (1) the original sentence
X, (2) a soft prompt {h0 · · ·hn}, and (3) a masked hard
prompt. Suggested by [11], the masked hard prompt initialized
as "⟨candidate_entity⟩ is a [MASK] entity". For
example, X = {"Steve", "Jobs", "was", "born",
"in", "America"} will be transformed into six sentences
as shown in Table I. To learn the hard token [MASK] and soft
tokens {h0 · · ·hn}, we use a PLM L and pass T (X) as input
to it. Then we optimize the soft tokens by the loss function
LS (Equation 3) computed as the cross-entropy between the
actual entity type and the predicted [MASK] entity type by L

1Throughout the paper, we will interchangeably use discrete prompt and
hard prompt but convey the same meaning as discrete prompt templates.

TABLE I: A sentence X and generated soft-hard prompts by T (X).
A sample input sentence X

Steve Jobs was born in America

Generated soft-hard prompts by T (X)
Steve Jobs was born in America [h1] · · · [hp] Steve is a [MASK] entity.
Steve Jobs was born in America [h1] · · · [hp] Jobs is a [MASK] entity.
Steve Jobs was born in America [h1] · · · [hp] was is a [MASK] entity.
Steve Jobs was born in America [h1] · · · [hp] born is a [MASK] entity.
Steve Jobs was born in America [h1] · · · [hp] in is a [MASK] entity.
Steve Jobs was born in America [h1] · · · [hp] America is a [MASK] entity.

(the details are in Section IV-B).

B. Verbalizer-Free Mapping

Previous prompt-based approaches for NER often require
a verbalizer to create a one-to-one mapping between the
predicted token for [MASK] in a template and an entity
type [13], which is computationally intensive. In addition,
using a manually crafted verbalizer in few-shot NER, where
the label space of the source and target domains may differ,
leads to incompatibilities that negatively impact the model
generalization [48]. Moreover, a verbalizer usually only con-
siders the semantic relationship between the predicted token
and a few words specified in the verbalizer (e.g., the location
for LOCATION entity and the person for PERSON entity).
However, the predicted token may have semantic relationships
with other words (e.g., place for LOCATION entity, and
people for PERSON), which the verbalizer will ignore.

To tackle the challenges of verbalizers mentioned above,
we unify the models for learning the soft-hard prompt and
predicting the entity type and propose a novel objective that
includes supervised contrastive learning terms for fine-tuning
a pre-trained language model. To do so, instead of forwarding
the embedding of [MASK] through a verbalizer to detect the
label (entity type), we use PLM L to directly predict the
embedding of the label by fine-tuning it using a contrastive
learning-based task [36], [39].

During training L, we first transform all input examples
within the training batch B using the soft-hard prompt template
T . Then, for each example i ∈ B (with label yi), we
select a set of positive examples with similar labels to i,
P (X) = {i+ |yi+ = yi, i

+ ∈ B, i+ ̸= i} and a set of
negative examples with different labels, N(i) = {i− |yi− ̸=
yi, i

− ∈ B, i− ̸= i}. Assume ti denotes the embedding of the
predicted label of [MASK] for the example i, and ti+ and ti−
are the embedding of the labels of positive and each negative
examples, respectively, where i+ ∈ P (i) and i− ∈ N(i).
Then, we use the contrastive model [32] to maximize the
within-class similarity sim(ti, ti+) of ti and ti+ , and minimize
the between-class similarity sim(ti, ti−) of ti and ti− , where
sim(t1, t2) is the cosine similarity of t1 and t2. We define the
contrastive learning loss function as below:

LC = − log
∑

i+∈P (i)

esim(ti,ti+)/τ

esim(ti,ti+) + esim(ti,ti−)/τ
(1)

where τ is a temperature hyperparameter. In short, for each
example i, the contrastive learning aims to learn the embed-
ding of [MASK] and assign the appropriate label (entity type)
to it by pulling semantically close examples with the same
label together (positives) and pushing apart examples with a
different label (negatives).

In case of having multiple examples in P (i) and N(i), we
can rewrite the contrastive learning loss function as:

LC = − log
∑

i+∈P (i)

esim(ti,ti+)/τ∑
a∈A(i) e

sim(ti,ti−)/τ
(2)

where A(i) denotes a collection of all in-batch examples
except i. Inspired by [49], to fine-tune L’s parameters and
update the soft prompt parameters, we define the overall loss
function L as the weighted average of LC and LS , where LS

is a cross-entropy to update the soft prompt parameters:

LS = −
∑
i∈B

yi · logL(y′i|T (i)) (3)

L = λLC + (1− λ)LSP (4)

where λ is a scalar weighting hyperparameter that we tune,
and yi and y′i are the correct and the predicted labels of i,
respectively.

During inference, we first transform all test instances into
the format of the soft-hard prompt template and then take the
predicted label embedding tj of a test example j to generate
the label (entity type) directly by comparing tj to the k-nearest
examples to tj in the training set.

V. EVALUATION

In this section, we conduct extensive experiments in stan-
dard and low-resource settings to evaluate ContrastNER and
its effectiveness in the few-shot NER settings.

A. Datasets and Baselines

As a rich NER dataset, following [9] and [11], we used
the English version of CoNLL03 [50] that includes four fea-
tures (columns) for each sample: id, tokens, pos_tags,
chunk_tags and ner_tags. The feature tokens rep-
resents the input sentence, and ner_tags specifies the
type of mentioned entities in the input sentence, which con-
tains four types of named entities: LOCATION, PERSON,
ORGANIZATION, and MISCELLANEOUS. As low-resource
datasets, we employed three datasets: (1) MIT Restaurant
Review [51], (2) MIT Movie Review [51], and (3) Airline
Travel Information Systems (ATIS) [52]. To evaluate the few-
shot performance on NER datasets, we randomly sampled K
instances per entity type from each low-resource dataset by
setting K to 10, 20, 50, 100, 200, and 500. We then reported
the average performance of five randomly sampled data splits
to avoid dramatic changes for different data splits.

In our experiments, we compare ContrastNER with the
following NER methods as baselines:

• Sequence Labeling BERT/BART [2]: Traditional se-
quence labeling methods where the pre-trained BERT
and BART [8] models are employed to generate word
sequence representations. A label-specific classifier is
trained on the top of PLM to map the generated rep-
resentations to entity types (labels).

• LUKE [3]: A transformer-based model with an entity-
aware self-attention layer that generates contextualized
word representations. Then, the pre-trained model is fine-
tuned using entity typing downstream task and linear
classifiers to predict the type of an entity in the given
sentence.

• BART-NER [53]: A generative seq2seq method that con-
verts the NER task into a unified sequence generation
problem.

• TemplateNER [11] and LightNER [9]: Prompt-based
models that use BART [8].

We conducted the experiments on a Tesla T4 GPU with 32
cores and 576 GB of RAM. We used RoBERTa [54], provided
by Hugging Face2, as the PLM L in our implementation.
We set τ = 2, λ = 0.5, and trained the model using Adam
optimizer [55] with a learning rate 5e− 3 and a batch size of
32.

B. Standard NER Setting

We first evaluated ContrastNER using the CoNLL03 [50],
a rich NER dataset. Table II compares the results of Contrast-
NER and the baselines. As shown in Table II, although we
developed ContrastNER for few-shot NER, it performs com-
petitively in a rich-resource setting, showing the remarkable
ability of our technique to identify the entities and their types
in an input text.

2https://huggingface.co/models

(a) MIT Movies dataset (b) MIT Restaurants dataset (c) ATIS dataset

Fig. 3. Model performance (F1 score) in the cross-domain low-resource settings when the model was trained on the same domain.

TABLE II: Model performance on the CoNLL03 dataset. ’†’ shows
the reported results with BERTlarge [2] since the result of the original
publication is not achieved with the current version of the library (See the
discussion at [56] and the reported results at [57]).

Traditional Models Precision Recall F1
Sequence labeling BERT† 91.93 91.54 92.8
Sequence labeling BART 89.60 91.63 90.60
LUKE [3] - - 94.30
BART-NER [53] 92.61 93.87 93.24
Few-shot Friendly Models Precision Recall F1
TemplateNER [11] 90.51 93.34 91.90
LightNER [9] 92.39 93.48 92.93
ContrastNER 91.04 93.44 92.22

TABLE III: In-domain Few-shot performance on the CoNLL03. * indicates
it is a few-shot entity type.

Models PERSON ORGANIZATION LOCATION* MISCELLANEOUS* Overall
Sequence labeling BERT 76.25 75.68 60.72 59.39 68.02
Sequence labeling BART 75.71 73.59 58.73 56.6 66.15

TemplateNER 84.49 72.61 71.98 73.37 75.59
LightNER 90.96 76.88 81.57 52.08 78.97

ContrastNER 92.19 75.79 73.98 75.13 79.27

C. In-domain Few-shot NER Setting

Following [11], we constructed a few-shot learning scenario
on the CoNLL03 dataset, where the number of training sam-
ples for specific categories is limited by downsampling. Par-
ticularly, we considered PERSON and ORGANIZATION as the
rich-resource entities and LOCATION and MISCELLANEOUS
as the low-resource entities. The few-shot CoNLL03 train-
ing dataset contains 4237 training samples including 3836
PERSON, 1924 ORGANIZATION, 100 MISCELLANEOUS,
and 100 LOCATION. Table III indicates that ContrastNER
outperforms TemplateNER [11] and LightNER [9] by 3.68 and
0.3 F1 score, respectively. Moreover, ContrastNER achieves
73.98 and 75.13 F1 scores in few-shot LOCATION and
MISCELLANEOUS, which is highly competitive with the
best-reported result. The illustrated performance proves the
effectiveness of our approach in in-domain few-shot NER.

D. Cross-Domain Few-Shot Setting

Finally, we evaluated the model performance in scenarios
where the class label sets and textual sentences vary from

the source domain and only limited labeled data are available
for training. Specifically, we randomly sampled a specific
number of instances per entity type from the training set
as the training data in the target domain to simulate the
cross-domain low-resource data scenarios. We first considered
direct training on the target domain from scratch without
available source domain data. Figure 3 depicts the results
of training models directly on target domains and evaluation
on the same domain. According to the results, compared
to sequence labeling with BERT, BART, and TemplateNER,
ContrastNER’s results appear more consistent. ContrastNER
outperforms these methods, suggesting it can exploit few-shot
data better. For example, we achieved an F1 score of 70.6 in
the 50-shot setting, which is higher than the results of sequence
labeling with BERT and BART, and TemplateNER in the 200-
shot setting.

We then investigated the amount of knowledge that can be
transferred from training on ConLL03 dataset. In this setting,
we trained the model on the news domain (ConLL03) and then
tested it on different domains. Figure 4 shows the results of
training models on the CoNLL03 dataset as a generic domain
and its evaluations on other target domains. As can be seen,
prompt-based methods outperform the traditional sequence
labeling methods regardless of how much training data is
provided. Among the prompt-based approaches, ContrastNER
indicates the best performance overall. Compared to Light-
NER, the best-performing NER framework among all state-of-
the-art models, it can be witnessed that ContrastNER can com-
pete with this framework in different few-shot settings. At the
same time, our approach does not require prompt engineering
and verbalizer design. In particular, ContrastNER outperforms
LightNER in scenarios with more than 100 examples for each
entity label. In other words, the contrastive loss is effective
after a certain threshold of training data is reached.

E. Effectiveness of Soft-hard Prompt

In ContrastNER, we applied the soft-hard prompt tuning
technique that combines the soft and hard prompts. Their
automatic search in a mixed space of continuous and discrete

(a) MIT Movies dataset (b) MIT Restaurants dataset (c) ATIS dataset

Fig. 4. Model performance (F1 score) in the cross-domain low-resource settings when the model was trained on the CoNLL03 source domain and then
evaluated on the target domains.

prompts eliminates the manual effort of prompt engineering.
To investigate the effectiveness of our approach, we employed
four different hard prompt templates, which are manually
designed and used in TemplateNER [11] on the ConLL03 [50]
development set (Table IV). Figure 5 represents how selecting
various discrete templates affects the performance of Con-
trastNER and TemplateNER based on F1 score. As can be
observed, our model produces more stable results, and unlike
TemplateNER, the discrete template in ContrastNER does not
significantly influence the final performance. Since the soft
tokens are adjusted during training, there is a slight variation
in the model’s performance when the discrete prompt template
is changed, demonstrating the efficiency of using soft-hard
prompts.

TABLE IV: Different discrete prompts applied on CoNLL03.

Discrete Template
Template1 <candidate_entity> is a <entity_type> entity.
Template2 The entity type of <candidate_entity> is <entity_type>.
Template3 <candidate_entity> belongs to entity_type> category.
Template4 <candidate_entity> should be tagged as <entity_type>.

F. Discussion

This study investigated a prompt-based method in the
few-shot NER problem. The results generally indicate that
prompt-based NER approaches outperform the traditional
NER frameworks in few-shot settings where only limited
data is provided to train the model. Although prompt-based
methods are specifically designed for low-resource scenar-
ios, they also perform competitively with traditional methods
in rich-resource scenarios. Determining how well previous
prompt-based NER systems perform depends on discovering
the best-performing prompt template (prompt engineering) or
encountering the best label word space and their mapping
to actual class labels (verbalizer engineering). At the same
time, ContrastNER exhibits more consistent performance with
various discrete prompt templates and eliminates the need to
determine the best-performing prompt template and optimal
verbalizer manually. Despite this elimination, according to

Fig. 5. Model performance (F1 score) on the CoNLL03 development set
using different discrete prompt templates. ’†’ shows the reported results in
the original work.

the results, it is relatively straightforward that ContrastNER
outperforms baselines in the in-domain few-shot scenario.
Moreover, ContrastNER indicates competitive performance
in cross-domain scenarios. Due to the contrastive approach,
ContrastNER can likely beat the baselines after reaching a
certain threshold of training data. It should be noted that
this study is primarily concerned with removing the need
for manual prompt and verbalizer engineering in the few-shot
NER problem.

VI. CONCLUSION AND FUTURE WORK

This paper presents ContrastNER, a prompt-based learn-
ing framework for few-shot NER without manual prompt
engineering and design of verbalizers using RoBERTa [54]
as the backbone model. We present soft-hard prompt tuning
for automatic prompt search in a mixed space of continuous
and discrete prompts to avoid manual prompt engineering to
find the best-performing prompt template. We also employ
contrastive learning-based loss to unify learning the soft-
hard prompt and predicting the entity type without manually
designing a verbalizer. Our experiment results show that

ContrastNER indicates a competitive performance on both
rich-resource and few-shot NER. In the future, we plan to
extend ContrastNER to the relation extraction task to develop
a unified prompt-based learning framework for information
extraction. Moreover, we will apply ContrastNER on actual
datasets from the DataCloud project, which is a project on
defining and managing Big Data pipelines in different applica-
tions including digital health systems, autonomous live sports
content, and manufacturing analytics. We are going to extract
and store structured data from the definitions of Big Data
pipelines defined in the form of unstructured natural language.

REFERENCES

[1] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[3] I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto,
“Luke: Deep contextualized entity representations with entity-aware self-
attention,” arXiv preprint arXiv:2010.01057, 2020.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[5] T. Gao, A. Fisch, and D. Chen, “Making pre-trained language models
better few-shot learners,” arXiv preprint arXiv:2012.15723, 2020.

[6] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang, “Gpt
understands, too,” arXiv preprint arXiv:2103.10385, 2021.

[7] T. Schick and H. Schütze, “Exploiting cloze questions for few shot
text classification and natural language inference,” arXiv preprint
arXiv:2001.07676, 2020.

[8] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” arXiv preprint arXiv:1910.13461, 2019.

[9] X. Chen, N. Zhang, L. Li, X. Xie, S. Deng, C. Tan, F. Huang, L. Si, and
H. Chen, “Lightner: A lightweight generative framework with prompt-
guided attention for low-resource ner,” arXiv preprint arXiv:2109.00720,
2021.

[10] A. T. Liu, W. Xiao, H. Zhu, D. Zhang, S.-W. Li, and A. Arnold,
“Qaner: Prompting question answering models for few-shot named entity
recognition,” arXiv preprint arXiv:2203.01543, 2022.

[11] L. Cui, Y. Wu, J. Liu, S. Yang, and Y. Zhang, “Template-based named
entity recognition using bart,” arXiv preprint arXiv:2106.01760, 2021.

[12] M. Ziyadi, Y. Sun, A. Goswami, J. Huang, and W. Chen, “Example-
based named entity recognition,” arXiv preprint arXiv:2008.10570,
2020.

[13] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1–35, 2023.

[14] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for
parameter-efficient prompt tuning,” arXiv preprint arXiv:2104.08691,
2021.

[15] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” 2001.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] J. Wu, “Introduction to convolutional neural networks,” National Key
Lab for Novel Software Technology. Nanjing University. China, vol. 5,
no. 23, p. 495, 2017.

[18] X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional
lstm-cnns-crf,” arXiv preprint arXiv:1603.01354, 2016.

[19] J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional
lstm-cnns,” Transactions of the association for computational linguistics,
vol. 4, pp. 357–370, 2016.

[20] H. Chen, Z. Lin, G. Ding, J. Lou, Y. Zhang, and B. Karlsson, “Grn:
Gated relation network to enhance convolutional neural network for
named entity recognition,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, 2019, pp. 6236–6243.

[21] S. Ilić, E. Marrese-Taylor, J. A. Balazs, and Y. Matsuo, “Deep contex-
tualized word representations for detecting sarcasm and irony,” arXiv
preprint arXiv:1809.09795, 2018.

[22] Y. Luo, F. Xiao, and H. Zhao, “Hierarchical contextualized repre-
sentation for named entity recognition,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 34, no. 05, 2020, pp. 8441–
8448.

[23] A. Fritzler, V. Logacheva, and M. Kretov, “Few-shot classification in
named entity recognition task,” in Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, 2019, pp. 993–1000.

[24] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in International conference on learning representations, 2017.

[25] J. Li, S. Shang, and L. Shao, “Metaner: Named entity recognition with
meta-learning,” in Proceedings of The Web Conference 2020, 2020, pp.
429–440.

[26] N. Ding, G. Xu, Y. Chen, X. Wang, X. Han, P. Xie, H.-T. Zheng, and
Z. Liu, “Few-nerd: A few-shot named entity recognition dataset,” arXiv
preprint arXiv:2105.07464, 2021.

[27] T. L. Scao and A. M. Rush, “How many data points is a prompt worth?”
arXiv preprint arXiv:2103.08493, 2021.

[28] X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts
for generation,” arXiv preprint arXiv:2101.00190, 2021.

[29] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[30] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive representation
learning: A framework and review,” Ieee Access, vol. 8, pp. 193 907–
193 934, 2020.

[31] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax.” ICLR (Poster), vol. 2, no. 3, p. 4, 2019.

[32] T. X. Y. Gao and D. Chen, “Simcse: Simple contrastive learning of
sentence embeddings,” arXiv preprint arXiv:2104.08821, 2021.

[33] D. Iter, K. Guu, L. Lansing, and D. Jurafsky, “Pretraining with con-
trastive sentence objectives improves discourse performance of language
models,” arXiv preprint arXiv:2005.10389, 2020.

[34] N. Ding, X. Wang, Y. Fu, G. Xu, R. Wang, P. Xie, Y. Shen, F. Huang,
H.-T. Zheng, and R. Zhang, “Prototypical representation learning for
relation extraction,” arXiv preprint arXiv:2103.11647, 2021.

[35] Z. Yang, Y. Cheng, Y. Liu, and M. Sun, “Reducing word omission errors
in neural machine translation: A contrastive learning approach,” 2019.

[36] Z. C. W. M. Q. F. L. R. X. S. H. Xu and J. Huang, “Making pre-trained
language models end-to-end few-shot learners with contrastive prompt
tuning,” arXiv preprint arXiv:2204.00166, 2022.

[37] A. J. Bose, H. Ling, and Y. Cao, “Adversarial contrastive estimation,”
arXiv preprint arXiv:1805.03642, 2018.

[38] R. Vedantam, S. Bengio, K. Murphy, D. Parikh, and G. Chechik,
“Context-aware captions from context-agnostic supervision,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 251–260.

[39] S. C. Hadsell, Raia and Y. LeCun, “Dimensionality reduction by learning
an invariant mapping,” in Proc. of the CVPR’06, vol. 2. IEEE, 2006,
pp. 1735–1742.

[40] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” Advances in neural information processing systems, vol. 33, pp.
18 661–18 673, 2020.

[41] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 815–
823.

[42] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for
convolutional neural networks,” arXiv preprint arXiv:1612.02295, 2016.

[43] K. Sohn, “Improved deep metric learning with multi-class n-pair loss
objective,” Advances in neural information processing systems, vol. 29,
2016.

[44] Z. F. F. X. J. A. Jiang and G. Neubig, “How can we know what language
models know?” Transactions of the Association for Computational
Linguistics, vol. 8, pp. 423–438, 2020.

[45] L. Reynolds and K. McDonell, “Prompt programming for large language
models: Beyond the few-shot paradigm,” in Extended Abstracts of the

2021 CHI Conference on Human Factors in Computing Systems, 2021,
pp. 1–7.

[46] T. L. P. B. A. W. Y. M. A. H. . R. Petroni, F.; Rocktäschel, “Language
models as knowledge bases?” arXiv preprint arXiv:1909.01066, 2019.

[47] X. K. J. Y. F. Z. D. Z. Y. Liu and J. Tang, “P-tuning v2: Prompt tuning
can be comparable to fine-tuning universally across scales and tasks,”
arXiv preprint arXiv:2110.07602, 2021.

[48] T. Schick and H. Schütze, “It’s not just size that matters: Small language
models are also few-shot learners,” arXiv preprint arXiv:2009.07118,
2020.

[49] J. C. A. . S. V. Gunel, B.; Du, “Supervised contrastive learning for pre-
trained language model fine-tuning,” arXiv preprint arXiv:2011.01403,
2020.

[50] E. F. Sang and F. D. Meulder, “Introduction to the conll-2003 shared
task: Language-independent named entity recognition,” arXiv preprint
cs/0306050, 2003.

[51] P. C. S. . G. J. Liu, J.; Pasupat, “Asgard: A portable architecture for
multilingual dialogue systems,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 8386–
8390.

[52] G. C. A. C. Y. G. J. D. L. Hakkani-Tür, D.; Tür and Y. Wang, “Multi-
domain joint semantic frame parsing using bi-directional rnn-lstm.” in
Interspeech, 2016, pp. 715–719.

[53] T. D. J. G. Q. Z. Z. Yan, H.; Gui and X. Qiu, “A unified generative
framework for various ner subtasks,” arXiv preprint arXiv:2106.01223,
2021.

[54] M. O. N. G. J. D. M. J. D. C. O. L. M. L. L. Z. Liu, Yinhan and
V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,”
arXiv preprint arXiv:1907.11692, 2019.

[55] D. P. Kingma and J. Ba., “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[56] “MS Windows NT kernel description,” https://github.com/google-
research/bert/issues/223, accessed: 2022-11-10.

[57] B. T. Akbik, A. and R. Vollgraf, “Pooled contextualized embeddings for
named entity recognition,” in Proc. of NAACL, 2019, pp. 724–728.

