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Abstract—The Job-Shop Scheduling Problem (JSSP) is a well-
known optimization problem with plenty of existing solutions.
Although remarkable progress has been made in addressing the
problem, most of the solutions require input from human experts.
Deep Learning techniques, on the other hand, have proven
successful in acquiring knowledge from data without using step-
by-step instructions from humans. In this work, we propose a
novel solution, called CONVJSSP, by applying Deep Learning to
speed up the solving process of JSSPs and to reduce the need
for human involvement. In CONVJSSP, we train a Convolutional
Neural Network model for predicting the optimal makespan of
JSSPs, and use the predicted makespan to accelerate the JSSP
solving schema. Through the experiments, we compare several
JSSP solving methods based on CONVJSSP approach with a
state-of-the-art solution as a baseline, and show that CONVJSSP
speeds up the problem solving up to 9% compared to the baseline
method.

Index Terms—Deep Learning, Convolutional Neural Networks,
Constraint Programming, Job-Shop Scheduling Problem

I. INTRODUCTION

The Job-Shop Scheduling Problem (JSSP) [1], [2] is a
well-known optimization problem, which has been studied
extensively for a long time, but still attracts incessant interests
of researchers. The problem is to find an optimal schedule
of a number of jobs with varying processing times to be
executed in parallel on a number of machines with an optimal
makespan, which is the minimum time elapsed for executing
all operations in all jobs.

Finding the optimal solution to a JSSP, that is a schedule
with the optimal makespan, is a difficult task. However, once
the value of the optimal makespan is known, the search space
becomes significantly smaller by giving the extra constraint,
that is the makespan of the solution equals the optimal
makespan. Thus, we turn the problem of finding the optimal
solution into finding the optimal makespan. Nevertheless,
finding the optimal makespan is not a trivial task either, due
to the combinatorial nature of JSSP [3].

Many solutions have been proposed for optimizing the
makespan, such as exact methods [4], estimation methods [5]–
[7], heuristics [8], metaheuristics [9], and domain-specific
searching schemes on different JSSP variations [10]–[12].
Grimes et al. [13] introduce a new approach for solving JSSP
by combining relatively simple inference with generic Con-
straint Programming (CP) techniques such as restarts, adaptive
heuristics, and solution-guided branching, and Mirshekarian et

al. [14] develop a Machine Learning (ML) model to predict
the optimal makespan by classifying whether the optimal
makespan is lower or higher than the average makespan of
JSSP instances in the class.

One of the shortcomings of the existing solutions is that
most of them require human experts in the loop. On the other
hand, over the last few years, Deep Learning (DL) methods
have shown their ability in acquiring knowledge from data
without using step-by-step instructions from humans, across
various domains [15]–[20]. Convolutional Neural Networks
(CNN), as a class of the popular DL networks, have been
successfully applied to tasks that involve understanding the
content of grid-like input, e.g., images. Usually, a CNN is
structured as a stack of convolutional layers (that extract the
features of the input), followed by one or more fully-connected
layers (that perform classification or regression tasks).

We propose CONVJSSP, a novel method of solving JSSPs
using Deep Learning, that leverages CNNs to reduce the time
of finding optimal solutions of JSSPs without much human
effort. In particular, we study whether DL methods (e.g.,
CNNs) can be used to predict the optimal makespan of a
JSSP instance without actually solving a given instance. Fur-
thermore, we assess if the CNN-based predictions can speed
up the process of finding the optimal makespan of a JSSP
instance. CONVJSSP is a two steps process: (i) first, it takes
the specification of a JSSP instance in the form of a 2D-matrix,
and uses a CNN model to predict its optimal makespan without
solving it, and (ii) second, it gives the specification of each
JSSP and its predicted optimal makespan to a search strategy
(explained in Section III) to find the optimal solution by
prioritizing the sub search space pointed out by the prediction.
Through the experiments, we compare several methods that
utilize the prediction from our CNN model, with a state-of-
the-art approach as a baseline for solving JSSP. The prediction-
based methods achieve 1.067× to 1.092× speed up over the
baseline method on the test benchmark.

The contributions of our work are as follows.
1) We introduce CONVJSSP, a two-step approach based

on CNN, to speed up the process of finding the optimal
solution of a JSSP. The implementation of CONVJSSP
is available on GitHub 1.

1https://github.com/bwhub/CONVJSSP



2) We conduct extensive empirical evaluations on CON-
VJSSP and compare different prediction-based methods,
and show that CONVJSSP speeds up the problem solv-
ing to up to 9% compared to the state-of-the-art.

The rest of the paper is organized as follows. Section II
provides the preliminaries of JSSP and CNN. Section III
describes how to use CNN models to predict the optimal
makespan of JSSPs and discusses how to utilize the CNN
predictions on the optimal makespan in order to fasten the
process of finding the optimal solution for a JSSP. Section IV
describes the experiment setup for empirical evaluation and
provides the results and short discussions on it. Section V
reviews the existing work, and finally, Section VI concludes
the paper and points out directions for future work.

II. PRELIMINARIES

In this section, we introduce the preliminaries of this paper.

A. Job-Shop Scheduling Problem

Job-Shop Scheduling Problem (JSSP) is one of the most
difficult Constraint Optimization Problems (COPs) [1]. It is
NP-hard [3] and many of its variations have been proven
to be NP-complete [21]–[23]. There are many variants of
JSSPs [10], however, in this work we consider the fol-
lowing version of JSSP: there are a set of m machines
M = {M1,M2, · · · ,Mm}, and n jobs J = {J1, J2, · · · , Jn},
such that each job Ji has m ordered operations Oi =
{Oi1 , Oi2 , · · · , Oim}. Each of the operations of a job should
be processed on one of the m machines exactly once in a
given order. Each machine can only process one operation at
a time in a non-preemptive manner, meaning that operations
cannot be interrupted once they start executing on a machine.

A JSSP instance is represented as a 2D-matrix, in which
each row shows how the operations of a job should be
executed, e.g., Ji = (Mi1 , di1 ,Mi2 , di2 , · · · ,Mim , dim), as an
example of a row of a JSSP instance, indicates job Ji has m
operations, and the first operation requires machine Mi1 and
takes di1 units of time, and the last operation requires machine
Mim and takes dim units of time. A solution to a JSSP instance
is a feasible schedule that does not violate the constraints,
which are (i) preserving the order of the operations of each
job, and (ii) executing only one operation at any time on each
machine. The makespan of a solution is the total elapsed time
if the solution is to be executed on real machines, and the
optimal makespan of a JSSP instance is the smallest makespan
of all solutions of that JSSP instance. An optimal solution of
a JSSP instance is a solution that has the optimal makespan.

B. Finding the optimal solution of a JSSP

To find the optimal solution of a JSSP instance, we build
a COP model with the objective function of minimizing the
makespan. However, this is not a trivial task, as the number of
feasible solutions is (n!)m. Nevertheless, if we know the value
of the optimal makespan beforehand, then the COP model
becomes much easier to solve by adding an extra constraint,
stating that the makespan of the solution should be equal to

the optimal makespan of the given JSSP instance. This extra
constraint significantly decreases the size of the search space
that leads to a shorter time for finding the optimal solution.
As it is nearly impossible to get the value of the optimal
makespan, we resort to DL models, and in particular CNNs,
for making predictions of the optimal makespan. To cope
with the inaccuracy that comes with the prediction, instead of
adding an extra constraint on the optimal makespan, one can
modify the solving process to first look into solutions whose
makespan are close to the prediction.

C. Convolutional Neural Network

Convolutional Neural Networks (CNNs) are considered as a
common form of neural network for processing data that has
a known, grid-like topology [24]. For example, image data
can be viewed as a 2D grid of pixels. In a Fully-connected
Neural Network (FNN), a neuron in one layer is connected to
all the neurons in the previous layer and the next layer. In this
way, the calculation in a FNN can be modeled by a sequence
of general matrix multiplications. CNNs, on the other hand,
replace the matrix multiplication of FNNs with convolutions
(a specialized kind of linear operation) in at least one of the
layers. CNNs are known for sparse interactions, parameter
sharing, and equivalent representations. Each convolutional
layer generates a higher-level abstraction of the input data that
captures essential features of the input data [25].

Each JSSP instance (which shows how each operation of
each job should be carried out) can be represented as a 2D-
matrix, therefore it is reasonable to use CNNs to process them.
For example, stacked convolutional layers can help to extract
important features, e.g., how much operations of different jobs
compete with each other on the same machine, or the average,
minimum, and maximum duration of the operations in a JSSP
instance. These important features are then passed to the fully
connected layers to reason about the prediction on the optimal
makespan for the given JSSP instance.

III. CONVJSSP

In this section, we present CONVJSSP, our two-step ap-
proach for expediting the process of finding the optimal
solution of a JSSP instance. In this process, we first build
a CNN model for predicting the optimal makespan of a JSSP
instance, and then we design different search strategies based
on the predicted makespan to speed up the process of finding
the optimal solution.

A. Predicting the optimal makespan of a JSSP

In our work, we treat the task of predicting the optimal
makespan as a regression task. To this end, we build a CNN
model that takes a representation of a JSSP instance (in a
form of 2D-matrix) as input, and then without solving the
JSSP instance, it directly predicts its optimal makespan in
a continuous space. We initially train a CNN model on the
training dataset, then we use the trained CNN model for
making predictions on JSSP instances on the test set.



1) Motivation for the CNN model: We opt for CNN models
for the following reasons: first, feature engineering is not a
trivial task and it usually requires a lot of domain expertise. It
becomes even more complicated in JSSP, because defining the
features, themselves, is challenging. CNN models, on the other
hand, can just take JSSPs instances as 2D-matrices, perform
the feature selection and combination automatically, and pre-
dict the optimal makespan. Second, while the performance of
some traditional ML models is not much worse than the CNN
models in terms of loss value, they suffer greatly from the
problem of overfitting on those manually designed features.

The most straightforward way of defining a DL model is,
perhaps, to consider a few fully connected layers. However,
a model with only fully connected layers usually has a lot
of parameters and tends to overfit on the training dataset.
CNN, on the other hand, can share the parameters and reduce
overfitting. Thus, for our DL model, we choose to use a
CNN model that mainly contains two parts, the first part is
a stack of convolutional layers to extract important features
from the JSSP instances, and the second part is a couple of
fully connected layers to predict the optimal makespan, based
on the features extracted by the convolutional layer.

2) Design of the CNN model: To select a CNN model, we
start with a simple architecture to show that even a simple
model can speed up the solving of JSSP. We expected that
with more complex architectures, we can predict the makespan
more accurately, and consequently, we could achieve better
results. Therefore, we test our solution with different CNN ar-
chitectures, from simple models (stacked convolutional layers
with fully connected layers [26]), to more advanced ones (with
parallel convolutions [27]). However, when using advanced
(more complex) architectures, the improvements in accuracy
were not significant, thus, we decided to go with the simple
model in the paper.

To this end, we propose a CNN model based on LeNet-
5 [26], shown in Figure 1. Here, Input represents the input
layer, Conv2D represents the 2D convolution layer, Depth-
wiseConv2D represents the 2D depthwise convolution layer,
in which each convolution filter is applied to only one input
channel at a time, Flatten represents the flatten layer that
flattens each input to a 1D-vector, Dense represents the fully
connected layer, and Dropout represents the dropout layer.

Our CNN model contains mainly two parts: (i) the convolu-
tional layers that take as input a batch of JSSP instances (which
are 9×9 matrices as we will explain in Section IV), and (ii) the
fully connected part that takes the feature map extracted by the
first part and outputs the prediction of the optimal makespan.
Compared to the LeNet-5 model, our network mainly differs
in three ways: (i) we remove the pooling layers since the
dimension of our input is relatively small, (ii) we add the
dropout layer to estimate the uncertainty of predictions, and
(iii) we shrink the size of the network due to the relatively
small size of the input.

3) Using dropout for modeling the uncertainty: While DL
methods have been successfully applied to many tasks, most of
the models do not capture the uncertainties of their predictions.

Fig. 1. The CNN model for predicting the optimal makespan of a given JSSP
instance. A dropout layer is added to the model to account the uncertainties
of the predictions.

Dropout is originally developed as a regularization method in
DNNs to prevent overfitting [28], but Gal et al. [29] propose
to use dropout during inference as an approximation of the
uncertainty of the DL model. During the test phase, if the DL
model runs prediction on the same input multiple times with
dropout turned on, then we can acquire a group of different
predictions for the same input. If these predictions are quite
different from each other, then it might be a sign that the
model is not very certain for its prediction on the given input.

We use dropout training in our CNN model, and during the
test phase, the predictions on the same JSSP instance are run
multiple times with dropout turned on with the same dropout
rate as in training, which is the fraction of the input units
to drop. This leads to a group of different predicted optimal
makespan for the same JSSP instance. Then, we use the mean
value of this group of predictions as the predicted optimal
makespan and the standard deviation as an estimate for the
uncertainty associated with the prediction.

B. Developing Search Strategies with the prediction

After predicting the optimal makespan of a JSSP instance,
we utilize it to speed up the process of finding the optimal
solution for that JSSP instance. Here, we first explain the
baseline searching strategy, which is a pure CP approach,
and then, we introduce multiple search strategies (i.e., greedy,
jumping, and hybrid strategies) that use the predicted optimal
makespan from the CNN model to fasten the process of finding
the optimal solution.

1) Baseline strategy: The baseline strategy [13] represents
the state-of-the-art CP approach for finding the optimal solu-
tion for a JSSP instance. This process contains three phases:
probing, adjusting, and solving.

During the probing phase, the CP program randomly probes
into the search space defined together by the set of constraints
specific to the given JSSP instance, such as, the order of
execution, the duration of each operation, and a lower and
upper bound for the optimal makespan. The lower bound can
be calculated by assuming that all machines are busy with
computation from the beginning to the end and we know that



the optimal makespan cannot be smaller than the lower bound
because otherwise we will have machine utilization of more
than 100%. The upper bound can be calculated as if all the
operations are carried out sequentially.

Through random exploration, if the CP program happens to
find a solution, the corresponding makespan is reported and
the upper bound is updated to the value of that makespan.
The update is based on an important property of the optimal
makespan that states: if we know there is a solution whose
makespan is of value v, then we know that the value of the
optimal makespan should be no larger than v, and if we know
there is no solution whose makespan is of value w, then we
know that the value of the optimal makespan should be larger
than w. The probing phase ends when either the CP programs
reach a predefined number of trials or a predefined timeout.

During the adjusting phase, the CP program applies the
interval bisection on the interval defined by the lower bound
l and the upper bound u on the optimal makespan. The
CP program repeatedly checks if there is a solution whose
makespan is within l and x = l+u

2 . If there is a solution, then
the program updates the upper bound according to u = x,
if there is no solution, then the program updates the lower
bound according to l = x. The adjusting phase goes iteratively
until either the CP programs reach a predefined timeout, or the
lower and upper bound is of the same value, meaning that the
optimal solution is found and the optimal makespan is the
current value of the lower and upper bound.

During the solving phase, the CP program resorts to ex-
haustive search to find optimal solutions whose makespan
is within the last interval found by the adjusting phase.
Since we are interested in finding the optimal solution, the
solving phase will only terminate when the CP program finds
the optimal solution. The baseline strategy mainly follows
the idea from [13]. However, it is important to note that
our implementation of the baseline strategy is a sketch and
does not include all techniques from the paper [13], that
could lead to less competitive performance. For details of our
implementation of the baseline, please refer to the following
link2.

2) Greedy strategy: Compared to the baseline strategy that
tries to find the optimal solution in three phases using the
upper and lower bound, the greedy strategy takes a more
straightforward approach with an extra input of the predicted
optimal makespan of value p, provided by the CNN model. If
there is a solution whose makespan is of value p then p = p−1,
otherwise p = p + 1. Then the greedy CP program keeps
doing the same on the new value of p iteratively. The stopping
criterion would be one of the following two: (i) if there is a
solution with the current value of p, but not the previous value
of p, then terminate the search and report the current value of
p as optimal makespan, and (ii) if there is no solution with
the current value of p, but there is a feasible schedule with

2https://github.com/Gecode/gecode/blob/master/
examples/job-shop.cpp

the previous value of p, then terminate the search and report
the previous value of p as the optimal makespan.

3) Jumping strategy: While the greedy strategy represents
a direct way to utilize the predicted optimal makespan, it
might suffer from performance issues when the prediction is
far away from the true optimal makespan, as we are iterating
through the search space one step at a time. To overcome
this problem, we propose two jumping strategies to go faster
through the bound for the optimal makespan. Note that the
jumping strategies take the predicted optimal makespan of
value p as input. The two jumping strategies are as below:

• Jump-half: it checks if there is a solution whose makespan
is of value p, if so, then p = p+l

2 , where l represents the
value of the lower bound on optimal makespan, otherwise
p = p+u

2 , where u represents the value of the upper
bound on optimal makespan. The program will use the
same stopping criterion as the greedy version, except it
does not necessarily report the optimal solution, but it
more often provides us with a better lower and upper
bound on the optimal makespan that can be later used by
other methods, e.g., exhaustive search to find the optimal
solution.

• Jump-steps: it is very similar to jump-half, except that
instead of taking p = p+l

2 or p = p+u
2 , it uses p = p− s

or p = p+s to update p during the iterative search, where
s is the step size and is a hyper-parameter.

4) Hybrid strategy: Here, we show four different hybrid
strategies, each of which uses different techniques to utilize
the prediction of the optimal makespan.

• Hybrid-jump-half-greedy: the program first applies the
probing phase, and if the predicted optimal makespan by
CNN is not within the lower and upper bound found after
the probing phase, then the program follows the adjusting
and solving phases in baseline strategy, otherwise it
applies the jump-half and greedy strategies to find the
optimal solution. To do so, the program first finds a new
lower bound lnew and upper bound unew using the jump-
half strategy, and then to perform the greedy strategy, it
does either of the following: (i) if the predicted optimal
makespan is within lnew and unew, it starts the greedy
search at the predicted optimal makespan, otherwise (ii)
it starts the greedy search at the point lnew+unew

2 .
• Hybrid-jump-half-exhaustive: the difference between this

strategy and the hybrid-jump-half-greedy is that instead
of using greedy search, this one uses exhaustive search.

• Hybrid-jump-steps-greedy: the difference between this
strategy and the hybrid-jump-half-greedy is that instead
of using jump-half, this one uses jump-steps.

• Hybrid-jump-steps-exhaustive: the difference between
this strategy and the hybrid-jump-half-exhaustive is that
instead of using jump-half, this one uses jump-steps.

IV. EXPERIMENTAL RESULTS

In this section, we first describe how the datasets for JSSP
benchmarking and CNN training are acquired, and also present



the settings of hardware, software, and parameters for our
experiments. Then, we show the results of the CNN training
and the CP benchmarking across different searching strategies.

A. Datasets acquisition

To choose the dataset, initially we test some of the JSSP
instances in the MiniZinc benchmark2, but due to a rather
small (insufficient) number of instances for CNN training, we
use self-generated random benchmarks of similar formats for
the CNN model to learn features from the JSSP instances. To
do so, we generate two different datasets in the experiments:
(i) Instance-Q10000 dataset, the dataset for CP bench-
marking, and (ii) DL-Q10000 dataset, the dataset for train-
ing and testing the CNN model. The Instance-Q10000
dataset contains 10000 JSSP instances of nine jobs and nine
machines (i.e., 9 × 9). The duration of operations in each
job is randomly sampled from a uniform distribution between
1 to 99, including the boundaries. We selected the number
of instances, the number of jobs and machines, and the
duration of each operation, such that we have big enough
samples to make the models, but small enough to be able to
conduct the experiments in a reasonable time. To generate the
DL-Q10000 dataset, we execute the baseline CP program on
the Instance-Q10000 dataset to get the optimal makespan
for each JSSP instance. The JSSP instances together with their
optimal makespan, then, form the DL-Q10000 dataset that is
used as the training and testing data sets of the CNN model.
Within the DL-Q10000 dataset, 5000 are randomly selected
as training data, 1000 as validation data, and 4000 as test data.

B. CP benchmark setting

We implement all the CP programs using Gecode 6.2.0 [30].
Gecode natively provides multi-threading to speed up the
solution finding process, however, in all of our benchmark of
comparing different strategies to find optimal makespan, we
use a single thread, because we use the execution time as a
surrogate for the computation cost, thus, the extra speed up
brought by multi-threading complicates the measurement of
computation of the problem.

To measure the time that each CP program takes, we use
the built-in time measuring function provided by Gecode. We
dedicate one machine for the execution of testing benchmark
instances to minimize other programs’ impact in our mea-
surements. To further compensate other factors that might
contribute to the measured running time, such as background
operating system processes, we run each CP program on each
JSSP instances three times and report the relevant statistics in
the result.

Timeout is set for some phases so that CP programs move
to the next phase when they have spent a certain amount of
time in one phase. For the baseline strategy benchmark on
the Instance-Q10000 dataset, the timeout for probing and
adjusting phase is set to 1 and 30 seconds, respectively. There

2https://github.com/MiniZinc/minizinc-benchmarks/
tree/master/jobshop

is no time out for the solving phase. For the greedy and hybrid
strategies, there is no timeout.

For each search strategy, we test it with three different
branching options, which are different variable selection crite-
ria that helps to define the shape of the search tree during
branching: (i) Accumulated Failure Count (AFC) [31] that
counts how often propagators have failed during search, (ii)
Action [32] that captures how often the domain of a variable
has been reduced during constraint propagation, and (iii)
Conflict History-based Branching (CHB) [33] that considers
both how often the domain of a variable has been reduced
during constraint propagation and how recently the variable
has been reduced during failure.

The experiments for solving the JSSP instances in the test
set are performed on a machine with the following specifica-
tion:

• CPU: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
• Memory: 4 × 4 GB DDR3 1600 MHz
• Operating System: Ubuntu 18.04.4 LTS
• Kernel: Linux 5.3.0-45-generic

Note that Turbo Boost 3 has been turned off on the machine
for reproducibility.

C. CNN modeling setting

To train the CNN model, we give as input the JSSP instances
in form of 2D-matrices (i.e., 9 × 9), such that the values of
their elements are standardized by removing the mean and
scaling to unit variance. As for the optimal makespan, no
preprocessing is performed on the optimal makespan. The
details of the model are shown in Figure 1. We manually
design the model and choose the hyperparameters based on
our experience and exploration within this experiment setting.
A full study of neural architectural search and hyperparameter
optimization might lead to better results, but is outside the
scope of this work.

We use the Keras API within TensorFlow [34] 2.1.0 to
implement the CNN model and train it. We consider the Mean
Squared Error (MSE) as the loss function, i.e., MSE =
1
n

∑n
i=1 (yi − ŷi)

2, where yi and ŷi are the optimal makespan
and the predicted optimal makespan of the ith JSSP instance
in the batch, respectively, and n is the number of samples in
a batch.

D. Results for the CNN model

Figure 2 shows the MSE of the predicted the optimal
makespan on the DL-Q10000 dataset. As we see after 600
epochs of training, the MSE of the model on validation data
starts to go up, meaning that the model is performing worse
on the validation set. After 500 epochs of training, while
the training loss in the experiment decreases significantly, the
validation and test loss only decrease for a small amount.
Although the model starts to show slight signs of overfitting
after 500 epochs, the model performance on the validation set

3https://www.intel.com/content/www/us/en/architecture
-and-technology/turbo-boost/turbo-boost-technology.html



peaks at 600 epochs that gives an overall better model than
models trained after other numbers of epochs.

Thus, we stop training the model at this point. Then, we use
the trained model for making predictions on the test dataset. To
do this, we run the prediction for the same JSSP instance, 999
times to form a distribution of the prediction, which is used
later to estimate the uncertainty of the prediction. The time
spent to train and inference the CNN model is relatively small
compared to the time we have saved with different searching
strategies. To train the model, each 100 epoch takes around
20 seconds on a single Nvidia GEFORCE GTX1080. Running
999× 4000 predictions take about 51 seconds (CPU only) on
the same machine with an AMD Ryzen 5 1600 Processor.

E. Result of different searching strategies

After we get the predicted optimal makespan on the test
set, we perform the benchmarking by running different search
strategies using the three branching strategies, i.e., AFC, Ac-
tion, and CHB. The average of all the predictions on a single
JSSP instance is taken as the predicted optimal makespan for
each search strategy. We test the hybrid-jump-steps-greedy and
hybrid-jump-steps-exhaustive using three different values for
the step size s: one, three, and five standard deviations of all
the predictions on a single JSSP instance.

Table I shows the time the search strategies take to finish
the benchmark on the 4000 JSSP instances in the test set. It
shows the result for each of the branching strategies (i.e., AFC,
Action, and CHB), as well as their sum. Table II shows the
number of JSSP instances that each of the search strategies
outperforms the baseline strategies. As the results show, the
greedy strategy outperforms the baseline for a lot of the JSSP
instances. However, when the greedy strategy is slower than
the baseline method to find the optimal makespan, it is way
much slower that is seen from the total running time of the
greedy strategy. One explanation for this behavior is that the
performance of greedy strategy could be greatly hindered
when the predicted optimal makespan is far away from the
ground truth, since the greedy strategy is only moving one step
at a time within the lower and upper bound for the optimal
makespan, while other strategies are using search on intervals.

The behavior of the greedy strategy leads us to design
strategies based on a combination of CNN-based search strate-
gies and the baseline method. We have observed through
experiments that the probing phase in the baseline strategy,
which usually does not take much computation time, can
help to significantly speed up the bound on the optimal
makespan. Thus, whether the predicted optimal makespan is
within this bound found after the probing phase can serve as
a reflection on the quality of the prediction. In this way, if
the predicted optimal makespan is within this bound, we can
use the prediction-based strategies; Otherwise, we just use the
baseline strategy.

The plan for hybrid searching strategies, together with the
jumping methods, works if we just compare the running time
of the greedy and the hybrid-jump-half-greedy, in which the

latter requires less time to finish the test benchmark. Neverthe-
less, as Table II shows, the hybrid-jump-half-greedy is worse
than the greedy partly because of the overhead of running the
probing phase. Another reason, perhaps the more important
one, is that we are still using the greedy methods, which is not
very efficient. Moreover, we observe that switching the greedy
part to exhaustive search improves the performance, both in
time to finish the benchmark, and the number of instances that
is faster than the baseline.

Another type of hybrid strategies are the hybrid-jump-
steps-greedy and the hybrid-jump-steps-exhaustive that
take step size s as input to advance for each jump. The
benchmark results for the hybrid-jump-steps-greedy is always
worse than its exhaustive search counterparts, and thus is
not included due to the space limit. While the jump-steps
methods do not always guarantee better performance than
the jump-half counterpart, tuning the step size can lead to
different performances.

Design choices (when to use what strategy) Finding a proper
search strategy is important. While there is no golden rule
to choose a search strategy, we can still reason about which
one to use based on both the quality of the prediction and
the use case. For example, if we believe that the predictions
are of high quality, then the greedy method is definitely a
good strategy. However, the performance in terms of solving
time can greatly be hindered, if the predictions are actually far
away no matter if we use the greedy approach or the hybrid
approach containing a greedy phase. Thus, if we are not sure
about the quality of the predictions, then one of the hybrid
approaches could be the way to go, as it offers a fail-safe in
case the prediction is far off. When we are certain that the
prediction is of low quality, the baseline method is probably
the one to go.

V. RELATED WORK

In this section, we describe the related work of the paper.
Xu et al. [35] apply CNN to predict the satisfiabilities of Con-
straint Satisfaction Problems (CSPs). The paper uses a deep
CNN that takes the matrix representations of CSPs as input
and predicts the satisfiabilities of CSPs. Lin in [36] examines
the influence of machine correlation and job correlation on
computation time. Empirical evaluation shows that branch-
and-bound based algorithms have more difficulty in solving
parallel machine scheduling problem with higher correlations,
meaning that the correlations can be used to forecast how
branch-and-bound based algorithms will perform on certain
problems, and thus fasten the solving process by selecting the
most appropriate algorithm.

Mirshekarian et al. [14] provide a statistical study of the
relationship between JSSP features and the optimal makespan.
Their study includes a set of 380 carefully hand-designed
features, each representing a certain aspect of the scheduling
problem. The 380 features are divided into two categories:
(i) the configuration features, which are taken from the JSSP



Fig. 2. Loss for the CNN model.

TABLE I
COMPARISON OF RUNNING TIME (SECONDS) TO FINISH THE TESTING BENCHMARK (4000 JSSP INSTANCES) ACROSS DIFFERENT STRATEGIES. EACH

DATA POINT IS BASED ON THREE INDEPENDENT RUN AND MEAN OF STANDARD DEVIATION IS REPORTED IN THE BRACKET.

Branching Strategy Action AFC CHB Total
baseline 5768 (0.013) 11926 (0.035) 9585 (0.050) 27278 (0.033)
greedy 12588 (0.007) 33157 (0.019) 24369 (0.015) 70113 (0.014)
hybrid-jump-half-greedy 9680 (0.004) 26149 (0.011) 15993 (0.007) 51822 (0.007)
hybrid-jump-half-exhaustive 5682 (0.002) 11056 (0.004) 9932 (0.004) 26670 (0.004)
hybrid-jump-std-exhaustive 7426 (0.003) 16603 (0.009) 13541 (0.006) 37570 (0.006)
hybrid-jump-3std-exhaustive 5371 (0.003) 11879 (0.005) 9224 (0.004) 26473 (0.004)
hybrid-jump-5std-exhaustive 5414 (0.002) 11362 (0.004) 8781 (0.004) 25557 (0.004)

TABLE II
COMPARISON OF DIFFERENT STRATEGIES ON HOW MANY JSSP INSTANCES CAN THEY FIND OPTIMAL MAKESPAN FASTER THAN BASELINE STRATEGY

ON THE TESTING BENCHMARK (4000 JSSP INSTANCES). A PERCENTAGE IS ALSO PROVIDED IN THE BRACKET FOR COMPARISON.

Branching Strategy Action AFC CHB Total
greedy 2697 (67.4%) 2463 (61.6%) 2194 (54.9%) 7354 (61.3%)
hybrid-jump-half-greedy 1233 (30.8%) 1199 (30.0%) 1116 (27.9%) 3548 (29.6%)
hybrid-jump-half-exhaustive 1597 (39.9%) 1804 (45.1%) 1549 (38.7%) 4950 (41.2%)
hybrid-jump-std-exhaustive 1861 (46.5%) 1831 (45.8%) 1755 (43.9%) 5447 (45.4%)
hybrid-jump-3std-exhaustive 2252 (56.3%) 2303 (57.6%) 2294 (57.4%) 6849 (57.1%)
hybrid-jump-5std-exhaustive 2157 (53.9%) 2253 (56.3%) 2141 (53.5%) 6551 (54.6%)

specification, and (ii) the temporal features, which are con-
cerned with the information about the solving process such
as the output of a dispatching rule, heuristic applied to the
problem. These features are later used by an ML model to
predict whether the optimal makespan of a JSSP instance is
higher or lower than the average of the class of instances under
study.

While [14] focus on a binary classification task of whether
the optimal makespan of a given JSSP instance is smaller
or higher than the class average, this kind of prediction
is on too coarse a granularity which makes it difficult for
CP programs to utilize the prediction. To the best of our
knowledge, we are the first one to effectively apply CNN for
making predictions on the optimal makespan of JSSP instance
in a continuous space without actually solving the instance.
Also, our CNN model does not require hand designed features.
Furthermore, we empirically demonstrate that the predicted
optimal makespan can be used to fasten the process of finding
the optimal makespan using CONVJSSP.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigate how Convolutional Neural
Networks (CNN) can be used to speed up the process of
finding the optimal solution for Job-Shop Scheduling Problems
(JSSP). We propose CONVJSSP, a novel method to solve
JSSPs by applying CNN models for predicting the optimal
makespan given JSSP instances as input. We test our solution
on JSSP instances of nine jobs, each of which has nine
operations, on nine machines, and show that CONVJSSP
outperforms the Constraint Programming (CP) state-of-the-art
method, as the baseline, in terms of both the time to finish
a test benchmark of 4000 instances and the number of cases
that our method is up to 9% faster than the baseline within
the test benchmark. An analysis of the experiment results and
a discussion on how to choose between CNN-based strategies
is also provided.

As with any study, our work also has its limitations that
point to some of the directions for future work. How to build
a CNN prediction model that can work on various input sizes?



While one can easily fix the problem across nine by nine, and
10 by 10 matrices by adding padding to the smaller matrices, it
certainly becomes a problem when sizes of the JSSP instances
varies a lot. One potential solution to this is to use a recurrent
neural network that can handle input of various sizes by nature.

Moreover, there are several interesting aspects to look into
in the future. For example, how can neural architectural search
and hyperparameter optimization help to build better Deep
Learning (DL) models? How does the dropout rate affect the
quality of the uncertainty estimation of each prediction? How
to build a DL model that can predict the optimal makespan
decently when we do not have access to a large training
dataset? Or is there a way to transfer the knowledge the model
has learned on the generated dataset to the JSSP benchmarks
that are used in the industry? How can we generalize our two-
step approach for JSSP to CP problems in other domains?
And finally, are there any general strategies for modeling the
problem? All the above questions could be subjects to future
work on the use of DL in solving JSSPs.
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