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Abstract—Neural combinatorial optimization aims to use neu-
ral networks to speed up the solving process of combinatorial
optimization problems, i.e., finding the optimal solution of a
problem instance from a finite set of feasible solutions that
minimize a given objective function. Recently, researchers have
applied convolutional neural networks to predict the optimal
solution’s cost (defined by the objective function) to give as extra
input to an exact solver to speed up the solving process. In this
paper, we investigate whether graph representations that explic-
itly model the inherent constraints in combinatorial optimization
problems would improve the performance of predicting the
optimal solution’s cost. Specifically, we use graph neural networks
with neighborhood aggregation and graph Transformer models
to capture and embed the knowledge in the graph representations
of combinatorial optimization problems. We also propose a
benchmark dataset containing the Traveling Salesman Problem
(TSP) and Job-Shop Scheduling Problem (JSSP), and through the
empirical evaluation, we show that graph Transformer models
achieve an average loss decrease of 61.05% on TSP and 66.53%
on JSSP compared to the baseline convolutional neural networks.

Index Terms—Graph Representation Learning, Combinatorial
Optimization, Graph Transformer, Job-Shop Scheduling Prob-
lem, Traveling Salesman Problem

I. INTRODUCTION

Combinatorial optimization [1], [2] aims to find the opti-
mal configurations from a finite set of objects minimizing
a cost metric. It is widely used in many industries, such as
transportation, supply chain, and scheduling [3]–[5]. However,
due to its NP-hard or NP-complete nature [6], [7], exact
solvers that enumerate all feasible solutions in the solution
space are often impractical for larger instances due to the vast
number of configurations [8]. Traditional research in combi-
natorial optimization focuses on approximation methods [9]
and heuristic/meta-heuristics [10] to find solutions close to the
optimal within a reasonable computational budget.

Developing an improved and efficient solver for a Combina-
torial Optimization Problem (COP) requires expert knowledge,
domain experience [11], and significant trial and error [12].
Researchers recently explored using Neural Networks (NNs)
to accelerate finding solutions for COP instances [4], [11].
For example, deep reinforcement learning (RL) that combines
NN with RL allows for approximating COP solutions [8],
[12]–[16], whereas combining Convolutional Neural Networks
(CNN) with exact COP solvers allows for accelerating finding
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(a) ML prediction pipeline takes as input a COP instance, e.g., matrix
or graph representation, and uses a two-step pipeline to predict the
cost of the optimal solution of the input COP instance.
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(b) Using ML prediction. Top: an exact solver finds the optimal
solution by searching the dark grey solution space. Bottom: an ML-
enhanced solver prioritizes the search in the yellow-highlighted area
predicted by ML while maintaining optimality (same search space).

Fig. 1: ML prediction pipeline and how to use the prediction
in an ML enhanced exact solver.

the optimal COP solutions [17]. An exact COP solver can be
enhanced with a Machine Learning (ML)-based predictor to
reduce the search space of the solver looking for the exact
solution. For example, one possible implementation of such
an end-to-end neural optimizer is a pipeline where an ML
predictor provides an exact solver extra constraints prioritizing
searching for a solution in the area of the predicted optimal
cost [17]. The more accurate the optimal solution cost predic-
tion is, the faster the exact solver finds the optimal solution. In
this work, we focus on improving the accuracy of predicting
the optimal solution. Figure 1 shows the overview of our
prediction tasks. We investigate whether graph representations
that explicitly model the inherent constraints in COPs would
improve the accuracy of the optimal solution cost prediction.

To use a NN on COP, we need to represent a COP instance
in a required input format of the chosen NN, e.g., as a
matrix [17] or as a graph [4]. This paper focuses on the
graph-based approaches and explores Graph Neural Network
(GNN) to represent COP instances. Moreover, we apply graph
Transformer models in COP and investigate their performance,
as many recent studies on graph Transformer models show fur-
ther advantages over GNN models [18]–[21]. In this paper, we
work on two well-known and representative COPs: Traveling
Salesman Problem (TSP) and Job-Shop Scheduling Problem
(JSSP). We evaluate CNN, GNN, and graph Transformer
models on TSP and JSSP. Our empirical evaluation suggests



that graph representations in COP have better downstream
regression task loss value than the matrix representations used
in CNN models, and graph Transformer models further bring
down the loss value compared to the baseline GNNs. Through
empirical evaluation, we show that graph Transformer models
achieve an average loss decrease of 61.05% on TSP and
66.53% on JSSP compared to the baseline CNN.

Specifically, our contributions are as follows:
1) Demonstrate the advantage of graph representations

in predicting the cost of optimal solutions for COP
instances, e.g., predicting the optimal tour length in
TSP and optimal makespan in JSSP. We show that
compared to our previous work [17] using CNNs on
matrix representations, GNNs with graph representations
have better performance in the prediction task.

2) Explore graph Transformer models in COP and demon-
strate their advantages in improving the quality of pre-
dictions. We empirically show that graph Transformer
models have better performance on COP cost prediction
over classical GNN and CNN models.

3) Propose and open source four COP benchmark datasets
with TSP and JSSP instances. The proposed benchmark
datasets can be used to evaluate and compare the per-
formance of ML models in future studies in the field of
using Machine Learning in Combinatorial Optimization.

II. TASK FORMULATIONS AND PRELIMINARIES

In this section, we formulate a Machine Learning (ML) task
in a COP and introduce the preliminaries of our work.

A. Task Formulation

We define the task of predicting optimal COP costs, explain
how to use the ML prediction with an ML-enhanced solver,
and present ways to represent COP instances for ML models.

1) ML Prediction Task: Assuming a lower cost means a
better solution, our goal in solving a COP instance is to
find feasible solutions with the lowest cost, i.e., the optimal
solution. However, it is challenging as most COPs are NP-
hard or NP-complete, meaning a brute-force enumeration
of all potential solutions soon becomes intractable due to
combinatorial explosion as the problem size increases. In real-
world settings, people often use approximation and heuristic
approaches to find solutions that are usually very close to the
optimal solutions on COP instances of reasonable size. In this
work, we approach the challenging task of directly predicting
the cost of the optimal solution.

We formulate a regression task on COP (see Figure 1a),
where an ML model f : X → R takes a COP instance X
as input and predicts the cost of the optimal solution of X
(see Section II-B). The ML model is trained in a supervised
fashion on the training dataset of COP instances where the cost
of the optimal solutions is known (see Section IV-A1). The
intuition is that the ML model would learn from the training
dataset the underlying data distribution of COP instances and
would be able to generalize its prediction with a decent on

unseen test COP instances drawn from the same underlying
data distribution as those from the training dataset.

2) Integrading ML prediction into COP Solvers: Once
the ML model achieves a good generalization performance
through training, we can use it to predict unseen COP instances
during inferencing. One can develop an ML-enhanced COP
exact solver that prioritizes its search for the optimal solutions
in the search space where the cost is close to the predicted
cost (see Figure 1b). The result of the ML-enhanced exact
solver would still be correct since it does not abandon any of
the regions in the original search space. Instead, the enhanced
exact solver could find the optimal solution faster than the
original exact solver by focusing on the region highlighted in
the search space and pruning the search space much faster
than the original exact solver without such prior. Integrating
the prediction into an exact solver applies to many types of
COPs. For example, in a JSSP problem, we can design a
search schema in the exact solver to prioritize the region of
the predicted cost of the optimal solution. In a TSP, the exact
solver can focus on the search space where the optimal tour
length is close to the prediction values.

3) Representing COP for ML Models: In our previous
work [17], we demonstrate the feasibility of using CNN
models for predicting the cost of the optimal solution of COP
and how the predictions can be used in an ML-enhanced exact
solver to speed up the process of finding the optimal solution.
While it is intuitive to represent a COP problem as a matrix,
there are some potential challenges. First, the matrix input to a
CNN model is usually of a fixed, predetermined size that limits
the input data size. Second, the matrix representation might
make it hard for CNN models to pick up related elements far
from each other in the input matrix. In this work, we focus
on improving the performance of the ML model in predicting
the cost of the optimal makespan. Specifically, we investigate
how the graph representations, GNN, and graph Transformers
can further improve the performance of the mentioned earlier
regression tasks compared to the CNN model used in [17].

B. Combinatorial Optimization Problems

In this subsection, we introduce COP and provide definitions
of the two COPs we study in this paper, i.e., JSSP and TSP.

1) General Definition: COP [1], [2] can be formulated
as a constraint optimization problem with a set of elements
(variables) and a set of constraints. For each COP instance i,
a set of elements represents variables, and a set of constraints
represents natural or imposed restrictions on the elements
within the problem [11], e.g., the same resource can not be
used by different elements at the same time or one operation
must be executed before another operation.

Let S be the set of all feasible solutions of i where all the
constraints are satisfied. For each feasible solution s ∈ S, an
objective function fc : S → R is a mapping from a feasible
solution to a scalar value representing the cost of the solution
s. Most often, our goal in solving a COP instance is to find a
feasible solution with the lowest cost. In this work, we focus



on exact COP solvers where the solver finds and proves the
optimality of a solution, i.e., a solution with the lowest cost.

2) Traveling Salesman Problem (TSP): TSP [22] is one of
the canonical examples of COP. We are interested in finding
the shortest path for a salesman to traverse a set of n cities,
starting from one city, visiting all the other cities once and
exactly once, and returning to the start city. Xtsp ∈ Rn×n

represent the pair-wise distance between two cities where the
value xij on the ith row and jth column represents the cost
of traveling from city i to city j. Figure 2a shows the matrix
representation of a TSP instance with seven cities.

Our goal in solving a TSP instance is to find the shortest
tour to traverse all the cities. The cost of a solution to a TSP
instance is the length of the tour, i.e., the summation of the
cost to travel between cities to complete the tour. The optimal
tour length is the cost of the optimal tour.

3) Job-Shop Scheduling Problem (JSSP): JSSP [23] is one
of the hardest COPs with many variants known as NP-hard
or NP-complete. This work focuses on the following version
of JSSP. A JSSP instance contains a set of m machines M =
{M1,M2, · · · ,Mm} and n jobs J = {J1, J2, · · · , Jn} where
each job Ji has m operations Oi = {Oi1 , Oi2 , · · · , Oim}.
Operations in Oi needs to be excuted sequentially in the
order from Oi1 to Oim and each operation Oik would require
machine Mik for dik units of time.

A JSSP instance can be represented as a 2D matrix Xjssp ∈
Rn×2m where the ith row has 2m elements representing the
requirements of Ji = {Mi1 , di1 ,Mi2 , di2 , · · ·Mim , dim , }. A
JSSP instance can also be represented as a graph Gjssp(V,E),
where V represents the set of all operations and E represents
the two sets of constraints: (1) precedence constraints: the ith

operation in each job needs to be executed before {i+1}th op-
eration; and (2) machine constraints: the set of operations that
require the same machine cannot be executed simultaneously.

Our goal in solving a JSSP instance is to find the optimal
solution, i.e., a feasible solution (schedule) with the lowest
cost. The cost of a solution in JSSP could be the makespan of
a solution, i.e., the total elapsed time if a JSSP instance is to
be executed according to the solution. The optimal makespan
is the makespan of the optimal solution. The left of Figure 2b
shows the matrix representation of a JSSP instance with three
jobs with three operations requiring three machines.

C. Graph Representation Learning

This section discusses the ML task around COP, focusing on
graph representation learning and graph Transformer models.

1) Graph Neural Networks: Let G(V,E) be a graph where
vi ∈ V is a node and eij = (vi, vj) ∈ E is an edge
from node vi to vj . Graph Representation Learning (GRL)
aims to create vectorized representations, i.e., embeddings, to
represent nodes, edges, or the entire graph. For example, we
may want to create a d ∈ N dimensional embedding xi ∈ Rd

to represent a node vi in the graph where the structural and
semantic information of the node is well preserved. A single
embedding that summarizes the entire graph can later be
derived by aggregating all the nodes’ embeddings.

State-of-the-art Graph Representation Learning (GRL)
methods use GNN [24] to create an embedding for a target
node by collecting and aggregating its neighbor embeddings.
GCN [25], GIN [26], GAT [27], and GraphSAGE [28] are
well-known networks of the GNN models in GRL. Without
losing generality, a GNN model can be represented as follows.

X
(l+1)
G , E

(l+1)
G = GNN (l)

e (X
(l)
G , E

(l)
G , A) (1)

where A ∈ RN×N is the adjacency matrix of a graph G(V,E)

with N nodes. X
(l)
G and E

(l)
G are the input node and edge

embeddings, correspondingly, at the lth layer of GNN and
X

(l+1)
G and E

(l+1)
G represent the output node and edge feature

of the lth layer of GNN. Note that a GNN does not need to
have both node and edge representations. The GNN layer in
Eq. 1 can be stacked with each other to form a multilayer
GNN model that creates fixed-size vectorized node, edge, or
graph representations to be used in downstream applications.
We refer readers to the work of Hamilton [24] for a detailed
introduction to GRL and GNNs.

2) Graph Transformer Models: Transformer [29] models
have seen great success in many fields of ML, e.g., natural
language processing [30] and computer vision [31], [32]. Re-
cently, lots of work has been emerging in adapting Transformer
models in GRL and has demonstrated great performance [18]–
[21]. It can potentially solve known problems in GNN, e.g.,
over-smoothing [33] and over-squashing [34].

The key to successfully applying Transformer models
on graphs, in many research papers [18], is to encode
node positional and structural information. For example,
Graphormer [21] uses centrality, spatial, and edge encodings
to add to a graph and achieves significant performance at
the time on Open Graph Benchmark Large-Scale Challenge
(OGB-LSC) [35]. More recently, Rampášek et al. [19] propose
GraphGPS as a way to build a general, powerful, and scalable
graph Transformer that achieves SOTA performance on many
benchmarks. GraphGPS categorizes positional (position of a
node in a graph) and structural encodings (structure of the
graph) into three categories, i.e., local, global, and relative,
and explores a modular system to add them as soft bias in the
Transformer model. The key contributing factor to GraphGPS
is the GPS layer can be described as follows:

X
(l+1)
G , E

(l+1)
G = GPS(l)(X

(l)
G , E

(l)
G , A)

= MLP (l)(GNN l
e(X

(l)
G , E

(l)
G , A)

+ Transformer(l)(X
(l)
G ))

(2)

where GNN l
e, Transformer, and MLP represent GNN,

Transformer, and multilayer perceptron layer, and the rest of
the notations follow the same convention as in Eq. 1. The
GPS layer presented in Eq. 2 can be viewed as a hybrid
layer aggregating the output of GNN and Transformer. In this
way, the GPS layer can: (1) utilize GNN knowledge while
alleviating known GNN limitations like over-smoothing, over-
squashing, and limited expressiveness by WL test, (2) explore



the self-attention mechanism in Transformer. In this study, we
use GraphGPS as a SOTA graph Transformer example and
compare it to GNN models in GRL for COP tasks.

III. OPTIMAL COST PREDICTION WITH GRAPH-BASED ML

This section introduces Graph Representation Learning for
Combinatorial Optimization Problems (COPs), focusing on
GNN and graph Transformer models.

A. Graph Representation of a COP

Here, we describe graph representations of the two represen-
tative Combinatorial Optimization Problems that we work with
in this paper, namely, the Traveling Salesman Problem (TSP)
and Job-Shop Scheduling Problem (JSSP). A straightforward
way to represent a TSP instance is with a square matrix Xtsp,
e.g., Figure 2a on the left, with xi,j represent the cost of
traveling from city i to city j. The graph representation of a
TSP instance is also straightforward, with nodes representing
cities and edge features representing the cost between the
two cities. Figure 2a on the right shows an example of a
graph representation of TSP, and one of the optimal tours is
highlighted with directed edges in boldface.

Figure 2b shows the matrix and graph representation of a
JSSP instance with 3 machines and 3 jobs (J1 to J3). Each
job has 3 sequential operations, each of which needs to be
executed on machine mi for di units of time (i ∈ {1, 2, 3}).
We construct a JSSP graph with nodes representing operations
and edges representing the constraints. We use directed edges
to encode precedence constraints between operations and
undirected edges to represent machine constraints. If a set of
operations needs the same machine to execute, then there is
an undirected edge between each pair of the nodes in the set.
We encode the execution time of operations, i.e., di, as node
features and add start and end operations s and e to connect
the graph. There are directed edges from the start operation s
to the first operation in each job and from the end operation
e in each job to the end operation in each job.

Compared to matrix representations of COP, a graph can
represent COP instances of different sizes and easily encode
prior knowledge of nodes in the graph. For example, the two
operations in a JSSP instance require the same instances can
be connected with an edge that represents their conflict with
each other. An edge in a TSP instance graph can represent the
distance between the two adjacent cities. Graph representations
of COP instances have advantages over the matrix represen-
tation counterpart as they can directly model the constraints
and knowledge needed for the prediction tasks.

B. GNN and Graph Transformer

In this subsection, we discuss the benefits of using GNN
and graph Transformer models for learning relevant features
in the COP prediction task. GNN can deal with graphs of
varying sizes. This can be of interest in the domain of COP,
where acquiring ground truth about larger instances can grow
exponentially more expensive as the sizes of COP instances
grow. Furthermore, the neighborhood aggregation of GNN
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(b) A JSSP instance with three
machines and three jobs (J1 to
J3). Every job (J1 to J3) consists
of three sequential operations,
each requiring a machine mi for
di units of time (i ∈ 1, 2, 3).
Left: JSSP instance matrix. Right:
JSSP instance graph with nodes
representing operations, directed
edges showing sequential execu-
tion order, and undirected edges
indicating operations that require
the same machine. We add a start
operation s and an end operation
to connect the graph.

Fig. 2: Benefits of graph representation for COP.

models over edges simplifies encoding the inherent constraints
in COP instances. Different types of COP problems might
require the ML model to acquire different knowledge to make
good predictions on the cost of the optimal value. For example,
given a TSP instance, we would like an ML model to identify
the shortest path to traverse the graph. Once the ML model
learns the potential shortest Hamiltonian cycle in a given TSP,
then the cost prediction can summarize the tour length.

In a JSSP instance, one way to predict the optimal makespan
is to learn the critical path, i.e., the longest path in a potential
schedule. The prediction of the optimal makespan can be
calculated as the amount of time accumulated on the critical
path. Note that the optimal makespan, instead of a simple
summation of operation time along the critical path, when the
last operation finishes its execution, as the operations on the
critical path might be blocked due to machine unavailability.
While the prediction of optimal cost in different COP might
require different knowledge, this knowledge is usually encoded
in the graph representation of the COP.

Apart from the success of graph Transformer models in
recent years, we are motivated by the finding that GNNs with
attention mechanisms tend to outperform other types of GNNs.
This could indicate that attention mechanisms are an excellent
addition to GNNs for extracting knowledge needed to create
representations of COP problems. For example, the attention
mechanism could pick up signals on which nodes are on the
critical path in a JSSP instance or whether an edge between
two nodes is in the optimal tour of a TSP instance.

The attention mechanism also allows each node to learn
other nodes’ importance and update its representation accord-
ingly. Furthermore, the attention mechanism could also be
used to discover and synthesize knowledge in the COP graph
that domain experts cannot easily discover and describe in
human or computer language. As we shall see in the empirical
evaluation section, graph transformer models perform better
than even GNNs with attention mechanisms.



C. ML Prediction Pipeline

Figure 1a shows the proposed two-step ML pipeline for
predicting the cost of the optimal solution of COP. In the
first step, a GRL module uses a COP instance as input and
produces embeddings that summarize the input COP instance.
In the second step, a functional component, e.g., NN, takes
the generated embeddings from the previous step and predicts
the target, i.e., the cost of the optimal solution.

We can use either CNN, GNN, or graph Transformer models
in the representation learning step. For CNN models, a CNN
takes the matrix representation of COP instances as input
and produces as output a single embedding for each input
instance. For GNN models, a GNN takes graph representation
of COP instance as input and uses multiple GNN layers
(Eq. 1) with neighborhood aggregation to produce a fixed-
size embedding for each node in the input graph. Then, a
graph pooling method, e.g., summation, takes all the node
embedding as input and generates a single graph embedding
for each of the input graphs. For graph Transformer models,
the representation learning module is similar to that of GNN,
except that it uses Eq. 2 instead of Eq. 1.

In the ML prediction step, we use functional components,
e.g., a Multilayer Perceptron (MLP), to predict the cost of
the optimal solution. The functional component takes a single
embedding generated for each COP instance as input and
directly predicts the target values, i.e., optimal tour length in
TSP and optimal makespan in JSSP. The next session reveals
more details about the end-to-end training of the ML pipeline.

IV. EMPIRICAL EVALUATION

In this section, first, we present the experiment setup, includ-
ing a general COP benchmark for our empirical evaluation, the
baseline models, and evaluation procedures; next, we present
and discuss the results of our evaluation experiments.

A. Experiment Setup

1) Towards a General COP Benchmark: To our best
knowledge, existing benchmarks12, primarily created for exact
and approximate, and RL-based solvers, do not have enough
COP samples with known optimal costs for training ML
models. Therefore, we create four COP benchmark datasets
to compare CNN, GNN, and graph Transformer models em-
pirically. JSSP-9×9 dataset contains 10, 000 JSSP instances,
each with nine jobs. Each job has nine operations, requiring
one of the nine machines to run a certain amount of time.
JSSP-10×10 dataset is generated similarly as JSSP-9×9
except that there are 100, 000 JSSP instances, each with ten
jobs, ten machines, and ten operations. In both JSSP-9×9
and JSSP-10×10, operation duration is an integer sampled
uniformly from 1 to 99 (boundary included). TSP-30 and
TSP-40 dataset each contains 10, 000 TSP instances with 30
and 40 cities. The distance between two cities is an integer
sampled uniformly between 1 and 99 (inclusive boundaries).

1https://www.math.uwaterloo.ca/tsp/concorde/benchmarks/bench99.html
2https://github.com/tamy0612/JSPLIB

The distance from a city to itself is denoted as zero, rep-
resenting infinity. We run a constraint programming solver
written with GECODE3 to acquire the ground truth of the
cost of the optimal solution, i.e., optimal tour length for
TSP-30 and TSP-40 and optimal makespan for JSSP-9×9
and JSSP-10×10. The datasets are accessible in our code
repository and could support future ML research for COP.

2) Training and Evaluation Procedures: In the supervised
training setting, we split each dataset into the train (50%),
validation (30%), and test (20%) datasets. For each combi-
nation of ML model and dataset, we run the experiment ten
times with different random seeds and report the average test
Mean Square Error (MSE) with standard deviation when the
validation MSE is the reach minimal across 3000 epoch of
training with AdamW optimizer [36]. The details of datasets,
code, and hyperparameters are available 4.

3) Baseline Models: For the CNN model, we use the
CNN model proposed in [17] initially designed for directly
predicting the makespan (cost of optimal solution) for JSSP.
The CNN model contains CNN and MLP layers, and we
slightly tweak the parameters of the models to adapt to the
different input sizes of COP instances. For the GNN model,
we composite a suite of classical and SOTA GNN models,
e.g., GCN [25], GIN [26], GINE [37], GraphSAGE [28],
GAT [27], and GATv2 [38]. We use GraphGPS [19] as
our graph Transformer model and use Laplacian positional
encoding (LapPE) [19] and random-walk structural encoding
(RWSE) [19] to encode positional and structural information
into GraphGPS. In Table I and II, we use the following naming
conventions to denote GraphGPS models with different com-
binations of GNNs and encodings. GraphGPS-GCN represents
a GraphGPS model with GCN model as GNN in Eq. 2
without any positional and structural encodings. GraphGPS-
GINE+LapPE+RWSE represents a GraphGPS model with
GINE as its GNN part, and both LapPE and RWSE are
added to the inputs of the GraphGPS model. We treat the
number of attention heads in GAT, GATv2, and GraphGPS
as a hyperparameter and use a default value of four in our
experiments unless otherwise stated.

We use a combination of PyTorch5, PyTroch Geometric6,
and the original implementation of GraphGPS [19] for our
experiment. The experiments are conducted in a remote GPU
cluster with NVIDIA Tesla T4 or at a local benchmark
machine with NVIDIA GeForce RTX 2070 Super.

B. Experiment Results

Table I shows the results on the TSP-30 and TSP-40
datasets. GCN, GAT, and GATv2 models do not outperform
the baseline CNN models. This could be explained by the fact
that the graph structure of the TSP variant in this work is a
fully connected graph with edge features indicating the cost
of traveling from one node (city) to another node (city). In

3https://www.gecode.org/
4Our experiment code is available at https://github.com/bwhub/GRLCOP
5https://pytorch.org/
6https://pytorch-geometric.readthedocs.io/



this case, the GCN model cannot differentiate between TSP
instances of the same size, as the graph structure of those
instances will be the same with the same node features. The
useful features for predicting the optimal cost are encoded as
edge features that are oblivious to the GCN model. GINE is
the best performer among the GNN models as it considers the
edge explicitly features when building graph representations.
GraphGPS models with a GNN model that can learn from
edge features, e.g., GINE, can outperform that baseline CNN
model and achieve performance comparable to GINE.

Table II shows the experimental results on the JSSP-9×9
dataset. The simplest GNN model outperforms the CNN model
by a large margin, with an average test MSE of 1215.01 of
GCN compared to the 2979.13 that of CNN. This indicates
that the graph representations are beneficial for predicting the
optimal cost of the COP model. Furthermore, more expressive
GNN models, e.g., GIN (1184.26) and GraphSAGE (1095.78),
also lead to better performance than GCN. We also see
this in the comparison of GNN with attention mechanism,
where GATv2 [38] (1110.29), a more expressive dynamic
attention model compared to GAT [27] (1174.58), has a better
performance than the GAT model.

While GNN models perform better than CNN models,
graph Transformer models perform even better. For example,
GraphGPS with both LapPE and RWSE encodings achieves
the best performance on the JSSP-9×9 dataset with an
average test MSE of 1041.93. We tested other variants of the
GraphGPS models with different combinations of encodings.
As shown in Table II, while all the variants achieve good
performance, overall, we get the best performance boost when
RWSE encoding is included. One explanation could be that
structural information provided critical information to create
good representations of the model.

Table II also shows the experiments on the JSSP-10×10
dataset. The results are similar to the results for the
JSSP-9×9 dataset: GNN models outperform the CNN model
due to the graph representation that explicitly models the
complex relations and constraints in COP instances. Notably,
GATv2 outperforms all the other GNN models, and overall,
GraphGPS models are the best performers. Even the vanilla
version of GraphGPS, without positional and structural en-
codings, can outperform all GNN models thanks to the more
expressive power enabled by the attention mechanism. Note
that for the GraphGPS model reported in Table II, we use the
GCN model as the GNN model in Eq. 2. The performance
of GraphGPS models can be further improved by replacing
the GCN model in GraphGPS with GNN models with more
expressive power, e.g., GAT, GATv2, and GINE.

Figure 3 is the violin plot that shows the performance
difference of GAT (Figure 3a), GATv2(Figure 3b), and GPS-
GCN without any positional or structural encodings ((Fig-
ure 3c)) with different numbers of attention heads. GAT and
GATv2 with only one attention head have worse average
MSE than GCN in Table II and exhibit large variance. The
average performance of both GAT and GATv2 improves with
an increasing number of attention heads. The performance

TABLE I: Results on TSP dataset. Both GNN and GraphGPS
that consider the edge feature outperforms the CNN baseline.

Model
Dataset

TSP-30 TSP-40
Test MSE (mean±std)

CNN 473.85±16.21 356.24±16.29
GCN 521.10±0.00 389.70±0.00
GAT 521.10±0.00 389.70±0.00

GATv2 521.10±0.00 389.70±0.00
GINE 178.98±10.35 144.63±12.02

GraphGPS-GINE 185.51±8.03 146.89±8.12
GraphGPS-GINE+LapPE 181.29±3.53 142.51±4.64
GraphGPS-GINE+RWSE 189.45±7.38 148.69±7.51

GraphGPS-GINE+LapPE+RWSE 179.41±3.99 166.52±73.72

TABLE II: Results on JSSP dataset. GNN outperforms CNN,
and GraphGPS further improves performance.

Model
Dataset

JSSP-9×9 JSSP-10×10
Test MSE (mean±std)

CNN 2979.13±108.57 2944.77±25.42
GCN 1215.01±12.72 1193.82±10.85
GIN 1184.26±25.38 1188.67±14.33

GraphSAGE 1095.78±30.89 1121.95±30.21
GAT 1174.58±12.69 1196.87±31.26

GATv2 1110.29±169.36 1073.38±46.71
GraphGPS-GCN 1195.77±33.78 969.95±4.87

GraphGPS-GCN+LapPE 1140.91±50.73 970.23±6.91
GraphGPS-GCN+RWSE 1051.21±42.13 943.99±25.51

GraphGPS-GCN+LapPE+RWSE 1041.93±25.11 939.70±23.85

difference concerning the number of attention heads could
be that with only one attention head, the model might focus
on the sub-optimal sub-features or areas in the embeddings
space for calculating the attention score, which leads the GNN
model to be potentially biased on only a sub-optimal subset
of the features. With the added attention heads, the problem is
significantly eased as the model calculates different attention
scores that focus on different aspects of the COP instance.
This can also be partially supported by the result that GAT
and GATv2 with only one attention head exhibit a much more
significant variance on test MSE over the ten repeated runs
than their four attention heads counterparts. In the GraphGPS
model, without any positional or structural encodings, we see
that the performance is more stable than GAT and GATv2.
This indicates that GraphGPS provides a more stable attention
mechanism than the ones used in GAT and GATv2.

C. Discussion

Overall, GNN outperforms the CNN baseline, and the graph
Transformer models can improve the performance further. This
is consistent with the findings not only in graph Transformers
but also in other domains, e.g., computer vision [31], [32]
and natural language processing [30], where self-attention
mechanism plays a critical role.

The modular design of GraphGPS means that each part in
Eq. 2 can be easily switched to more powerful and expressive
models to improve the performance or switched to more
efficient models to achieve a desired balance of computation
cost and performance. This design choice can be crucial in
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(a) Violin plot on the performance of GAT.
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(b) Violin plot on the performance of GATv2.
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(c) Violin plot on the performance of GraphGPS-GCN.

Fig. 3: Effects of the number of attention heads on model
performance. The performance of GAT and GATv2 improves
with an increased number of attention heads. GraphGPS-GCN
achieves good performance with only a single attention head
and is less sensitive to the number of attention heads.

application domains like combinatorial optimization, where
successfully applying ML for decision-making in an exact
solver depends on the absolute predictive performance and
the relative inference cost for an ML model to generate a
prediction. For example, if an exact solver needs to constantly
query an ML model to make decisions, the overall inference
cost for generating all the predictions can quickly build up
through the solving process. In this case, the solver might
have a slow solving process due to the ML inference cost, even
though it makes good decisions each time it is called. On the
other hand, if an exact solver only needs a single prediction
on the cost of the optimal solution, it is less sensitive to the
computation cost of the ML model. In this case, it might even
favor an ML model with a relatively high computation cost
but offers high-quality predictions, as better predictions might
lead the solver to prune its search space much faster, thus
fastening the speed for finding the optimal solution.

Adapting GRL to our version of the TSP problem is
challenging due to the highly similar, if not identical, graph
structures of different TSP instances with various node-to-node
costs. This poses challenges as the critical information (cost
of traveling between two nodes) is not easily learnable for a
wide variety of GNN models that cannot be easily adapted
to learn from edge features. Graph Transformer models, on
the other hand, can utilize their attention mechanism to learn
useful features. We expect graph Transformer models, explic-
itly designed to include edge features, could outperform the
GraphGPS model used in our experiment.

V. RELATED WORK

Combinatorial Optimization Problems (COPs) are challeng-
ing to solve due to their discrete and non-convex nature [39].
Applying ML in COP is not a new topic [40], [41], and in
recent years, we have seen a surge in using ML, especially
GNN [4] and Reinforcement Learning [13] for COP problems.

Many papers focus on using a Neural Network (NN) to
directly construct a solution to a COP instance. Bello et al. [12]
propose a Neural Combinatorial Optimization framework that
explores policy gradient method to train a Recurrent Neural
Network, i.e., pointer network [42] to iteratively generate a
solution to the given COP instance. However, this method
does not fully utilize the graph structure, and the policy
gradient method is not very sample-efficient [8]. Dai et al. [8]
propose to automate the process of designing approximation
and heuristic methods using a meta-algorithm that explores Q-
learning to incrementally construct a solution with a combina-
tion of graph embeddings and RL. Nazari et al. [14] explore
neural networks and RL to learn to generate a sequence of
decisions for the Vehicle Routing Problem. Kool et al. [43]
using an encoder and decoder network with attention layers
and getting solutions that are close to optimal.

Research papers also use NN to learn heuristics. Chen and
Tian [44] propose NeuRewriter that uses a neural network to
learn to pick heuristics and rewrite part of current solutions
to improve the current solution iteratively. Gasse et al. [45]
propose to enhance exact methods with graph convolutional
neural network model to learn branch-and-bound variable
selection policies. The authors train the model with imitation
learning to learn directly from an expert branching rule that is
otherwise computationally too expensive for an exact solver.
Zhang et al. [15] use GNN and RL to learn priority dispatching
rules that are otherwise costly and time-consuming to design,
even for experts with domain knowledge. Cappart et al. [16]
propose using RL to learn branching strategies to guide a
Constraint Programming solving process.

Our work differs from the existing work in that we train an
ML model to directly predict the cost of the optimal solution
of a COP instance. In one view, the prediction performance
can be viewed as the ability of the underlying model to encode
the given COP instance and extract information that is usefully
predicting the cost of the optimal solution. In another view, our
study is an orthogonal direction to existing work, which can
be easily combined with existing work for potential further
improvements, e.g., switching the GRL module with graph
Transformer models in existing work for learning to construct
approximate solutions or learning heuristics.

VI. CONCLUSION AND FUTURE WORK

In this work, we study graph representations in Combinato-
rial Optimization Problems (COPs) on the task of predicting
the cost of the optimal solution of a COP instance by con-
sidering two representative COPs: traveling salesman and job-
shop scheduling. Our empirical evaluation shows that graph
representations and Graph Neural Networks (GNNs) have a
better prediction performance than matrix representations and



CNNs. Furthermore, we show that graph Transformer models
can further improve the performance of the prediction task
compared to GNNs. Implementing end-to-end neural optimiz-
ers that combine ML-based optimal solution cost preditors
with exact COP solvers is a subject of our future work. A
natural extension of our current work is the unsupervised or
semi-supervised learning settings of GNNs and graph Trans-
formers in COP to alleviate the need for getting ground truth
labels to train the prediction task. Another exciting direction
is to study the performance of graph Transformer models in
settings where graph representation learning and reinforcement
learning are combined to get approximate solutions to COP
instances. Furthermore, extending the COP benchmark pro-
posed in this work with larger datasets and more types of
COP instances would benefit future research in this area.
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