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Abstract—Despite much recent research on peer-to-peer (P2P)
protocols for the Internet, there have been relatively few practical
protocols designed to explicitly account for Network Address
Translation gateways (NATs). Those P2P protocols that do
handle NATs circumvent them using relaying and hole-punching
techniques to route packets to nodes residing behind NATs.

In this paper, we present Croupier, a peer sampling service
(PSS) that provides uniform random samples of nodes in the
presence of NATs in the network. It is the first NAT-aware PSS
that works without the use of relaying or hole-punching. By
removing the need for relaying and hole-punching, we decrease
the complexity and overhead of our protocol as well as increase
its robustness to churn and failure. We evaluated Croupier in
simulation, and, in comparison with existing NAT-aware PSS’,
our results show similar randomness properties, but improved
robustness in the presence of both high percentages of nodes
behind NATs and massive node failures. Croupier also has
substantially lower protocol overhead.
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I. INTRODUCTION

Peer sampling services (PSS) are widely used in large scale

distributed applications, such as information dissemination [1],

aggregation [2], and overlay topology management [3], [4].

A PSS periodically provides a node with a uniform random

sample of live nodes from all nodes in the system, where the

sample size is typically much smaller than the system size [5].

PSS’ can be implemented using gossip protocols [6], [7] or

random walks [8], although random walks are only suitable

for static networks with low levels of churn [9].

In networks where all nodes can directly communicate with

each other, a gossip-based PSS’ can ensure that node descrip-

tors are distributed uniformly at random over all partial views

[7]. However, in the Internet, where a high percentage of nodes

are behind NATs and firewalls, traditional gossip-based PSS’

become biased [9]. Nodes cannot establish direct connections

to nodes behind NATs or firewalls (private nodes), and as a

result private nodes become under-represented in partial views.

Conversely, nodes that do support direct connectivity, public

nodes, become over-represented in partial views. The main

challenges for a NAT-aware PSS are to generate uniformly

random node samples for high percentages of private nodes,

to maintain connectivity during high node failure rates, all

while minimizing the protocol overhead.

Relaying is a technique used by existing NAT-aware PSS’

for communicating with private nodes. In relaying, instead of

sending a message directly to a private node, the message

is sent via a relay node and the relay node forwards the

message either directly to the private node using an existing

open connection or via a chain of relay nodes. Relaying has

been used to solve the problem of balancing gossip in networks

with NATs [9], [10], [11], as it ensures that private nodes

receive a balanced number of gossip messages. Relaying,

however, introduces complexity into PSS protocols: relaying

nodes have to maintain routing tables for private nodes, and

private nodes have to maintain open mappings in their NAT

to relay nodes. Also, where the system is distributed, nodes

have to discover the relay node(s) responsible for the private

node they wish to communicate with. Existing techniques

for discovering responsible relay nodes include caching the

addresses of relay nodes in node descriptors [10], maintaining

routing tables to nodes that have recently been communicated

with [9], [11] and using a distributed-hash table [12].

Existing gossip-based NAT-aware PSS’ [9], [10] are similar

to classic PSS [6], [7] in that they maintain a single partial

view containing descriptors for a small subset of nodes in the

system, and periodically pick a random node to exchange its

partial view with. Partial views are randomized in a process

called view exchange, where a node selects a neighbour and

shuffles its partial view with the neighbour’s. If the selected

node is a private node, first, the relay node for that private

node is discovered, then a view exchange request is sent to

the relay node.

In this paper, we present Croupier, that introduces a novel

mechanism for exchanging partial views to build a PSS

without the use of relaying. Our main intuition is to use two

partial views, one for public nodes and one for private nodes,

and to have public nodes act as Croupiers, exchanging public

and private views on behalf of private nodes. View exchanges

are initiated by all nodes, but only sent to public nodes

(the Croupiers) who shuffle the views. In order to generate

a random sample from the two partial views, our protocol

requires that we estimate the ratio of public to private nodes

in the system. Public nodes collectively estimate the ratio of

public to private nodes by sampling the recent rate of view

exchange requests from public and private nodes, respectively.

As all nodes send a single view exchange request per round

to a random public node and the round time is equal at all

nodes (subject to clock skew), we estimate the ratio of public

to private nodes using a distributed averaging algorithm based



on sampled request rates. Croupier is a different approach than

our previous work on a NAT-aware PSS built on relaying,

Gozar [10], and a general NAT-traversal middleware based on

Distributed Hash Table, Usurp [12]. Croupier’s contribution is

that produces a more robust, lower overhead NAT-aware PSS

with similar randomness properties to existing systems.

We evaluated Croupier in simulation, and in comparison

with the best existing NAT-aware PSS’, Gozar [10] and Nylon

[9], our results show similar to slightly improved randomness

properties, and improved robustness in the presence of high

percentages of private nodes and high levels of node churn.

Croupier also has 50% less overhead than that of Gozar and

80% less compared to Nylon.

II. BACKGROUND AND RELATED WORK

The ratio of public to private nodes in existing P2P systems

varies considerably depending on the geographical distribu-

tion of the participating nodes. There are two main trends

affecting the public/private ratio: a decreasing number of open

IPv4 addresses are being made available to end-users due to

the limited size of the IPv4 address space, and, secondly,

an increasing number of nodes behind NATs have enabled

the UPnP Internet Gateway Device (IGD), allowing them to

effectively act as public nodes. D’Acunto et al. [13] showed

for a BitTorrent-like system in 2009 that the percentage of

nodes with open IP addresses varies from 9% in the USA to

23% in Italy. They did not, however, consider whether nodes

support the UPnP IGD. In contrast, the live streaming system

NewCoolStreaming [14] included nodes that support UPnP

IGD and showed that 20.8% of nodes act as public nodes,

with most nodes located in the USA in 2009.

Peer sampling has been widely studied in the area of overlay

networks [7]. In gossip-based PSS’, protocol execution at

each node is divided into periodic rounds. Implementations

can vary based on a number of different policies in node

selection (random selects a random neighbour, tail selects

the oldest node descriptor), view exchange (push or push-

pull) and view merging (healer select most recents node

descriptor, swapper swaps a subset of its local view with

its neighbour minimizing loss of information in the system))

[7]. In a PSS, the sampled nodes should follow a uniform

random distribution. To ensure randomness of a partial view

in an overlay network, the overlay constructed by a peer

sampling protocol should ensure that in-degree distribution,

average shortest path and clustering coefficient, are close to a

random network [6], [7]. The impact of NATs on traditional

gossip-based PSS’ has been evaluated in both [9] and [15].

They showed that the network becomes partitioned when the

number of private nodes exceeds a certain threshold. The larger

the view size is, the higher the threshold for partitioning is.

However, increasing the nodes’ view size increases the number

of stale node descriptors in views, which, in turn, biases the

peer sampling.

The first PSS’ to address the problem of NATs was ARRG

[15]. In ARRG, each node maintains an open list of nodes

with whom it has had a successful gossip exchange in the past.

When a node view exchange fails, it selects a different node

from this open list. The open list, however, biases the PSS,

since the nodes in the open list are selected more frequently for

gossiping. More recently, Kermarrec et al. introduced in Nylon

[9] a NAT-aware PSS that uses all existing nodes in the system

(both private and public nodes) as rendezvous servers (RVPs).

A RVP provides connectivity to private nodes by facilitating

hole-punching the private node’s NAT. In Nylon, two nodes

become the RVP of each other whenever they exchange their

views. If a node selects a private node for gossip exchange, it

hole-punches a direct connection to the private node using a

chain of RVPs until the chain reaches the private node. The

chains of RVPs in Nylon are unbounded in length, making

Nylon fragile in networks with churn, as well as increasing

overhead at intermediary nodes [10]. Their chain of RVPs also

performs poorly over high latency links, which are frequently

found on the Internet [16].

In our previous work on Gozar [10], we replaced RVP

chains with one-hop relaying to all private nodes. Private nodes

discover and maintain a redundant set of public nodes that act

as relay nodes on their behalf. Nodes shuffled with private

nodes by relaying messages via at least one of the private

node’s relay nodes, where the addresses of the relay nodes are

cached in node descriptors. Through redundant relay nodes

and quickly expiring node descriptors, connectivity to private

nodes is maintained and latency is kept low, even under churn.

In other work on NAT-aware gossiping, Renesse et al. [11]

present an approach to fairly distribute relay traffic over public

nodes. In their system, each node balances the number of

gossip requests it accepts to the number of gossip exchanges

it has sent itself. Nodes that have already accepted enough

gossip requests, forward them in a manner similar to Nylon,

using chains of nodes as relay servers.

Our public/private ratio estimation algorithm is related to

existing gossip-based estimation algorithms that estimate the

number of nodes in a system [2], [17] and estimate the

distribution of attribute values across all nodes [18]. These

algorithms require multiple aggregation instances in parallel

to improve their estimation accuracy and assume full connec-

tivity between nodes, that is, no NATs. In contrast to these

aggregation algorithms, our aggregation algorithm is NAT-

friendly and does not need to be run as an independent protocol

- estimation in Croupier is done by piggy-backing on view

exchange messages.

III. SYSTEM MODEL

We model a distributed system as a network of autonomous

nodes that exchange messages. The goal of Croupier is to

provide a PSS, locally at all nodes, where the PSS periodically

provides samples of nodes drawn uniformly at random from

the set of all nodes in the system. There is no central point of

control in the system and all nodes execute the PSS algorithm.

Each node knows its own NAT type, which is either public

or private, where a public node can be communicated with

using an IP address that is globally reachable from any other

node, while a private node resides behind at least one NAT or



firewall, and is not reachable from outside its private network

unless its is the private node that initiates contact. Each

node separately maintains references to both a small, bounded

number of randomly selected public nodes in a public view and

a small, bounded number of randomly selected private nodes

in a private view. Collectively, a node refers to the nodes in

its public and private views as its neighbors.

IV. PROBLEM DESCRIPTION

We partition the partial view into two separate bounded-

size views: a public view and a private view. This prevents

over-representation of public nodes in partial views, but it

introduces the problem of how generate a uniform random

sample from the two views - we cannot just pick a random

neighbor from one of either the public or private views, as we

need to know the correct proportion of public to private nodes

in the system when generating a sample. That is, we need

a distributed algorithm that estimates the ratio of public to

private nodes in the system. This ratio may vary both between

different systems and over the lifetime of a system, but when

a good estimation is available locally at every node, we can

use it to sample the correct proportion of nodes from either

the public or private view.

V. A DISTRIBUTED NAT TYPE IDENTIFICATION PROTOCOL

Croupier requires that a node knows its correct NAT type

as either public or private. A node’s NAT type could be de-

termined by a centralized service, such as a Session Traversal

Utilities for NAT (STUN) server [19], but instead we introduce

a distributed, minimal NAT type identification protocol that

identifies a node as being either public or private. Our protocol

can, in principle, be run at any time during system operation,

but is typically run once at bootstrap time, as the vast majority

of nodes stay either public or private for the duration of their

session. When a node’s NAT type doesn’t change, the protocol

does not need to be run for every session, as the NAT type

can be cached across sessions.

The protocol is defined in algorithm 1, and is run over UDP.

Several instances of the protocol can be run in parallel against

different public nodes to improve its robustness and reduce

its expected completion time (the protocol finishes when the

first public node responds). It identifies a node as a public

node if (i) it has a globally reachable IP address and is not

behind a NAT or firewall or (ii) if the node’s NAT supports the

UPnP Internet Gateway Device Protocol (that is, the node can

explicitly map a local port to a port on the public interface

of its UPnP-enabled NAT, where the NAT has a public IP

address). If neither of these two conditions are matched, the

node is a private node.

To realise these properties, the protocol executes two tests:

firstly, a MatchingIpTest compares the node-under-test’s local

IP address with the IP address seen by a public node, and,

secondly, a ForwardTest checks to make sure the node-under-

test can receive a packet from a public node to which it has

not sent a packet in the last 5 minutes, where 5 minutes is

assumed higher than the NAT UDP mapping timeout. The

tests are executed in parallel over a number of public nodes

returned by a bootstrap server. The protocol requires only

three network messages per run: a MatchingIpTest is sent from

the node-under-test to a public node returned by the bootstrap

server, this node then inserts the public IP address from which

it received the event into a ForwardTest event that is sent to

a different public node (not one of the public nodes returned

originally by the bootstrap server - as the node-under-test may

be running the protocol in parallel against them). The node that

receives the ForwardTest event then sends that event back to

the node-under-test’s public IP address.

The ForwardTest event cannot be sent to any of the public

nodes returned by the bootstrap server as the node-under-

test’s NAT may have an entry in its NATs mapping table

to that node’s IP address, and the ForwardTest event would

erroneously pass through the NAT. If the client receives the

ForwardTest event and its local IP address matches the IP

address seen in MatchingIpTest, then the node’s NAT type is

public. If the IP addresses do not match, then the node is set to

private. This case can happen if the node is behind a NAT that

has an Endpoint-Independent filtering policy [20]. If the node’s

NAT has a more restrictive packet filtering policy or the node is

behind a firewall, it will not receive the ForwardTestResponse

event, and its Timeout event handler will return that the node is

private. The length of the timeout needs to be long enough to

prevent false positives, but it can be adjusted upwards if a late

ForwardTest event is received after the timeout has expired.

Algorithm 1 Minimal distributed NAT type identification.

1: procedure NatTypeIdentificationClient 〈this〉
2: // Executed at client on joining system

3: publicNodes← doBootstrap()
4: if supportsUpnpIGD() == true then

5: nodeType← public
6: else

7: for all nodei in publicNodes do

8: Send MatchingIpTest(publicNodes) to nodei
9: end for

10: After timeToWait Send Timeout(publicNodes) to this
11: end if

12: end procedure

13: // Timeout event triggered if no ForwardResp event is received in time

14: on receive 〈TIMEOUT | publicNodes〉 from this do

15: nodeType← private
16: end event

17: // Event handler at client node

18: on receive 〈FORWARDRESP | clientIp〉 from secondPublicNode do

19: Send CancelT imeout to this
20: if this.localIp == clientIp then

21: nodeType← public
22: else

23: nodeType← private
24: end if

25: end event

26: // Event handler at first public node

27: on receive 〈MATCHINGIPTEST | publicNodes〉 from client do

28: secondPublicNode←last good public node seen not in publicNodes
29: Send ForwardTest(clientIp) to secondPublicNode
30: end event

31: // Event handler at second public node

32: on receive 〈FORWARDTEST | clientIp〉 from firstPublicNode do

33: Send ForwardResp(clientIp) to clientIp

34: end event



VI. THE CROUPIER PROTOCOL

Our peer sampling algorithm, Croupier, is based on periodic

gossip rounds, executed at roughly the same rate by all nodes

(subject to clock skew), where neighbouring nodes exchange

local state. Croupier’s pseudo-code is given in algorithm 2. Our

shuffling algorithm is based on the tail, push-pull and swapper

policies for node selection, view exchange and view selection

from [7]. The tail policy involves selecting the oldest node

descriptor for shuffling, while the swapper policy involves

replacing the node descriptors sent to the other node with the

received node descriptors.

Each node p maintains a public view, viewu(p), and a pri-

vate view, viewv(p), both bounded in size, consisting of a set

of node descriptors of public and private nodes, respectively. A

node descriptor contains the node’s address, its NAT type, and

a timestamp storing the number of rounds since the descriptor

was created. A node p periodically executes the procedure

Round to exchange and update both p’s views and its ratio

estimations in Ep (ω), see equations 8 and 9. Round firstly

updates the age of both the descriptors in p’s views and its

ratio estimations Ep (ω). Then, the oldest descriptor q (tail) is

selected and removed from the public view, viewu(p), and
a shuffle request is sent to q. The public node q receives

the shuffle request containing the following state: a random,

bounded subset of the sender p’s public view, a random,

bounded subset of p’s private view, and a random, bounded

subset of p’s estimations from Ep (ω).
The public node q’s handler for the shuffle request takes

the following actions. First, depending on whether the sender

of the request p is public or private, the public or private

shuffle counter Cu or Cv is incremented. Then, it updates

its private and public views as well as its estimations using

the parameters in the shuffle request. The private and public

views are updated in updateV iew procedure, by first checking

if the node already exists in its view, and if so, updating it if

the received node descriptor is newer. Secondly, if there is free

space the received node descriptor is added to its view. Finally,

if a view exchange has recently been completed with the node

who sent the shuffle request, then any node descriptors we sent

to that node and are currently in our view and replaced with

the node descriptors received.

A shuffle response is subsequently sent back to p. Similar to

the request, the response includes a bounded, random subset

from its public and private views and its ratio estimations.

When p receives the shuffle response, similar to the shuffle

request event handler, it updates its private and public views

and its estimations using state in the event.

Sampling and ratio estimation

The procedure generateRandomSample in algorithm 3 is

called to generate a uniform random sample of nodes from

either a public or private node. This procedure needs a good

estimation of the ratio of public to private nodes. In the

following, we assume both a static ratio of public to private

nodes and a fixed number of nodes, although, as shown in our

evaluation, our estimation algorithm gives good estimations

Algorithm 2 Croupier shuffling algorithm.

1: // run by each node p in each gossiping round

2: procedure Round 〈〉
3: update ages of descriptors in viewu and viewv

4: update ages of estimations in Mp ⊲ estimations received from public nodes

5: remove estimations older than γ from Mp

6: if natType is public then

7: Ep ← CalcHitsRatio()
8: end if

9: Cu = Cu ∪ cu ⊲ keep a local history of public hits

10: Cv = Cv ∪ cv ⊲ keep a local history of private hits

11: cu = 0, cv = 0 ⊲ initialize new estimations for current round

12: q ← select oldest node from viewu ⊲ oldest node in the public view

13: remove q from viewu

14: pPub← random subset from viewu

15: pPri← random subset from viewv

16: pSubM ← random subset from Mp

17: if natType is public then

18: pPub.add(this)
19: else

20: pPri.add(this)
21: end if

22: Send ShuffleReq(pPub, pPri, pSubM,Ep) to q
23: end procedure

24: // shuffle requests are handled by public nodes q
25: on receive 〈SHUFFLEREQ | pPub, pPri, pSubM , Ep〉 from p do

26: if p.natType is public then

27: increment cu
28: else

29: increment cv
30: end if

31: qPub← random subset from viewu

32: qPri← random subset from viewv

33: qSubM ← random subset from Mq

34: updateV iew(viewu, qPub, pPub)
35: updateV iew(viewv, qPri, pPri)
36: Mq = Mq ∪ pSubM ∪ Ep ⊲ retain most recent by timestamp.

37: Send ShuffleRes(qPub, qPri, qSubM,Eq) to p
38: end event

39: // shuffle responses are handled by both public and private nodes

40: on receive 〈SHUFFLERES | qPub, qPri, qSubM , Eq〉 from q do

41: updateV iew(viewu, pPub, qPub)
42: updateV iew(viewv, pPri, qPri)
43: Mp = Mp ∪ qSubM ∪ Eq

44: end event

45: // used to update either the public or the private view

46: procedure updateView 〈view, sentV iew, receivedV iew〉
47: for all nodei in receivedV iew do

48: if view contains nodei then

49: view.updateAge(nodei)
50: else if view has free space then

51: view.add(nodei)
52: else

53: nodej ← sentV iew.poll()
54: view.remove(nodej)
55: view.add(nodei)
56: end if

57: end for

58: end procedure

59: // calculates the hits ratio

60: procedure CalcHitsRatio 〈〉
61: pubCnt = 0
62: priCnt = 0
63: remove hits older than α from Cu and Cv

64: for all u in Cu do

65: pubCnt = pubCnt + u
66: end for

67: for all v in Cv do

68: priCnt = priCnt + v
69: end for

70: result = pubCnt
pubCnt+priCnt

⊲ calculates the local estimation

71: return result

72: end procedure



for dynamic ratios. Public nodes U and private nodes V make

up the set of all nodes N in the system: N = U ∪ V . The
ratio ω of public to private nodes in the system is defined as:

ω =
|U|

|U|+ |V|
. (1)

We estimate ω using a decentralized algorithm that is based

on three basic assumptions: firstly, there should be no bias

between the average gossip round-time of public nodes and

private nodes, secondly, the target of shuffle requests should be

chosen uniformly at random among public nodes, and thirdly,

there should be no bias in message loss between public and

private nodes. Our first and third assumptions imply that the

rate of shuffle requests coming from public nodes compared to

private nodes is roughly the same as ω. Our second assumption

is grounded on the equivalence of our node selection algorithm

to Cyclon’s [6], which has previously shown that nodes are

selected almost uniformly at random. Our estimation of ω uses

the relative number of shuffle requests received by Croupiers

(public nodes) from other public nodes or private nodes, within

a small time window α into the past (called the local history).

If we assume α is equal to the system lifetime, we can define

the number of shuffle requests that all Croupiers in the system

receive from public nodes as Cu, and the number of shuffle

requests all Croupiers receive from private nodes as Cv . For

each Croupier i, its local public and private shuffle request

counts are defined as Cui and Cvi, respectively. That is the

system-wide shuffle request counts are defined as the sum of

local shuffle counts:

Cu =
∑

i∈U

Cui and Cv =
∑

i∈U

Cvi (2)

Our estimation of the ratio of public to private nodes, E (ω),
can now be calculated as the ratio of the number of shuffle

requests from public nodes to the number of shuffle requests

from all nodes:

E (ω) =
Cu

Cu + Cv

(3)

Assuming our first and third assumptions hold, over all public

nodes in the system, ω is roughly equal to E (ω):

ω ≈ E (ω) (4)

As E (ω) is not available at any individual node, each public
node i maintains its local part of the estimation Ei by updating

its local counts Cui and Cvi within the last time window α:

Cui =

α∑

t=0

cui(t) and Cvi =

α∑

t=0

cvi(t) (5)

where cui and cvi are the number received requests from public

and private nodes in each shuffle round, respectively. A node

i, then, calculates the local estimation Ei as:

Ei =
Cui

Cui + Cvi

(6)

Algorithm 3 Sampling and ratio estimation.

1: // generates a random estimation of nodes using the ratio estimation

2: procedure generateRandomSample 〈〉
3: viewChoice← random real number between 0 and 1.0

4: if viewChoice < estimatePublicPrivateRatio() then

5: return random entry from viewu

6: else

7: return random entry from viewv

8: end if

9: end procedure

10: // returns the estimation of the ratio of public/private nodes

11: procedure estimatePublicPrivateRatio 〈〉
12: cnt = 0
13: for all m in Mp do

14: cnt = cnt + m
15: end for

16: if natType is public then

17: result =
cnt+Ep

Mp.size+1

18: else

19: result = cnt
Mp.size

20: end if

21: return result

22: end procedure

As α approaches the system lifetime, the average of the

local estimations is approximately equivalent to our global

estimation:

E (ω) ≈

∑
i∈U

Ei

|U|
(7)

Each public node i stores its own local estimation Ei, and

it also stores a set of local estimations Mi shared by other

public nodes. All local estimations by public nodes should

be independent of each other as shuffle requests should be

uniformly distributed among public nodes. Public nodes can

disseminate to their neighbours (public and private neighbours)

both their own local estimation Ei as well as a subset of the

estimations Mi they received from other public nodes. All

estimations can be shared in a simple dissemination protocol

to both private and public nodes, but, for efficiency, we piggy-

back these estimations on shuffle request and shuffle response

messages.

Estimates contain timestamps that are incremented at every

gossip round by. When two estimations for the same node

are available, the older estimation is replaced by the newer

estimation. Old estimations with a timestamp higher than a

configurable parameter γ (neighbour history) are removed

every gossip round from Mi. Both private and public nodes

store a number of estimations that are bounded by the size of

α and γ. For every shuffle request and shuffle response, we

bound the number of estimations that are shared to a subset

of Mi to prevent the size of messages growing for increasing

system size. In our experiments, we set this value to 10, and

with 5 bytes used per estimation, that resulted in an overhead

of 50 bytes per shuffle message. Given local and neighbour

estimations, a public node i can estimate ω as the average of

both its local estimation Ei and its cached estimations from

other public nodes Mi:

Ei (ω) =

∑
n∈Mi

En + Ei

|Mi|+ 1
(8)



In contrast, a private node i has no local estimation Ei (as

it does not receive shuffle requests), so it estimates ω as the

average of its cached estimations from public nodes Mi:

Ei (ω) =

∑
n∈Mi

En

|Mi|
(9)

Both equations 8 and 9 are defined in the method

estimatePublicPrivateRatio of algorithm 3. In the next

section, we will show how the quality of the estimations

depends on how stable the public/private ratio is and how well

tuned α and γ are to the rate of change of the ratio.

VII. EVALUATION

We now evaluate the performance of our public-private esti-

mation algorithm in simulation and compare the performance

of the Croupier PSS with Nylon [9] and Gozar [10], the two

best performing NAT-friendly gossip-based PSS we found in

the literature. We use also Cyclon as a baseline for comparison,

where Cyclon experiments are executed using only public

nodes. Cyclon has shown in simulation that it passes classical

tests for randomness [6].

A. Experimental setup

We implemented Croupier, Cyclon, Nylon and Gozar on

the Kompics platform [21]. Kompics provides a framework

for building P2P protocols and a discrete event simulator for

simulating them using different bandwidth, latency and churn

models. Our implementations of Cyclon and Nylon are based

on the system descriptions in [6] and [9], respectively. For a

cleaner comparison with Nylon and Gozar, all protocols use

the same tail and swapper policies for node selection and view

merging, respectively.

In our experimental setup, for all four systems, the size of a

node’s partial view is 10 entries, and the size of subset of the

partial view sent in each view exchange is 5. The gossiping

round period for view exchange is set to one second. Latencies

between nodes are modelled on Internet latencies, using a

latency map based on the King data-set [16]. Unless stated

otherwise, we use a public-private ratio of 0.2, similar to that

seen in existing P2P systems [14], [13]. All experiments results

are averaged over 5 runs. The evaluation metrics for new nodes

that join the system are not included until they have executed

2 rounds, giving them enough time to initialize their estimates.

B. Evaluation of the Estimation algorithm

We measure the accuracy of our ratio estimation protocol

using two error metrics: the maximum approximation error

and the average approximation error. Firstly, we define the

upper bound on the approximation error of any nodes in the

system using the Kolmogorov-Smirnov [22] (or maximum

error) metric. For each node n, for all sample points in an

experiment run, we measure the maximum distance between

ω and E (ωn) as:

Errmax (p) = argmax
n

‖ω − E (ωn) ‖ (10)

For each node n in the system, we measure the maximum error

as the maximum error over all n:

Errmax = argmax
n

Errmax (n) (11)

As the maximum error is sensitive to noise, we also measure

the average error at each node. The average error is calculated

at each node n using:

Erravg (n) = ω − En (ω) (12)

Our total average error is then calculated as the average of

these local average errors:

Erravg =

∑
n∈N

Erravg (n)

|N |
(13)

Setting history window sizes for stable and changing ratios

In this experiment, we evaluate the accuracy of our pub-

lic/private ratio estimation using both a stable ratio and a

dynamic ratio (where the ratio of public to private nodes

changes over time). Both experiments have 1000 public nodes

and 4000 private nodes join the system following a Poisson

distribution with an inter-arrival time of 50 and 12.5 mil-

liseconds, respectively. We measure the average error and

maximum error while varying the size of the local history

(α) and the neighbour history (γ). Our experiments use three

pairs of history window sizes: a smaller window with α=10

and γ=25, a medium window with α=25 and γ=50, and a

large window with α=100 and γ=250. For the stable ratio, in

figures 1(a) and 1(b), we can see clearly that larger values of

α and γ have a slower convergence rate, but more accurate

estimations. All 5000 nodes have joined the system by time

t=51, and it takes roughly 100 rounds longer for the largest

history windows (α = 100, γ = 250) to converge on good

estimates compared to the smallest history windows (α = 10,
γ = 25). The largest history window run converges to an

average error of 0.07% with a maximum error of 0.2%, while

the smallest window converges to an average error of 0.25%

with a maximum error of 1.8%.

In figures 2(a) and 2(b), we observe the convergence rate

and estimation accuracy for a public/private ratio that grows

slowly in size. We use the same scenario of joining 1000 public

nodes and 4000 private nodes over the first 51 rounds, then

waited 7 rounds, and then added a new public node every

42 ms. The actual ratio is 0.3 until time t=58, then the ratio

rises at a constant rate to t=72 to reach 0.33, whereupon the

ratio remains at 0.33 until the end of the experiment run.

Again, we show the results for different local history (α) and a

neighbour history (γ) sizes. We can see here that for a dynamic

public-private ratio the largest history windows take a lot

longer to converge on the new ratio, while the smallest history

windows converge quicker (but eventually with less accurate

estimations when the ratio stabilizes again). From t=58 to

t=180, the smallest window has the lowest average error, while

from t=180 to t=260 the medium-sized window has the lowest

average error, then after t=260, the largest window converges
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Fig. 1. Convergence to a static ratio for different values of α and γ.
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Fig. 2. Convergence to a dynamic ratio for different values of α and γ.

closer to the real ratio. For a ratio that changes frequently and

by a large amount, we would need window sizes closer to our

smaller window sizes, but for more stable ratios medium or

large-sized windows would have lower average error and lower

maximum errors. Unless stated otherwise, further experiments

use the medium history window sizes, α=25 and γ=50, as, for

a real system, it would provide a reasonable balance of good

estimations and adaptability to a dynamic ratio.

Impact of system size on estimation

In this experiment, we vary the number of nodes in the

system to see its effect on the estimation accuracy. We measure

systems with 50, 100, 500, 1000, and 5000 nodes. In these

experiments, public and private nodes public nodes join the

system following a Poisson distribution with an inter-arrival

time of 50 and 12.5 milliseconds, respectively.

In figures 3(a) and 3(b), we can see that there is an

increase in estimation accuracy with increasing system size.

For systems with 5000 nodes, average estimation error is

only 0.2%, while for systems with only 100 nodes it rises

to 2.5%, rising again to 5% for systems with only 50 nodes.

Similarly, the maximum estimation error rises from 0.7% for

5000 nodes to 5.5% for 100 nodes, and to 9% for 50 nodes. In

general, we can say that estimation accuracy improves rapidly

up to systems with several hundred nodes, and then only

becomes gradually better thereafter. For example, the change

in estimation accuracy from 1000 to 5000 nodes is negligible

- an improvement in average estimation error of only 0.15%

and no difference in maximum estimation error. As such, in all

subsequent simulations, we set the size of the systems to 1000

nodes, where the nodes join the system following a Poisson

distribution with an inter-arrival time of 10 milliseconds, and

unless stated otherwise, 20% of nodes are public nodes.

Effect of different ratios on estimations

Different P2P systems will have different ratios of public

to private nodes, so here we investigate the accuracy of

estimations for different stable ratios of public to private nodes,

with experiments of 1000 nodes. We measure the average

and maximum estimation errors for ratios of 5%, 10%, 20%,

33%, 50%, 80%. We concentrate our measurements more on

systems with smaller relative numbers of public nodes, as this

is commonly the case in real-world systems. As we can see in

figures 4(a) and 4(b), there is no significant difference in the

average estimation error for all ratios. We do notice, however,

for only 5% public nodes that the maximum error becomes

significantly higher (5%) and constant. This is the result of

an outlier private node that happens not to receive enough

different estimates from public to improve its local estimation.

So, for systems with fewer than 5% public nodes, we can
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(a) Effect of different system sizes on average estimation errors,
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(b) Effect of different system sizes on maximum estimation errors,

with α = 25, γ = 50.

Fig. 3. Evaluating the effect of system size on the estimation algorithm for a stable ratio of 0.2.
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ratio of public to private nodes.
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Fig. 4. Estimation accuracy for different ratios of public to private nodes.
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Fig. 5. Evaluating the effect of churn on the estimation algorithm for a stable ratio.

expect that a few private nodes may have poor ratio estimates.

Impact of churn on estimation

Node membership in large-scale distributed systems is typ-

ically subject to continuous change, in a process called churn.

We model churn by replacing a fixed fraction of randomly

selected public and private nodes with new nodes at each

gossiping round, but keeping the ratio of public to private

nodes stable. The churn rate is set to a level common for P2P

systems [23]: assuming a gossip round-time of one second and

a mean session duration of 15 minutes, approximately 0.1% of

nodes leave the system per second and rejoin immediately as

newly initialized nodes. Figures 5(a) and 5(b) show the average

error and maximum error, respectively, for ratio estimation

under churn. As can be seen, there is no significant effect of

churn of up to 5% on the estimation algorithm. This rate of

churn is 50 times higher than rates measured in [23].

C. Peer sampling evaluation

In this subsection, we evaluate the performance of the

PSS, which builds on the estimation protocol for its correct

functioning.
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Fig. 6. Randomness properties.
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Fig. 7. Protocol overhead and connectivity under massive failure.

Measuring PSS Randomness

Here, we compare the randomness of the PSS of Croupier

with Gozar and Nylon. Cyclon is used as a baseline for true

randomness. In the first experiment we measure the in-degree

distribution over the nodes in the all four systems. Figure 6(a)

shows the in-degree distribution of nodes after 250 rounds (the

out-degree of all nodes is 10). In a uniformly random system,

we expect that the in-degree is distributed uniformly among

all nodes. Cyclon shows this behaviour as the node in-degree

is almost distributed uniformly among nodes. We can see the

same distribution in Croupier, as well as, in Gozar and Nylon

- their in-degree distributions are very close to Cyclon.

In figure 6(b), we compare the average path length of the

three systems, with Cyclon as a baseline. The path length

for two nodes is measured as the minimum number of hops

between two nodes, and the average path length is the average

of all path lengths between all nodes in the system. Figure 6(b)

also shows the average path length for the system in different

rounds. Here, we can see the average path length of Croupier,

Gozar and Nylon track Cyclon very closely. As we can see,

in the first few rounds, the path length of Gozar is high, as

this is the time that nodes need to find their partners used for

relaying.

Finally, we compare the clustering coefficient of the sys-

tems. A node’s clustering coefficient shows at what level the

neighbours of a node are also neighbours of each other. For

a complete graph, it is 1, and for a tree, where there is the

no connection between any two neighbours of a node, it is 0.

We calculate the average clustering coefficient as the average

across all nodes in the system. Figure 6(c) shows the evolution

of the clustering coefficient of the constructed overlay by

each system. We can see that Croupier has smaller clustering

coefficient that Gozar, Nylon and Cyclon. Our understanding

of why Croupier has a smaller clustering coefficient is as

follows. Since a private node in Croupier exchanges its view

only with a public node, two private nodes never have a chance

to exchange their neighbour list directly. Therefore, the prob-

ability that two private node establish a connection with each

other’s neighbours decreases. Since in our experiments 80%

of nodes are private nodes, the average clustering coefficient

in the overlay also decreases.

Protocol overhead

An important objective for any PSS is to minimize com-

munication costs and to bound the extra overhead on public

nodes (and achieve fairness). The network traffic exchanged

by a node in Croupier is proportional to the rate of gossiping,

as message sizes are bounded. Every node, both public and

private, send one message per round. Private nodes receive

one message per round (the response to the message they sent).

On average, every public node receives one message from a

public node per round, one response to a message they sent per

round, and n messages from private nodes per round (where

n is the ratio of private nodes to public nodes).

In this experiment, we set the local history α to 25, and the

neighbour history length γ to 100. As in the other experiments,

we bounded the number of estimations piggybacked on shuffle

requests to 10. Each estimation required 5 bytes: two bytes for

the node identifier, one byte each for the public and private

counts, and one for the timestamp. The steady-state overhead

is shown in figure 7(a). As we can see in figure 7(a), the

public node overhead in Croupier is less than that of Gozar

and Nylon. Interestingly, the overhead of private nodes, which

are 80% of the nodes, is less than half compared to Gozar,



and less than one fourth compared to Nylon. As such, we

conclude that the overhead on public nodes is not excessive,

and our goal of fairness to public nodes has been achieved.

Connectivity after catastrophic failure

We finally evaluate the behaviour of Croupier if high

numbers of nodes leave the system or crash at a single

instant in time. We measure the size of biggest cluster after

a catastrophic failure. Figure 7(b) shows the size of biggest

cluster for Croupier, Gozar and Nylon for varying percentages

of private nodes, when varying numbers of nodes fail. We can

see that Croupier is more resilient to node failure than both

Gozar and Nylon. For example, in the case of 80% private

nodes, when 90% of the nodes fail, the biggest cluster still

covers more than 85% of the nodes, while it covers 57% and

53% of nodes in Gozar and Nylon, respectively.

VIII. CONCLUSION

In this paper, we presented Croupier, the first NAT-friendly

gossip-based peer sampling service that is built without relay-

ing. Public nodes act as Croupiers, shuffling views amongst

one another as well as on behalf on private nodes. Our

main insight was to partition a node’s view into two parts:

a public view and a private view. This decision, however,

necessitated that we could identify a node as being either

public or private, and that nodes have a local estimation of the

ratio of public to private nodes in the system. To solve these

problems, we presented a minimal, distributed algorithm for

the identification of a node’s NAT type, as well a protocol to

estimation the public/private ratio that piggybacks on existing

Croupier shuffle messages. We showed in simulation that

Croupier preserves the randomness properties of a gossip-

based peer sampling service. We also showed that the protocol

overhead in our system is less than that of existing NAT-

aware PSS’ and that it is more robust to large-scale failure

than existing PSS’. We also showed that the extra overhead

incurred by public nodes is acceptable. In future work, we

will integrate our existing P2P video-streaming and video-

on-demand applications with Croupier, and evaluate their

behaviour on the open Internet.
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